Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.186
Filtrar
1.
Annu Rev Biochem ; 89: 103-133, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32176524

RESUMO

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades , DNA/genética , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Cell ; 180(5): 928-940.e14, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109413

RESUMO

Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.


Assuntos
Cromatina/genética , Histona Desacetilases/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Pontos de Checagem do Ciclo Celular/genética , Código das Histonas/genética , Histonas/genética , Fosforilação/genética , Príons/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae , Complexo Shelterina , Telômero/genética , Transcrição Gênica
3.
Cell ; 179(4): 813-827, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675495

RESUMO

Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.


Assuntos
Envelhecimento/genética , Biomarcadores , Senescência Celular/genética , Doenças Genéticas Inatas/genética , Pontos de Checagem do Ciclo Celular/genética , Cromatina/genética , Regulação da Expressão Gênica/genética , Doenças Genéticas Inatas/terapia , Humanos
4.
Nat Rev Mol Cell Biol ; 20(4): 199-210, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30824861

RESUMO

The tumour suppressor p53 has a central role in the response to cellular stress. Activated p53 transcriptionally regulates hundreds of genes that are involved in multiple biological processes, including in DNA damage repair, cell cycle arrest, apoptosis and senescence. In the context of DNA damage, p53 is thought to be a decision-making transcription factor that selectively activates genes as part of specific gene expression programmes to determine cellular outcomes. In this Review, we discuss the multiple molecular mechanisms of p53 regulation and how they modulate the induction of apoptosis or cell cycle arrest following DNA damage. Specifically, we discuss how the interaction of p53 with DNA and chromatin affects gene expression, and how p53 post-translational modifications, its temporal expression dynamics and its interactions with chromatin regulators and transcription factors influence cell fate. These multiple layers of regulation enable p53 to execute cellular responses that are appropriate for specific cellular states and environmental conditions.


Assuntos
Apoptose/genética , Proteína Supressora de Tumor p53/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Regulação da Expressão Gênica/genética , Humanos
5.
Genes Dev ; 35(9-10): 619-634, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888561

RESUMO

Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Fertilidade/genética , Gônadas/crescimento & desenvolvimento , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Gônadas/metabolismo , Camundongos , Processos de Determinação Sexual/genética , Análise de Célula Única
6.
Genes Dev ; 35(1-2): 59-64, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303641

RESUMO

Here, we showed that the acetylation-defective p53-4KR mice, lacking the ability of cell cycle arrest, senescence, apoptosis, and ferroptosis, were tumor prone but failed to develop early-onset tumors. By identifying a novel p53 acetylation site at lysine K136, we found that simultaneous mutations at all five acetylation sites (p53-5KR) diminished its remaining tumor suppression function. Moreover, the embryonic lethality caused by the deficiency of mdm2 was fully rescued in the background of p535KR/5KR , but not p534KR/4KR background. p53-4KR retained the ability to suppress mTOR function but this activity was abolished in p53-5KR cells. Notably, the early-onset tumor formation observed in p535KR/5KR and p53-null mice was suppressed upon the treatment of the mTOR inhibitor. These results suggest that p53-mediated mTOR regulation plays an important role in both embryonic development and tumor suppression, independent of cell cycle arrest, senescence, apoptosis, and ferroptosis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Embrião de Mamíferos , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação/genética , Neoplasias/fisiopatologia , Proteínas Proto-Oncogênicas c-mdm2/deficiência , Proteínas Proto-Oncogênicas c-mdm2/genética , Sirolimo/farmacologia , Análise de Sobrevida
7.
Genes Dev ; 34(23-24): 1637-1649, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184219

RESUMO

Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm-/- ) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Células Germinativas Embrionárias/efeitos da radiação , Células Germinativas/efeitos da radiação , Mutação/genética , Radiação Ionizante , Animais , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Elementos de DNA Transponíveis/efeitos da radiação , Células Germinativas Embrionárias/citologia , Feminino , Masculino , Meiose/genética , Meiose/efeitos da radiação , Camundongos , Oócitos/citologia , Oócitos/efeitos da radiação , Gravidez , RNA Interferente Pequeno/metabolismo , Fatores Sexuais
8.
Genes Dev ; 34(13-14): 913-930, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499403

RESUMO

During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.


Assuntos
Cromatina/metabolismo , Código das Histonas/genética , Histonas/metabolismo , Mitose/genética , Processamento de Proteína Pós-Traducional/genética , Ativação Transcricional/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Cromossomos/genética , Cromossomos/metabolismo , Elementos Facilitadores Genéticos , Genoma/genética , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Tempo
9.
Mol Cell ; 69(3): 412-425.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395063

RESUMO

Mutations in several general pre-mRNA splicing factors have been linked to myelodysplastic syndromes (MDSs) and solid tumors. These mutations have generally been assumed to cause disease by the resultant splicing defects, but different mutations appear to induce distinct splicing defects, raising the possibility that an alternative common mechanism is involved. Here we report a chain of events triggered by multiple splicing factor mutations, especially high-risk alleles in SRSF2 and U2AF1, including elevated R-loops, replication stress, and activation of the ataxia telangiectasia and Rad3-related protein (ATR)-Chk1 pathway. We further demonstrate that enhanced R-loops, opposite to the expectation from gained RNA binding with mutant SRSF2, result from impaired transcription pause release because the mutant protein loses its ability to extract the RNA polymerase II (Pol II) C-terminal domain (CTD) kinase-the positive transcription elongation factor complex (P-TEFb)-from the 7SK complex. Enhanced R-loops are linked to compromised proliferation of bone-marrow-derived blood progenitors, which can be partially rescued by RNase H overexpression, suggesting a direct contribution of augmented R-loops to the MDS phenotype.


Assuntos
Sequência de Bases/genética , Síndromes Mielodisplásicas/genética , Fatores de Processamento de RNA/genética , Pontos de Checagem do Ciclo Celular/genética , Células HEK293 , Humanos , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
10.
Mol Cell ; 70(6): 1121-1133.e9, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910110

RESUMO

DNA replication introduces a dosage imbalance between early and late replicating genes. In budding yeast, buffering gene expression against this imbalance depends on marking replicated DNA by H3K56 acetylation (H3K56ac). Whether additional processes are required for suppressing transcription from H3K56ac-labeled DNA remains unknown. Here, using a database-guided candidate screen, we find that COMPASS, the H3K4 methyltransferase, and its upstream effector, PAF1C, act downstream of H3K56ac to buffer expression. Replicated genes show reduced abundance of the transcription activating mark H3K4me3 and accumulate the transcription inhibitory mark H3K4me2 near transcription start sites. Notably, in hydroxyurea-exposed cells, the S phase checkpoint stabilizes H3K56ac and becomes essential for buffering. We suggest that H3K56ac suppresses transcription of replicated genes by interfering with post-replication recovery of epigenetic marks and assign a new function for the S phase checkpoint in stabilizing this mechanism during persistent dosage imbalance.


Assuntos
Replicação do DNA/fisiologia , Histonas/metabolismo , Acetilação , Pontos de Checagem do Ciclo Celular/genética , Replicação do DNA/genética , Epigênese Genética/fisiologia , Epigenômica/métodos , Regulação Fúngica da Expressão Gênica/genética , Histona Acetiltransferases/metabolismo , Histona Metiltransferases/metabolismo , Histonas/fisiologia , Homeostase/genética , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 72(4): 625-635.e4, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454561

RESUMO

In response to genotoxic stress, cells activate a signaling cascade known as the DNA damage checkpoint (DDC) that leads to a temporary cell cycle arrest and activation of DNA repair mechanisms. Because persistent DDC activation compromises cell viability, this process must be tightly regulated. However, despite its importance, the mechanisms regulating DDC recovery are not completely understood. Here, we identify a DNA-damage-regulated histone modification in Saccharomyces cerevisiae, phosphorylation of H4 threonine 80 (H4T80ph), and show that it triggers checkpoint inactivation. H4T80ph is critical for cell survival to DNA damage, and its absence causes impaired DDC recovery and persistent cell cycle arrest. We show that, in response to genotoxic stress, p21-activated kinase Cla4 phosphorylates H4T80 to recruit Rtt107 to sites of DNA damage. Rtt107 displaces the checkpoint adaptor Rad9, thereby interrupting the checkpoint-signaling cascade. Collectively, our results indicate that H4T80ph regulates DDC recovery.


Assuntos
Dano ao DNA , Reparo do DNA , Histonas/genética , Histonas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
12.
Mol Cell ; 71(4): 581-591.e5, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30057196

RESUMO

Biological signals need to be robust and filter small fluctuations yet maintain sensitivity to signals across a wide range of magnitudes. Here, we studied how fluctuations in DNA damage signaling relate to maintenance of long-term cell-cycle arrest. Using live-cell imaging, we quantified division profiles of individual human cells in the course of 1 week after irradiation. We found a subset of cells that initially establish cell-cycle arrest and then sporadically escape and divide. Using fluorescent reporters and mathematical modeling, we determined that fluctuations in the oscillatory pattern of the tumor suppressor p53 trigger a sharp switch between p21 and CDK2, leading to escape from arrest. Transient perturbation of p53 stability mimicked the noise in individual cells and was sufficient to trigger escape from arrest. Our results show that the self-reinforcing circuitry that mediates cell-cycle transitions can translate small fluctuations in p53 signaling into large phenotypic changes.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/metabolismo , Modelos Estatísticos , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Divisão Celular/efeitos da radiação , Linhagem Celular Transformada , Proliferação de Células/efeitos da radiação , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Raios gama , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Estabilidade Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Imagem com Lapso de Tempo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Vermelha Fluorescente
13.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38321933

RESUMO

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Metilação de DNA , Fígado , Peixe-Zebra , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , Replicação do DNA/genética , Embrião não Mamífero , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fase S , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ativação Enzimática/genética
14.
Genes Dev ; 32(23-24): 1499-1513, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463903

RESUMO

In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.


Assuntos
Adaptação Fisiológica/genética , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Reparo do DNA , Genoma Fúngico/genética , Técnicas Analíticas Microfluídicas , Mutação , Imagem Óptica , Saccharomyces cerevisiae/enzimologia , Telomerase/genética
15.
Genes Dev ; 32(11-12): 822-835, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899143

RESUMO

The Mec1/ATR kinase coordinates multiple cellular responses to replication stress. In addition to its canonical role in activating the checkpoint kinase Rad53, Mec1 also plays checkpoint-independent roles in genome maintenance that are not well understood. Here we used a combined genetic-phosphoproteomic approach to manipulate Mec1 activation and globally monitor Mec1 signaling, allowing us to delineate distinct checkpoint-independent modes of Mec1 action. Using cells in which endogenous Mec1 activators were genetically ablated, we found that expression of "free" Mec1 activation domains (MADs) can robustly activate Mec1 and rescue the severe DNA replication and growth defects of these cells back to wild-type levels. However, unlike the activation mediated by endogenous activator proteins, "free" MADs are unable to stimulate Mec1-mediated suppression of gross chromosomal rearrangements (GCRs), revealing that Mec1's role in genome maintenance is separable from a previously unappreciated proreplicative function. Both Mec1's functions in promoting replication and suppressing GCRs are independent of the downstream checkpoint kinases. Additionally, Mec1-dependent GCR suppression seems to require localized Mec1 action at DNA lesions, which correlates with the phosphorylation of activator-proximal substrates involved in homologous recombination-mediated DNA repair. These findings establish that Mec1 initiates checkpoint signaling, promotes DNA replication, and maintains genetic stability through distinct modes of action.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Replicação do DNA/genética , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Ativação Enzimática/genética , Instabilidade Genômica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Fosforilação , Domínios Proteicos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Genome Res ; 32(7): 1285-1297, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35835565

RESUMO

Heat shock is a common environmental stress, although the response of the nucleus to it remains controversial in mammalian cells. Acute reaction and chronic adaptation to environmental stress may have distinct internal rewiring in the gene regulation networks. However, this difference remains largely unexplored. Here, we report that chromatin conformation and chromatin accessibility respond differently in short- and long-term heat shock in human K562 cells. We found that chromatin conformation in K562 cells was largely stable in response to short-term heat shock, whereas it showed clear and characteristic changes after long-term heat treatment with little alteration in chromatin accessibility during the whole process. We further show in silico and experimental evidence strongly suggesting that changes in chromatin conformation may largely stem from an accumulation of cells in the M stage of the cell cycle in response to heat shock. Our results represent a paradigm shift away from the controversial view of chromatin response to heat shock and emphasize the necessity of cell cycle analysis when interpreting bulk Hi-C data.


Assuntos
Cromatina , Resposta ao Choque Térmico , Animais , Pontos de Checagem do Ciclo Celular/genética , Cromatina/genética , Genômica , Resposta ao Choque Térmico/genética , Humanos , Células K562 , Mamíferos/genética
17.
J Pathol ; 264(1): 112-124, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049595

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by genomic integration of the Merkel cell polyomavirus (MCPyV). MCPyV-negative cases often present as combined MCCs, which represent a distinctive subset of tumors characterized by association of an MCC with a second tumor component, mostly squamous cell carcinoma. Up to now, only exceptional cases of combined MCC with neuroblastic differentiation have been reported. Herein we describe two additional combined MCCs with neuroblastic differentiation and provide comprehensive morphologic, immunohistochemical, transcriptomic, genetic and epigenetic characterization of these tumors, which both arose in elderly men and appeared as an isolated inguinal adenopathy. Microscopic examination revealed biphasic tumors combining a poorly differentiated high-grade carcinoma with a poorly differentiated neuroblastic component lacking signs of proliferation. Immunohistochemical investigation revealed keratin 20 and MCPyV T antigen (TA) in the MCC parts, while neuroblastic differentiation was confirmed in the other component in both cases. A clonal relation of the two components can be deduced from 20 and 14 shared acquired point mutations detected by whole exome analysis in both combined tumors, respectively. Spatial transcriptomics demonstrated a lower expression of stem cell marker genes such as SOX2 and MCM2 in the neuroblastic component. Interestingly, although the neuroblastic part lacked TA expression, the same genomic MCPyV integration and the same large T-truncating mutations were observed in both tumor parts. Given that neuronal transdifferentiation upon TA repression has been reported for MCC cell lines, the most likely scenario for the two combined MCC/neuroblastic tumors is that neuroblastic transdifferentiation resulted from loss of TA expression in a subset of MCC cells. Indeed, DNA methylation profiling suggests an MCC-typical cellular origin for the combined MCC/neuroblastomas. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Antígenos Virais de Tumores , Carcinoma de Célula de Merkel , Transdiferenciação Celular , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Poliomavírus das Células de Merkel/genética , Pontos de Checagem do Ciclo Celular/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Idoso de 80 Anos ou mais , Idoso , Neoplasias Complexas Mistas/patologia , Neoplasias Complexas Mistas/genética , Neoplasias Complexas Mistas/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo
18.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367657

RESUMO

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Assuntos
Fácies , Linfedema , Microcefalia , Doenças Retinianas , Displasia Retiniana , Animais , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica , Deficiências do Desenvolvimento , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Nature ; 568(7753): 551-556, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971823

RESUMO

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Assuntos
Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/genética , Mutações Sintéticas Letais/genética , Helicase da Síndrome de Werner/genética , Apoptose/genética , Sistemas CRISPR-Cas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Genéticos , Neoplasias/patologia , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/deficiência
20.
PLoS Genet ; 18(5): e1010202, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550632

RESUMO

Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria. While RadA/Sms is dispensable in bacteria, RADA-deficient Arabidopsis plants are severely impacted in their development and fertility, correlating with increased mtDNA recombination across intermediate-size repeats and accumulation of recombination-generated mitochondrial subgenomes. The radA mutation is epistatic to recG1 that affects the additional branch migration activity. In contrast, the double mutation radA recA3 is lethal, underlining the importance of an alternative RECA3-dependent pathway. The physical interaction of RADA with RECA2 but not with RECA3 further indicated that RADA is required for the processing of recombination intermediates in the RECA2-depedent recombination pathway of plant mitochondria. Although RADA is dually targeted to mitochondria and chloroplasts we found little to no effects of the radA mutation on the stability of the plastidial genome. Finally, we found that the deficient maintenance of the mtDNA in radA apparently triggers a retrograde signal that activates nuclear genes repressing cell cycle progression.


Assuntos
Arabidopsis , DNA Mitocondrial , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Plantas/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa