Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.855
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059783

RESUMO

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Assuntos
Autoanticorpos/genética , Doenças Autoimunes/genética , Linfócitos B/imunologia , Linfoma/genética , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/patologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Transporte/genética , Evolução Clonal/genética , Evolução Clonal/imunologia , Ciclina D3/genética , Guanilato Ciclase/genética , Humanos , Proteínas Imediatamente Precoces/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Proteínas Inibidoras de Diferenciação/genética , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Mutação/imunologia , Proteínas de Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteínas Supressoras de Tumor/genética , Recombinação V(D)J/genética
2.
Nat Immunol ; 18(8): 911-920, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628091

RESUMO

Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differentiation and inhibits pre-B cell leukemogenesis.


Assuntos
Proliferação de Células/genética , Ciclina D3/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Imediatamente Precoces/genética , Linfopoese/genética , Células Precursoras de Linfócitos B/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Supressoras de Tumor/genética , Animais , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Rearranjo Gênico do Linfócito B/genética , Genes abl/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Cadeias Leves de Imunoglobulina/genética , Espectrometria de Massas , Camundongos , Células Precursoras de Linfócitos B/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Supressoras de Tumor/metabolismo
3.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624217

RESUMO

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Mitose , Células Neoplásicas Circulantes/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Indóis/farmacologia , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Mitose/efeitos dos fármacos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Elongação da Transcrição Genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Immunol ; 15(5): 457-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705297

RESUMO

SGK1 is an AGC kinase that regulates the expression of membrane sodium channels in renal tubular cells in a manner dependent on the metabolic checkpoint kinase complex mTORC2. We hypothesized that SGK1 might represent an additional mTORC2-dependent regulator of the differentiation and function of T cells. Here we found that after activation by mTORC2, SGK1 promoted T helper type 2 (TH2) differentiation by negatively regulating degradation of the transcription factor JunB mediated by the E3 ligase Nedd4-2. Simultaneously, SGK1 repressed the production of interferon-γ (IFN-γ) by controlling expression of the long isoform of the transcription factor TCF-1. Consistent with those findings, mice with selective deletion of SGK1 in T cells were resistant to experimentally induced asthma, generated substantial IFN-γ in response to viral infection and more readily rejected tumors.


Assuntos
Asma/imunologia , Proteínas Imediatamente Precoces/metabolismo , Melanoma Experimental/imunologia , Complexos Multiproteicos/imunologia , Infecções por Poxviridae/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/imunologia , Células Th1/imunologia , Células Th2/imunologia , Vaccinia virus/imunologia , Imunidade Adaptativa/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/genética , Fator 1-alfa Nuclear de Hepatócito , Proteínas Imediatamente Precoces/genética , Interferon gama/genética , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4 , Proteínas Serina-Treonina Quinases/genética , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carga Tumoral/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
EMBO Rep ; 25(2): 725-744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177923

RESUMO

Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.


Assuntos
Herpesvirus Humano 6 , Proteínas Imediatamente Precoces , Infecções por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Infecções por Roseolovirus/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Integração Viral , Instabilidade Genômica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
6.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240593

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequências Repetidas Terminais/genética , Regulação Viral da Expressão Gênica
7.
J Virol ; 98(6): e0071224, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780246

RESUMO

Within the first 15 minutes of infection, herpes simplex virus 1 immediate early proteins repurpose cellular RNA polymerase (Pol II) for viral transcription. An important role of the viral-infected cell protein 27 (ICP27) is to facilitate viral pre-mRNA processing and export viral mRNA to the cytoplasm. Here, we use precision nuclear run-on followed by deep sequencing (PRO-seq) to characterize transcription of a viral ICP27 null mutant. At 1.5 and 3 hours post infection (hpi), we observed increased total levels of Pol II on the mutant viral genome and accumulation of Pol II downstream of poly A sites indicating increased levels of initiation and processivity. By 6 hpi, Pol II accumulation on specific mutant viral genes was higher than that on wild-type virus either at or upstream of poly A signals, depending on the gene. The PRO-seq profile of the ICP27 mutant on late genes at 6 hpi was similar but not identical to that caused by treatment with flavopiridol, a known inhibitor of RNA processivity. This pattern was different from PRO-seq profiles of other α gene mutants and upon inhibition of viral DNA replication with PAA. Together, these results indicate that ICP27 contributes to the repression of aberrant viral transcription at 1.5 and 3 hpi by inhibiting initiation and decreasing RNA processivity. However, ICP27 is needed to enhance processivity on most late genes by 6 hpi in a mechanism distinguishable from its role in viral DNA replication.IMPORTANCEWe developed and validated the use of a processivity index for precision nuclear run-on followed by deep sequencing data. The processivity index calculations confirm infected cell protein 27 (ICP27) induces downstream of transcription termination on certain host genes. The processivity indices and whole gene probe data implicate ICP27 in transient immediate early gene-mediated repression, a process that also requires ICP4, ICP22, and ICP0. The data indicate that ICP27 directly or indirectly regulates RNA polymerase (Pol II) initiation and processivity on specific genes at specific times post infection. These observations support specific and varied roles for ICP27 in regulating Pol II activity on viral genes in addition to its known roles in post transcriptional mRNA processing and export.


Assuntos
Genoma Viral , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Replicação Viral , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Humanos , Mutação , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Viral/genética , Animais , Regulação Viral da Expressão Gênica , Células Vero , Chlorocebus aethiops , Herpes Simples/virologia , Herpes Simples/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771044

RESUMO

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Bovino 1 , Regiões Promotoras Genéticas , Receptores de Glucocorticoides , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiologia , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Bovinos , Ativação Transcricional , Proteínas Virais/metabolismo , Proteínas Virais/genética , Dexametasona/farmacologia , Ativação Viral , Latência Viral , Linhagem Celular , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/genética , Camundongos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Elementos de Resposta , Sítios de Ligação , Transativadores , Ubiquitina-Proteína Ligases
9.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717113

RESUMO

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Transativadores , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Replicação Viral , Humanos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteólise , Latência Viral , Apoptose , Ativação Viral , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo
10.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451085

RESUMO

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Assuntos
Citomegalovirus , Células-Tronco , Trofoblastos , Replicação Viral , Feminino , Humanos , Gravidez , Diferenciação Celular/genética , Linhagem da Célula/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Placenta/citologia , Placenta/patologia , Placenta/fisiopatologia , Placenta/virologia , Primeiro Trimestre da Gravidez , Células-Tronco/citologia , Células-Tronco/virologia , Trofoblastos/citologia , Trofoblastos/virologia
11.
FASEB J ; 38(3): e23459, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329343

RESUMO

Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Imediatamente Precoces , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Angiogênese , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Imediatamente Precoces/genética , Luciferases , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/genética , Cicatrização/genética
12.
Mol Cell ; 67(5): 757-769.e5, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28826673

RESUMO

Cell signaling networks coordinate specific patterns of protein expression in response to external cues, yet the logic by which signaling pathway activity determines the eventual abundance of target proteins is complex and poorly understood. Here, we describe an approach for simultaneously controlling the Ras/Erk pathway and monitoring a target gene's transcription and protein accumulation in single live cells. We apply our approach to dissect how Erk activity is decoded by immediate early genes (IEGs). We find that IEG transcription decodes Erk dynamics through a shared band-pass filtering circuit; repeated Erk pulses transcribe IEGs more efficiently than sustained Erk inputs. However, despite highly similar transcriptional responses, each IEG exhibits dramatically different protein-level accumulation, demonstrating a high degree of post-transcriptional regulation by combinations of multiple pathways. Our results demonstrate that the Ras/Erk pathway is decoded by both dynamic filters and logic gates to shape target gene responses in a context-specific manner.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/enzimologia , Genes Precoces , Proteínas Imediatamente Precoces/biossíntese , Transdução de Sinais , Transcrição Gênica , Proteínas ras/metabolismo , Animais , Simulação por Computador , Ativação Enzimática , Retroalimentação Fisiológica , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Luz , Camundongos , Modelos Genéticos , Células NIH 3T3 , Optogenética , Fosforilação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Célula Única , Fatores de Tempo , Transcriptoma , Transfecção , Regulação para Cima
13.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091472

RESUMO

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Evolução Biológica , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Proteínas Imediatamente Precoces/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Viroses/genética , Viroses/metabolismo , Replicação Viral/fisiologia , Vírus/patogenicidade
14.
Proteins ; 92(7): 830-841, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372168

RESUMO

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Multimerização Proteica , Ubiquitina-Proteína Ligases , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Cristalografia por Raios X , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Modelos Moleculares , Humanos , Domínios Proteicos , Dobramento de Proteína , Sequência de Aminoácidos , Conformação Proteica em Folha beta
15.
Cancer Sci ; 115(2): 452-464, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050664

RESUMO

B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.


Assuntos
Proteínas Imediatamente Precoces , Linfoma de Célula do Manto , MicroRNAs , Humanos , Adulto , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , MicroRNAs/metabolismo , Transdução de Sinais/genética , Linhagem Celular , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Proteínas Supressoras de Tumor/metabolismo
16.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373794

RESUMO

Mammalian (or mechanistic) target of rapamycin complex 2 (mTORC2) is a kinase complex that targets predominantly Akt family proteins, SGK1 and protein kinase C (PKC), and has well-characterized roles in mediating hormone and growth factor effects on a wide array of cellular processes. Recent evidence suggests that mTORC2 is also directly stimulated in renal tubule cells by increased extracellular K+ concentration, leading to activation of the Na+ channel, ENaC, and increasing the electrical driving force for K+ secretion. We identify here a signaling mechanism for this local effect of K+. We show that an increase in extracellular [K+] leads to a rise in intracellular chloride (Cl-), which stimulates a previously unknown scaffolding activity of the protein 'with no lysine-1' (WNK1) kinase. WNK1 interacts selectively with SGK1 and recruits it to mTORC2, resulting in enhanced SGK1 phosphorylation and SGK1-dependent activation of ENaC. This scaffolding effect of WNK1 is independent of its own kinase activity and does not cause a generalized stimulation of mTORC2 kinase activity. These findings establish a novel WNK1-dependent regulatory mechanism that harnesses mTORC2 kinase activity selectively toward SGK1 to control epithelial ion transport and electrolyte homeostasis.


Assuntos
Proteínas Imediatamente Precoces , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Cloretos/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Proteínas Serina-Treonina Quinases , Serina-Treonina Quinases TOR/metabolismo , Transporte de Íons , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mamíferos/metabolismo
17.
Biochem Biophys Res Commun ; 719: 150075, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749087

RESUMO

Abundant evidence has shown the protective effect of aerobic exercise on central neuronal system, however, research about resistance exercise remains limited. To evaluate the effect and potential molecular mechanisms of resistance exercise in improving cognition and mental health, three-month-old male C57BL/6J mice underwent resistance training for five weeks. Body parameters, cognitive performance and synaptic plasticity were then assessed. In both groups, total RNA from the frontal cortex, hippocampus and gastrocnemius was isolated and sequenced, GO term and KEGG analysis were performed to identify molecular mechanisms. The results from RNA sequencing were then verified by RT-PCR. Our data found that mice in training group showed reduced anxiety-like behavior and better spatial memory. Accordingly, resistance exercise specifically increased the number of thin spines without affecting the number of other kind of spines. mRNA sequence analysis showed that resistance exercise induced differential expression of hundreds of genes in the above three tissues. KEGG analysis indicated the FoxO signaling pathway the most significant changed pathway throughout the brain and muscle. GO terms analysis showed that Sgk1 was enriched in the three key cognition related BP, including long-term memory, learning or memory and memory, and the expression level of Sgk1 was positive related with cognitive performance in the water maze. In conclusion, resistance exercise improved the mental health, cognition and synaptic plasticity of mice. Integrating analysis of mRNA expression profiles in frontal cortex, hippocampus and muscle reveals Sgk1 as the key mediator in brain-muscle crosstalk.


Assuntos
Encéfalo , Proteínas Imediatamente Precoces , Camundongos Endogâmicos C57BL , Músculo Esquelético , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases , RNA Mensageiro , Animais , Masculino , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Encéfalo/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Treinamento Resistido , Cognição/fisiologia , Transcriptoma , Plasticidade Neuronal/genética , Hipocampo/metabolismo , Ansiedade/genética , Ansiedade/metabolismo
18.
J Virol ; 97(7): e0195722, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310267

RESUMO

Herpes simplex virus type-1 (HSV-1) protein ICP27 is an essential immediate early (IE) protein that promotes the expression of viral early (E) and late (L) genes via multiple mechanisms. Our understanding of this complex regulatory protein has been greatly enhanced by the characterization of HSV-1 mutants bearing engineered alterations in the ICP27 gene. However, much of this analysis has been performed in interferon-deficient Vero monkey cells. Here, we assessed the replication of a panel of ICP27 mutants in several other cell types. Our analysis shows that mutants lacking ICP27's amino (N)-terminal nuclear export signal (NES) display a striking cell type-dependent growth phenotype, i.e., they grow semi-permissively in Vero and some other cells but are tightly blocked for replication in primary human fibroblasts and multiple human cell lines. This tight growth defect correlates with a failure of these mutants to replicate viral DNA. We also report that HSV-1 NES mutants are deficient in expressing the IE protein ICP4 at early times postinfection. Analysis of viral RNA levels suggests that this phenotype is due, at least in part, to a defect in the export of ICP4 mRNA to the cytoplasm. In combination, our results (i) show that ICP27's NES is critically important for HSV-1 replication in many human cells, and (ii) suggest that ICP27 plays a heretofore unappreciated role in the expression of ICP4. IMPORTANCE HSV-1 IE proteins drive productive HSV-1 replication. The major paradigm of IE gene induction, developed over many years, involves the parallel activation of the five IE genes by the viral tegument protein VP16, which recruits the host RNA polymerase II (RNAP II) to the IE gene promoters. Here, we provide evidence that ICP27 can enhance ICP4 expression early in infection. Because ICP4 is required for transcription of viral E and L genes, this finding may be relevant to understanding how HSV-1 enters and exits the latent state in neurons.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Animais , Chlorocebus aethiops , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Sinais de Exportação Nuclear , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Linhagem Celular , Células Vero , Replicação Viral
19.
J Virol ; 97(5): e0031323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097169

RESUMO

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Assuntos
Conexina 43 , Infecções por Citomegalovirus , Citomegalovirus , Proteínas Imediatamente Precoces , Animais , Humanos , Recém-Nascido , Camundongos , Conexina 43/genética , Conexina 43/metabolismo , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
20.
J Virol ; 97(3): e0169622, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815831

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that can replicate in oral epithelial cells to promote viral transmission via saliva. To identify novel regulators of KSHV oral infection, we performed a transcriptome analysis of KSHV-infected primary human gingival epithelial (HGEP) cells, which identified the gene coding for the host transcription factor FOXQ1 as the top induced host gene. FOXQ1 is nearly undetectable in uninfected HGEP and telomerase-immortalized gingival keratinocytes (TIGK) cells but is highly expressed within hours of KSHV infection. We found that while the FOXQ1 promoter lacks activating histone acetylation marks in uninfected oral epithelial cells, these marks accumulate in the FOXQ1 promoter in infected cells, revealing a rapid epigenetic reprogramming event. To evaluate FOXQ1 function, we depleted FOXQ1 in KSHV-infected TIGK cells, which resulted in reduced accumulation of KSHV lytic proteins and viral DNA over the course of 4 days of infection, uncovering a novel lytic cycle-sustaining role of FOXQ1. A screen of KSHV lytic proteins demonstrated that the immediate early proteins ORF45 and replication and transcription activator (RTA) were both sufficient for FOXQ1 induction in oral epithelial cells, indicating active involvement of incoming and rapidly expressed factors in altering host gene expression. ORF45 is known to sustain extracellular signal-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) pathway activity to promote lytic infection. We found that an ORF45 mutant lacking RSK activation function failed to induce FOXQ1 in TIGK cells, revealing that ORF45 uses a shared mechanism to rapidly induce both host and viral genes to sustain lytic infection in oral epithelial cells. IMPORTANCE The oral cavity is a primary site of initial contact and entry for many viruses. Viral replication in the oral epithelium promotes viral shedding in saliva, allowing interpersonal transmission, as well as spread to other cell types, where chronic infection can be established. Understanding the regulation of KSHV infection in the oral epithelium would allow for the design of universal strategies to target the first stage of viral infection, thereby halting systemic viral pathogenesis. Overall, we uncover a novel positive feedback loop in which immediate early KSHV factors drive rapid host reprogramming of oral epithelial cells to sustain the lytic cycle in the oral cavity.


Assuntos
Retroalimentação Fisiológica , Fatores de Transcrição Forkhead , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Humanos , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Replicação Viral/fisiologia , Interações entre Hospedeiro e Microrganismos , Linhagem Celular , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa