Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
PLoS Pathog ; 17(6): e1009703, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181702

RESUMO

Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.


Assuntos
Difusão Dinâmica da Luz/métodos , Fotometria/métodos , Proteínas PrPSc/análise , Proteínas PrPSc/química , Animais , Cricetinae , Hidrodinâmica , Camundongos , Estrutura Quaternária de Proteína
2.
J Biol Chem ; 295(33): 11572-11583, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32561641

RESUMO

Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the pathological isoform PrPSc Elucidating the molecular and cellular mechanisms underlying prion propagation may help to develop disease interventions. Cell culture systems for prion propagation have greatly advanced molecular insights into prion biology, but translation of in vitro to in vivo findings is often disappointing. A wider range of cell culture systems might help overcome these shortcomings. Here, we describe an immortalized mouse neuronal astrocyte cell line (C8D1A) that can be infected with murine prions. Both PrPC protein and mRNA levels in astrocytes were comparable with those in neuronal and non-neuronal cell lines permitting persistent prion infection. We challenged astrocytes with three mouse-adapted prion strains (22L, RML, and ME7) and cultured them for six passages. Immunoblotting results revealed that the astrocytes propagated 22L prions well over all six passages, whereas ME7 prions did not replicate, and RML prions replicated only very weakly after five passages. Immunofluorescence analysis indicated similar results for PrPSc Interestingly, when we used prion conversion activity as a readout in real-time quaking-induced conversion assays with RML-infected cell lysates, we observed a strong signal over all six passages, comparable with that for 22L-infected cells. These data indicate that the C8D1A cell line is permissive to prion infection. Moreover, the propagated prions differed in conversion and proteinase K-resistance levels in these astrocytes. We propose that the C8D1A cell line could be used to decipher prion strain biology.


Assuntos
Astrócitos/patologia , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Agregação Patológica de Proteínas/patologia , Animais , Astrócitos/metabolismo , Linhagem Celular , Expressão Gênica , Humanos , Camundongos , Proteínas PrPC/análise , Proteínas PrPSc/análise , Doenças Priônicas/metabolismo , Agregação Patológica de Proteínas/metabolismo
3.
Can J Neurol Sci ; 46(5): 595-598, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266552

RESUMO

Creutzfeldt-Jakob disease (CJD) is a fatal neurological illness for which accurate diagnosis is paramount. Real-time quaking-induced conversion (RT-QuIC) is a prion-specific assay with high sensitivity and specificity for CJD. The Canadian endpoint quaking-induced conversion (EP-QuIC) test is similar, but unlike RT-QuIC there is little data regarding its diagnostic utility in clinical practice. In this exploratory predictive value analysis of EP-QuIC in CJD, the negative predictive value (NPV) and positive predictive value (PPV) was 100% and 83%, respectively, with one false-positive result identified. Re-testing this sample with an optimized EP-QuIC protocol eliminated this false-positive result, leading to a PPV of 100%.


La valeur prédictive de la méthode diagnostique dite de conversion provoquée par tremblement au point final dans le cas de la maladie de Creutzfeldt-Jakob. La maladie de Creutzfeldt-Jakob (MCJ) est une maladie neurologique qui entraîne à terme un décès et pour laquelle l'établissement d'un diagnostic précis est primordial. La conversion provoquée par tremblement en temps réel (RT-QuIC en anglais) est une méthode diagnostique qui repose sur la détection de la protéine prion. Dans le cas de la MCJ, cette méthode est réputée posséder une sensibilité et une spécificité élevées. La méthode canadienne dite de conversion provoquée par tremblement au point final (EP-QuIC en anglais) se veut similaire mais, à la différence de la RT-QuIC, il existe peu de données en ce qui concerne son utilité diagnostique dans le cadre d'une pratique clinique. Dans cette analyse prédictive exploratoire de la EP-QuIC en lien avec la MCJ, la valeur prédictive négative (VPN) et la valeur prédictive positive (VPP) ont été respectivement de 100 % et de 83 %, un seul résultat faux-positif ayant été identifié. Le fait de soumettre notre échantillon à un nouveau test effectué à l'aide d'un protocole d'EP-QuIC optimisé a permis d'éliminer ce résultat faux-positif, ce qui a débouché sur une VPP de 100 %.


Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico , Proteínas PrPSc/análise , Proteínas Priônicas/análise , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
4.
Nature ; 485(7399): 507-11, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22622579

RESUMO

The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


Assuntos
Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosfoproteínas/metabolismo , Príons/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Cinamatos/farmacologia , Fator de Iniciação 2 em Eucariotos/análise , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores , Fosfoproteínas/análise , Fosforilação , Proteínas PrPSc/análise , Proteínas PrPSc/metabolismo , Proteínas PrPSc/toxicidade , Doenças Priônicas/patologia , Príons/biossíntese , Príons/genética , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/química , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia , Resposta a Proteínas não Dobradas/fisiologia
5.
Vet Pathol ; 54(6): 892-900, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731378

RESUMO

H-type bovine spongiform encephalopathy (H-BSE) is an atypical form of BSE in cattle. During passaging of H-BSE in transgenic bovinized (TgBoPrP) mice, a novel phenotype of BSE, termed BSE-SW emerged and was characterized by a short incubation time and host weight loss. To investigate the biological and biochemical properties of the BSE-SW prion, a transmission study was conducted in cattle, which were inoculated intracerebrally with brain homogenate from BSE-SW-infected TgBoPrP mice. The disease incubation period was approximately 15 months. The animals showed characteristic neurological signs of dullness, and severe spongiform changes and a widespread, uniform distribution of disease-associated prion protein (PrPSc) were observed throughout the brain of infected cattle. Immunohistochemical PrPSc staining of the brain revealed the presence of intraglial accumulations and plaque-like deposits. No remarkable differences were identified in vacuolar lesion scores, topographical distribution patterns, and staining types of PrPSc in the brains of BSE-SW- vs H-BSE-infected cattle. PrPSc deposition was detected in the ganglia, vagus nerve, spinal nerve, cauda equina, adrenal medulla, and ocular muscle. Western blot analysis revealed that the specific biochemical properties of the BSE-SW prion, with an additional 10- to 12-kDa fragment, were well maintained after transmission. These findings indicated that the BSE-SW prion has biochemical properties distinct from those of H-BSE in cattle, although clinical and pathologic features of BSW-SW in cattle are indistinguishable from those of H-BSE. The results suggest that the 2 infectious agents, BSE-SW and H-BSE, are closely related strains.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Proteínas PrPSc/metabolismo , Príons/metabolismo , Animais , Western Blotting/veterinária , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Feminino , Imuno-Histoquímica/veterinária , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Modelos Animais , Fenótipo , Proteínas PrPSc/análise , Príons/análise
6.
Biochemistry ; 55(6): 894-902, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26786805

RESUMO

Prions (PrP(Sc)) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrP(C)) into a prion. The only demonstrated difference between PrP(C) and PrP(Sc) is conformational: they are isoforms. A given host can be infected by more than one kind or strain of prion. Five strains of hamster-adapted scrapie [Sc237 (=263K), drowsy, 139H, 22AH, and 22CH] and recombinant PrP were reacted with five different concentrations (0, 1, 5, 10, and 20 mM) of reagent (N-hydroxysuccinimide ester of acetic acid) that acetylates lysines. The extent of lysine acetylation was quantitated by mass spectrometry. The lysines in rPrP react similarly. The lysines in the strains react differently from one another in a given strain and react differently when strains are compared. Lysines in the C-terminal region of prions have different strain-dependent reactivity. The results are consistent with a recently proposed model for the structure of a prion. This model proposes that prions are composed of a four-rung ß-solenoid structure comprised of four ß-sheets that are joined by loops and turns of amino acids. Variation in the amino acid composition of the loops and ß-sheet structures is thought to result in different strains of prions.


Assuntos
Proteínas PrPSc/análise , Proteínas PrPSc/química , Scrapie , Sequência de Aminoácidos , Animais , Cricetinae , Espectrometria de Massas/métodos , Mesocricetus , Dados de Sequência Molecular , Proteínas PrPSc/genética , Estrutura Secundária de Proteína , Scrapie/genética , Scrapie/patologia
7.
Biochem Biophys Res Commun ; 470(3): 563-568, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26802462

RESUMO

Protease-resistant, misfolded isoforms (PrP(Sc)) of a normal cellular prion protein (PrP(C)) in the bodily fluids, including blood, urine, and saliva, are expected to be useful diagnostic markers of prion diseases, and nonhuman primate models are suited for performing valid diagnostic tests for human Creutzfeldt-Jakob disease (CJD). We developed an effective amplification method for PrP(Sc) derived from macaques infected with the atypical L-type bovine spongiform encephalopathy (L-BSE) prion by using mouse brain homogenate as a substrate in the presence of polyanions and L-arginine ethylester. This method was highly sensitive and detected PrP(Sc) in infected brain homogenate diluted up to 10(10) by sequential amplification. This method in combination with PrP(Sc) precipitation by sodium phosphotungstic acid is capable of amplifying very small amounts of PrP(Sc) contained in the cerebrospinal fluid (CSF), saliva, urine, and plasma of macaques that have been intracerebrally inoculated with the L-BSE prion. Furthermore, PrP(Sc) was detectable in the saliva or urine samples as well as CSF samples obtained at the preclinical phases of the disease. Thus, our novel method may be useful for furthering the understanding of bodily fluid leakage of PrP(Sc) in nonhuman primate models.


Assuntos
Arginina/análogos & derivados , Líquidos Corporais/metabolismo , Encéfalo/metabolismo , Encefalopatia Espongiforme Bovina/diagnóstico , Encefalopatia Espongiforme Bovina/metabolismo , Proteínas PrPSc/análise , Animais , Arginina/administração & dosagem , Encéfalo/efeitos dos fármacos , Bovinos , Macaca fascicularis , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Vet Res ; 46: 40, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25889731

RESUMO

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrP(Sc) can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.


Assuntos
Poeira/análise , Proteínas PrPSc/análise , Scrapie/epidemiologia , Doenças dos Ovinos/epidemiologia , Animais , Inglaterra , Scrapie/etiologia , Ovinos , Doenças dos Ovinos/etiologia
9.
Nucleic Acids Res ; 41(2): 1355-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180780

RESUMO

Prion proteins (PrPs) cause prion diseases, such as bovine spongiform encephalopathy. The conversion of a normal cellular form (PrP(C)) of PrP into an abnormal form (PrP(Sc)) is thought to be associated with the pathogenesis. An RNA aptamer that tightly binds to and stabilizes PrP(C) is expected to block this conversion and to thereby prevent prion diseases. Here, we show that an RNA aptamer comprising only 12 residues, r(GGAGGAGGAGGA) (R12), reduces the PrP(Sc) level in mouse neuronal cells persistently infected with the transmissible spongiform encephalopathy agent. Nuclear magnetic resonance analysis revealed that R12, folded into a unique quadruplex structure, forms a dimer and that each monomer simultaneously binds to two portions of the N-terminal half of PrP(C), resulting in tight binding. Electrostatic and stacking interactions contribute to the affinity of each portion. Our results demonstrate the therapeutic potential of an RNA aptamer as to prion diseases.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas PrPC/química , Animais , Aptâmeros de Nucleotídeos/farmacologia , Bovinos , Linhagem Celular , Camundongos , Modelos Moleculares , Peptídeos/química , Proteínas PrPSc/análise
10.
Biochem Biophys Res Commun ; 454(2): 289-94, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25450391

RESUMO

Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder characterized by the deposition of the pathological conformer (PrP(CJD)) of the host encoded cellular prion protein (PrP(C)). In genetic CJD associated with V210I or R208H PrP substitutions, the pathogenic role of mutant residues is still poorly understood. To understand how V210I or R208H PrP mutations facilitate the development of the disease, we determined by mass spectrometry the quantitative ratio of mutant/wild-type PrP(CJD) allotypes in brains from affected subjects. We found that the mutant PrP(CJD) allotypes moderately exceeds of 2- or 3-fold the amount of the wild-type counterpart suggesting that these mutations mainly exert their pathogenic effect on the onset of the pathogenic cascade. Different mechanisms can be hypothesized to explain the pathogenic role of mutant residues: V210I and R208H substitutions can increase the concentration of PrP(C) and the probability to form insoluble aggregates, or they may facilitate the formation of pathological intermediates, or, alternatively, they may increase the affinity for ligands that are involved in the initial phases of PrP(CJD) formation and aggregation. Whatever the mechanism, the enrichment found for the mutated PrP(CJD) species indicates that these altered structures are more prone, with respect to the non-mutated ones, to be captured in the polymerization process either at the onset or during the development of the disease.


Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/genética , Mutação Puntual , Proteínas PrPSc/genética , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Genótipo , Humanos , Espectrometria de Massas , Proteínas PrPSc/análise , Dobramento de Proteína
11.
J Virol ; 87(10): 5895-903, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487470

RESUMO

Most current diagnostic tests for transmissible spongiform encephalopathies (TSE) rely on the presence of proteinase K (PK)-resistant PrP(Sc) (PrP-res) in postmortem tissues as an indication of TSE disease. However, a number of studies have highlighted a discrepancy between TSE infectivity and PrP-res levels in both natural and experimental cases of TSE disease. Previously, we have shown high TSE infectivity levels in the brain tissue of mice that have a clinical TSE disease with associated vacuolar pathology but little or no detectable PrP-res. Here, the levels of TSE infectivity and PrP-res within a peripheral tissue of this mouse model were investigated. Biochemical analysis showed that low levels of PrP-res were present in the spleen tissue in comparison to the levels observed in the spleen of mice infected with ME7 or 79A. However, upon subpassage of brain and spleen tissue from clinically ill mice with little or no PrP-res detectable, similar short incubation periods to disease were observed, indicating that infectivity levels were similarly high in both tissues. Thus, the discrepancy between PrP-res and TSE infectivity was also present in the peripheral tissues of this disease model. This result indicates that peripheral tissues can contain higher levels of infectivity given the correct combination of host species, PrP genotype, and TSE agent. Therefore, the assumption that the levels of peripheral infectivity are lower than those in the central nervous system is not always correct, and this could have implications for current food safety regulations.


Assuntos
Proteínas PrPSc/análise , Doenças Priônicas/patologia , Doenças Priônicas/transmissão , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Endopeptidase K/metabolismo , Período de Incubação de Doenças Infecciosas , Camundongos , Camundongos Transgênicos , Doenças Priônicas/diagnóstico , Baço/química
12.
BMC Res Notes ; 17(1): 266, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285497

RESUMO

OBJECTIVE: The goal of the research presented here is to determine if methods previously developed for the aqueous extraction of PrPSc from formalin-fixed paraffin-embedded tissue (FFPET) are applicable to the detection PrPSc by real-time quaking induced conversion (RT-QuIC). Previous work has utilized aqueous extraction of FFPET for detection of transmissible spongiform encephalopathies (TSEs) utilizing western blot and ELISA. This research extends the range of suitable methods for detection of TSEs in FFPET to RT-QuIC, which is arguably the most sensitive method to detect TSEs. RESULTS: We found complete agreement between the TSE status and the results from RT-QuIC seeded with the aqueous extract of FFPET samples. The method affords the diagnostic assessment TSE status by RT-QuIC of FFPET without the use of organic solvents that would otherwise create a mixed chemical-biological waste for disposal.


Assuntos
Formaldeído , Inclusão em Parafina , Proteínas PrPSc , Doenças Priônicas , Fixação de Tecidos , Formaldeído/química , Inclusão em Parafina/métodos , Doenças Priônicas/diagnóstico , Proteínas PrPSc/isolamento & purificação , Proteínas PrPSc/metabolismo , Proteínas PrPSc/análise , Animais , Fixação de Tecidos/métodos , Camundongos , Humanos
13.
Anal Biochem ; 436(1): 36-44, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357236

RESUMO

Prions are proteins that can exist in two (or more) folding states, a normal or cellular form and a series of infectious or prion forms, which are prone to aggregate. The prion form can induce conversion of the cellular form and so transmit phenotypic effects of this structural rearrangement within and between cells and organisms. The conversion of PrP(C), the mammalian prion glycoprotein, to its prion form, PrP(Sc), in the brain is a precursor to progressive neurological degeneration, and the various folded forms of PrP(Sc) (defined by the size and glycosylation of protease-resistant core peptides of the PrP aggregates, PrP(res)) are characteristic of a particular neurodegenerative phenotype or prion disease. Here, quantitative multiplex mass spectrometry was used for N-terminal amino acid profiling (N-TAAP) of PrP(res) from sheep affected by scrapie, the prion disease of small ruminants, to rapidly assess the diversity of prions within particular flocks. In 29 cases, PrP(res) concentrations varied from below the limit of detection (350 fmol/g) to 15 pmol/g wet brain. Although most had a single N-TAAP profile, two novel variants were identified: one common to the ARH/ARQ animals in this study and one in an animal of the wild-type sheep PrP genotype (ARQ/ARQ).


Assuntos
Proteínas PrPSc/análise , Sequência de Aminoácidos , Animais , Encéfalo , Cromatografia Líquida de Alta Pressão , Genótipo , Limite de Detecção , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas PrPSc/química , Proteínas PrPSc/genética , Scrapie/genética , Scrapie/metabolismo , Análise de Sequência de Proteína , Ovinos
14.
Vox Sang ; 104(4): 299-308, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23170907

RESUMO

BACKGROUND AND OBJECTIVES: The outbreak of vCJD in the UK leads to concern regarding the potential for human-to-human transmission of this agent. Plasma-derived products such as albumin, immunoglobulin and coagulation factors were manufactured by BPL from UK plasma up until 1999 when a switch to US plasma was made. In the current study, the capacity of various manufacturing processes that were in use both prior to and after this time to remove the TSE agent was tested. MATERIALS AND METHODS: Small-scale models of the various product manufacturing steps were developed. Intermediates were spiked with scrapie brain extract and then further processed. Samples were assayed for the abnormal form of prion protein (PrP(SC) ) by Western blotting, and the reduction in the amount of scrapie agent determined. RESULTS: Many of the manufacturing process steps produced significant reduction in the scrapie agent. Particularly effective were steps such as ethanol fractionation, depth filtration, ion-exchange and copper chelate affinity chromatography. Virus retentive filters, of nominal pore size 15 or 20 nm, removed >3 log. The total cumulative reduction capacity for individual products was estimated to range from 7 to 14 log. In the case of factor VIII (8Y), the total removal was limited to 3 log. CONCLUSION: All the processes showed a substantial capacity to remove the TSE agent. However, this was more limited for the intermediate purity factor VIII 8Y which included fewer manufacturing steps.


Assuntos
Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Imunoglobulinas/sangue , Plasma/química , Proteínas PrPSc/sangue , Príons/sangue , Príons/isolamento & purificação , Segurança do Sangue/métodos , Síndrome de Creutzfeldt-Jakob/transmissão , Fator VIII/análise , Humanos , Imunoglobulinas/análise , Proteínas PrPSc/análise , Príons/análise , Reino Unido
15.
Vet Res ; 44: 123, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359408

RESUMO

Recently we have described the distribution of bovine spongiform encephalopathy (BSE) infectivity and/or PrPSc in Peyer's patches (PP) of the small intestine of orally BSE infected cattle. In this follow-up study additional jejunal and ileal PP's and ileocaecal-junction tissue samples from 1, 4, and 24 months post infection (mpi) were examined by mouse (Tgbov XV) bioassay. Infectivity was demonstrated in ileal PP's 4 mpi and the distribution/extent of infectivity at 24 mpi was comparable to those seen at earlier time points, revealing no indication for a decline/clearance. These data are relevant for the definition of Specified Risk Materials in the context of the TSE legislation worldwide.


Assuntos
Ceco/patologia , Encefalopatia Espongiforme Bovina/patologia , Íleo/patologia , Jejuno/patologia , Nódulos Linfáticos Agregados/patologia , Proteínas PrPSc/análise , Animais , Bovinos , Encefalopatia Espongiforme Bovina/diagnóstico , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Seguimentos , Camundongos Transgênicos , Medição de Risco
16.
BMC Vet Res ; 9: 134, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23835086

RESUMO

BACKGROUND: Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in yellow grease, which is produced in the industrial manufacturing process of MBMs, we pooled, homogenized, and heat treated the spinal cords of BSE-infected cows under various experimental conditions. RESULTS: Prion inactivation was analyzed quantitatively in terms of the infectivity and PrPSc of the treated samples. Following treatment at 140°C for 1 h, infectivity was reduced to 1/35 of that of the untreated samples. Treatment at 180°C for 3 h was required to reduce infectivity. However, PrPSc was detected in all heat-treated samples by using the protein misfolding cyclic amplification (PMCA) technique, which amplifies PrPScin vitro. Quantitative analysis of the inactivation efficiency of BSE PrPSc was possible with the introduction of the PMCA50, which is the dilution ratio of 10% homogenate needed to yield 50% positivity for PrPSc in amplified samples. CONCLUSIONS: Log PMCA50 exhibited a strong linear correlation with the transmission rate in the bioassay; infectivity was no longer detected when the log PMCA50 of the inoculated sample was reduced to 1.75. The quantitative PMCA assay may be useful for safety evaluation for recycling and effective utilization of MBMs as an organic resource.


Assuntos
Encéfalo/metabolismo , Encefalopatia Espongiforme Bovina/prevenção & controle , Minerais/metabolismo , Proteínas PrPSc/metabolismo , Animais , Bioensaio/métodos , Produtos Biológicos/metabolismo , Western Blotting/veterinária , Bovinos , Histocitoquímica/veterinária , Temperatura Alta , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas PrPSc/análise
17.
Vet Pathol ; 50(4): 659-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23269348

RESUMO

H-type bovine spongiform encephalopathy (BSE) has been identified in aged cattle in Europe and North America. To determine the localization of disease-associated prion protein (PrP(Sc)) in the peripheral nerve tissues of cattle affected with H-type BSE, we employed highly sensitive immunohistochemical and immunofluorescence techniques with the tyramide signal amplification (TSA) system. PrP(Sc) deposition was detected in the inferior ganglia, sympathetic nerve trunk, vagus nerve, spinal nerves, cauda equina, and adrenal medulla, using this system. Notably, granular PrP(Sc) deposits were present mainly in the Schwann cells and fibroblast-like cells and occasionally along certain nerve fibers at the surface of the axons. In the adrenal gland, PrP(Sc) immunolabeling was observed within the sympathetic nerve fibers and nerve endings in the adrenal medulla. Although our results were limited to only 3 experimental cases, these results suggest that the TSA system, a highly sensitive immunohistochemical procedure, may help in elucidating the peripheral pathogenesis of H-type BSE.


Assuntos
Encefalopatia Espongiforme Bovina/patologia , Imuno-Histoquímica/veterinária , Sistema Nervoso Periférico/metabolismo , Proteínas PrPSc/metabolismo , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Animais , Biotina/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Feminino , Imunofluorescência/veterinária , Técnica Indireta de Fluorescência para Anticorpo , Imuno-Histoquímica/métodos , Sistema Nervoso Periférico/química , Sistema Nervoso Periférico/patologia , Proteínas PrPSc/análise , Células de Schwann/metabolismo , Células de Schwann/patologia , Sensibilidade e Especificidade , Tiramina/análogos & derivados
18.
J Gen Virol ; 93(Pt 3): 668-680, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22090211

RESUMO

Generation of an abnormal isoform of the prion protein (PrP(Sc)) is a key aspect of the propagation of prions. Elucidation of the intracellular localization of PrP(Sc) in prion-infected cells facilitates the understanding of the cellular mechanism of prion propagation. However, technical improvement in PrP(Sc)-specific detection is required for precise analysis. Here, we show that the mAb 132, which recognizes the region adjacent to the most amyloidogenic region of PrP, is useful for PrP(Sc)-specific detection by immunofluorescence assay in cells pre-treated with guanidine thiocyanate. Extensive analysis of the intracellular localization of PrP(Sc) in prion-infected cells using mAb 132 revealed the presence of PrP(Sc) throughout endocytic compartments. In particular, some of the granular PrP(Sc) signals that were clustered at peri-nuclear regions appeared to be localized in an endocytic recycling compartment through which exogenously loaded transferrin, shiga and cholera toxin B subunits were transported. The granular PrP(Sc) signals at peri-nuclear regions were dispersed to the peripheral regions including the plasma membrane during incubation at 20 °C, at which temperature transport from the plasma membrane to peri-nuclear regions was impaired. Conversely, dispersed PrP(Sc) signals appeared to return to peri-nuclear regions within 30 min during subsequent incubation at 37 °C, following which PrP(Sc) at peri-nuclear regions appeared to redisperse again to peripheral regions over the next 30 min incubation. These results suggest that PrP(Sc) is dynamically transported along with the membrane trafficking machinery of cells and that at least some PrP(Sc) circulates between peri-nuclear and peripheral regions including the plasma membrane via an endocytic recycling pathway.


Assuntos
Membrana Celular/química , Citosol/química , Retículo Endoplasmático/química , Proteínas PrPSc/análise , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Técnica Direta de Fluorescência para Anticorpo , Camundongos , Microscopia de Fluorescência , Neurônios/química , Coloração e Rotulagem/métodos
19.
J Gen Virol ; 93(Pt 6): 1375-1383, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22323531

RESUMO

A scrapie-positive ewe was found in a flock that had been scrapie-free for 13 years, but housed adjacent to scrapie-positive animals, separated by a wire fence. Live animal testing of the entire flock of 24 animals revealed seven more subclinical scrapie-positive ewes. We hypothesized that they may have contracted the disease from scrapie-positive rams used for breeding 4 months prior, possibly through the semen. The genotypes of the ewe flock were highly scrapie-susceptible and the rams were infected with the 'Caine' scrapie strain having a short incubation time of 4.3-14.6 months in sheep with 136/171 VQ/VQ and AQ/VQ genotypes. PrP(Sc) accumulates in a variety of tissues in addition to the central nervous system. Although transmission of prion diseases, or transmissible spongiform encephalopathies, has been achieved via peripheral organ or tissue homogenates as well as by blood transfusion, neither infectivity nor PrP(Sc) have been found in semen from scrapie-infected animals. Using serial protein misfolding cyclic amplification followed by a surround optical fibre immunoassay, we demonstrate that semen from rams infected with a short-incubation-time scrapie strain contains prion disease-associated-seeding activity that generated PrP(Sc) in sPMCA (serial protein misfolding cyclic amplification). Injection of the ovinized transgenic mouse line TgSShpPrP with semen from scrapie-infected sheep resulted in PrP(Sc)-seeding activity in clinical and, probably as a result of the low titre, non-clinical mouse brain. These results suggest that the transmissible agent, or at least the seeding activity, for sheep scrapie is present in semen. This may be a strain-specific phenomenon.


Assuntos
Proteínas PrPSc/análise , Proteínas PrPSc/metabolismo , Scrapie/transmissão , Sêmen/química , Animais , Cruzamento , Feminino , Genótipo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Scrapie/diagnóstico , Scrapie/metabolismo , Sêmen/metabolismo , Ovinos , Carneiro Doméstico
20.
Biochem Biophys Res Commun ; 423(4): 770-4, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22713450

RESUMO

The protein misfolding cyclic amplification (PMCA) assay allows for detection of prion protein misfolding activity in tissues and fluids from sheep with scrapie where it was previously undetected by conventional western blot and immunohistochemistry assays. Studies of goats with scrapie have yet to take advantage of PMCA, which could aid in discerning the risk of transmission between goats and goats to sheep. The aim of the current study was to adapt PMCA for evaluation of scrapie derived from goats. Diluted brain homogenate from scrapie-infected goats (i.e., the scrapie seed, PrP(Sc)) was subjected to PMCA using normal brain homogenate from ovinized transgenic mice (tg338) as the source of normal cellular prion protein (the substrate, PrP(C)). The assay end-point was detection of the proteinase K-resistant misfolded prion protein core (PrP(res)) by western blot. Protein misfolding activity was consistently observed in caprine brain homogenate diluted 10,000-fold after 5 PMCA rounds. Epitope mapping by western blot analyses demonstrated that PrP(res) post-PMCA was readily detected with an N-terminus anti-PrP monoclonal antibody (P4), similar to scrapie inoculum from goats. This was in contrast to limited detection of PrP(res) with P4 following mouse bioassay. The inverse was observed with a monoclonal antibody to the C-terminus (F99/97.6.1). Thus, brain homogenate prepared from uninoculated tg338 served as an appropriate substrate for serial PMCA of PrP(Sc) derived from goats. These observations suggest that concurrent PMCA and bioassay with tg338 could improve characterization of goat derived scrapie.


Assuntos
Doenças das Cabras/diagnóstico , Doenças das Cabras/imunologia , Proteínas PrPSc/química , Proteínas PrPSc/imunologia , Scrapie/diagnóstico , Scrapie/imunologia , Animais , Anticorpos Monoclonais/imunologia , Encéfalo/imunologia , Endopeptidase K/química , Mapeamento de Epitopos , Cabras , Camundongos , Camundongos Transgênicos , Proteínas PrPC/análise , Proteínas PrPC/química , Proteínas PrPC/imunologia , Proteínas PrPSc/análise , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa