Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.831
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 39: 409-434, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37406299

RESUMO

The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating ß-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.


Assuntos
Proteínas de Transporte , Proteínas , Proteínas de Transporte/química , Proteínas/metabolismo , Transporte Biológico/genética , Membrana Celular/metabolismo , Lipídeos/química
2.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562363

RESUMO

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Assuntos
Estresse Fisiológico , Aminoácidos/química , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Feminino , Humanos , Íons , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos , Zinco/farmacologia
3.
Cell ; 179(2): 485-497.e18, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31543266

RESUMO

Niemann-Pick type C (NPC) proteins are essential for sterol homeostasis, believed to drive sterol integration into the lysosomal membrane before redistribution to other cellular membranes. Here, using a combination of crystallography, cryo-electron microscopy, and biochemical and in vivo studies on the Saccharomyces cerevisiae NPC system (NCR1 and NPC2), we present a framework for sterol membrane integration. Sterols are transferred between hydrophobic pockets of vacuolar NPC2 and membrane-protein NCR1. NCR1 has its N-terminal domain (NTD) positioned to deliver a sterol to a tunnel connecting NTD to the luminal membrane leaflet 50 Å away. A sterol is caught inside this tunnel during transport, and a proton-relay network of charged residues in the transmembrane region is linked to this tunnel supporting a proton-driven transport mechanism. We propose a model for sterol integration that clarifies the role of NPC proteins in this essential eukaryotic pathway and that rationalizes mutations in patients with Niemann-Pick disease type C.


Assuntos
Proteínas de Transporte/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Proteínas de Transporte Vesicular/química , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Domínios Proteicos , Vacúolos/metabolismo
4.
Cell ; 179(6): 1319-1329.e8, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31704029

RESUMO

mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.


Assuntos
Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas Proto-Oncogênicas/ultraestrutura , Proteínas Supressoras de Tumor/ultraestrutura , Arginina/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Hidrólise , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Supressoras de Tumor/química
5.
Cell ; 177(3): 697-710.e17, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30982600

RESUMO

Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.


Assuntos
Proteínas de Transporte/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Autofagia/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Metionina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
6.
Cell ; 177(3): 711-721.e8, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30982603

RESUMO

Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-ß polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H2O2)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.


Assuntos
Proteínas de Transporte/metabolismo , Metionina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Peróxido de Hidrogênio/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transição de Fase , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551271

RESUMO

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , Humanos , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Pan troglodytes , Filogenia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
8.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550789

RESUMO

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Assuntos
Proteínas de Transporte , Proteínas de Ligação a DNA , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Fatores de Transcrição , Proteínas Virais , Replicação Viral/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Humanos , Mapeamento de Interação de Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Annu Rev Cell Dev Biol ; 35: 111-129, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31340125

RESUMO

Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances.As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.


Assuntos
Proteínas de Transporte/metabolismo , Estruturas da Membrana Celular/química , Proteínas de Membrana/metabolismo , Animais , Proteínas de Transporte/química , Membrana Celular/química , Membrana Celular/metabolismo , Estruturas da Membrana Celular/metabolismo , Forma Celular , Humanos , Proteínas de Membrana/química , Neoplasias/patologia , Organelas/química , Organelas/metabolismo , Domínios Proteicos
10.
Annu Rev Biochem ; 86: 609-636, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375742

RESUMO

Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-ß-strand barrels, to ß-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.


Assuntos
Albuminas/química , Alérgenos/química , Antígenos/química , Proteínas de Transporte/química , Lipídeos/química , Albuminas/genética , Albuminas/metabolismo , Alérgenos/genética , Alérgenos/metabolismo , Animais , Antígenos/genética , Antígenos/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos
11.
Annu Rev Biochem ; 86: 685-714, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301740

RESUMO

Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Biogênese de Organelas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Precursores de Proteínas/química , Precursores de Proteínas/genética , Transporte Proteico
12.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802041

RESUMO

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Neurospora crassa/enzimologia , Sistemas de Translocação de Proteínas/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica em Folha beta , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
13.
Cell ; 171(1): 85-102.e23, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867287

RESUMO

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Cromossomo X/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Mecanismo Genético de Compensação de Dose , Embrião não Mamífero/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Mutação , Piperidinas/metabolismo , Alinhamento de Sequência , Tiofenos/metabolismo
14.
Cell ; 166(3): 651-663, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27374333

RESUMO

Cellular bodies such as P bodies and PML nuclear bodies (PML NBs) appear to be phase-separated liquids organized by multivalent interactions among proteins and RNA molecules. Although many components of various cellular bodies are known, general principles that define body composition are lacking. We modeled cellular bodies using several engineered multivalent proteins and RNA. In vitro and in cells, these scaffold molecules form phase-separated liquids that concentrate low valency client proteins. Clients partition differently depending on the ratio of scaffolds, with a sharp switch across the phase diagram diagonal. Composition can switch rapidly through changes in scaffold concentration or valency. Natural PML NBs and P bodies show analogous partitioning behavior, suggesting how their compositions could be controlled by levels of PML SUMOylation or cellular mRNA concentration, respectively. The data suggest a conceptual framework for considering the composition and control thereof of cellular bodies assembled through heterotypic multivalent interactions.


Assuntos
Células Artificiais/química , Compartimento Celular , Organelas/química , Proteínas/química , Motivos de Aminoácidos , Composição Corporal , Proteínas de Transporte/química , Linhagem Celular , Núcleo Celular/química , Citoplasma , Eletroquímica , Células HeLa , Humanos , Técnicas In Vitro , Estrutura Molecular , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Engenharia de Proteínas , Ubiquitinas/química , Leveduras
15.
Cell ; 166(2): 369-379, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27293188

RESUMO

It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Dobramento de Proteína , Proteínas de Transporte/metabolismo , Entropia , Interações Hidrofóbicas e Hidrofílicas , Periplasma/química , Eletricidade Estática
16.
Cell ; 164(1-2): 258-268, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771495

RESUMO

Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ebolavirus/fisiologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Proteína C1 de Niemann-Pick , Estrutura Terciária de Proteína , Alinhamento de Sequência , Internalização do Vírus
17.
Cell ; 165(6): 1467-1478, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27238017

RESUMO

Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Glicoproteínas/química , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestrutura , Modelos Moleculares , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Proteínas de Transporte Vesicular , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura
18.
Cell ; 167(4): 1088-1098.e6, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814506

RESUMO

The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.


Assuntos
Ebolavirus/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , África Ocidental/epidemiologia , Substituição de Aminoácidos , Animais , Callithrix , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cheirogaleidae , Citoplasma/virologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Conformação Proteica em alfa-Hélice , Proteínas do Envelope Viral/metabolismo , Vírion/química , Vírion/patogenicidade , Virulência
19.
Immunity ; 52(2): 374-387.e6, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075729

RESUMO

Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.


Assuntos
Drosophila melanogaster/imunologia , Hemolinfa/metabolismo , Metabolismo dos Lipídeos/imunologia , Túbulos de Malpighi/imunologia , Espécies Reativas de Oxigênio/imunologia , Imunidade Adaptativa , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diglicerídeos/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fezes/química , Peroxidação de Lipídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Túbulos de Malpighi/metabolismo , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/imunologia
20.
Cell ; 156(6): 1207-1222, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630723

RESUMO

Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and that their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These results indicate that prion-like polymerization is a conserved signal transduction mechanism in innate immunity and inflammation.


Assuntos
Evolução Biológica , Imunidade Inata , Inflamassomos/imunologia , Príons/metabolismo , Transdução de Sinais , Leveduras/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polimerização , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa