Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.865
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 186(23): 5098-5113.e19, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37918395

RESUMO

Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.


Assuntos
Anticorpos Antibacterianos , Anticorpos Neutralizantes , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Anticorpos Antibacterianos/farmacologia , Microscopia Crioeletrônica , Imunoglobulinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/tratamento farmacológico
2.
Cell ; 181(7): 1518-1532.e14, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32497502

RESUMO

The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Pirróis/metabolismo , Pirróis/farmacologia , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Animais , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Ácido Fólico/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Ovariectomia , Proteômica , Pseudomonas aeruginosa/efeitos dos fármacos
3.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307490

RESUMO

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Assuntos
Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Evolução Molecular , Fenótipo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Fibrose Cística/complicações , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Seleção Genética , Fatores de Transcrição/genética
4.
Annu Rev Biochem ; 86: 799-823, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28426241

RESUMO

Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Heme/antagonistas & inibidores , Ferro/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Receptores de Superfície Celular/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Expressão Gênica , Heme/metabolismo , Metaloporfirinas/síntese química , Metaloporfirinas/farmacologia , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sideróforos/antagonistas & inibidores , Sideróforos/biossíntese , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
5.
Nature ; 624(7990): 145-153, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993720

RESUMO

Gram-negative antibiotic development has been hindered by a poor understanding of the types of compounds that can accumulate within these bacteria1,2. The presence of efflux pumps and substrate-specific outer-membrane porins in Pseudomonas aeruginosa renders this pathogen particularly challenging3. As a result, there are few antibiotic options for P. aeruginosa infections4 and its many porins have made the prospect of discovering general accumulation guidelines seem unlikely5. Here we assess the whole-cell accumulation of 345 diverse compounds in P. aeruginosa and Escherichia coli. Although certain positively charged compounds permeate both bacterial species, P. aeruginosa is more restrictive compared to E. coli. Computational analysis identified distinct physicochemical properties of small molecules that specifically correlate with P. aeruginosa accumulation, such as formal charge, positive polar surface area and hydrogen bond donor surface area. Mode of uptake studies revealed that most small molecules permeate P. aeruginosa using a porin-independent pathway, thus enabling discovery of general P. aeruginosa accumulation trends with important implications for future antibiotic development. Retrospective antibiotic examples confirmed these trends and these discoveries were then applied to expand the spectrum of activity of a gram-positive-only antibiotic, fusidic acid, into a version that demonstrates a dramatic improvement in antibacterial activity against P. aeruginosa. We anticipate that these discoveries will facilitate the design and development of high-permeating antipseudomonals.


Assuntos
Antibacterianos , Desenho de Fármacos , Porinas , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Estudos Retrospectivos , Eletricidade Estática , Ligação de Hidrogênio , Ácido Fusídico/metabolismo , Desenho de Fármacos/métodos
6.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954678

RESUMO

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/genética , Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
7.
PLoS Biol ; 22(6): e3002694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900845

RESUMO

Fungi and bacteria coexist in many polymicrobial communities, yet the molecular basis of their interactions remains poorly understood. Here, we show that the fungus Candida albicans sequesters essential magnesium ions from the bacterium Pseudomonas aeruginosa. To counteract fungal Mg2+ sequestration, P. aeruginosa expresses the Mg2+ transporter MgtA when Mg2+ levels are low. Thus, loss of MgtA specifically impairs P. aeruginosa in co-culture with C. albicans, but fitness can be restored by supplementing Mg2+. Using a panel of fungi and bacteria, we show that Mg2+ sequestration is a general mechanism of fungal antagonism against gram-negative bacteria. Mg2+ limitation enhances bacterial resistance to polymyxin antibiotics like colistin, which target gram-negative bacterial membranes. Indeed, experimental evolution reveals that P. aeruginosa evolves C. albicans-dependent colistin resistance via non-canonical means; antifungal treatment renders resistant bacteria colistin-sensitive. Our work suggests that fungal-bacterial competition could profoundly impact polymicrobial infection treatment with antibiotics of last resort.


Assuntos
Antibacterianos , Candida albicans , Colistina , Magnésio , Pseudomonas aeruginosa , Magnésio/farmacologia , Magnésio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Polimixinas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos
8.
Nature ; 597(7878): 698-702, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526714

RESUMO

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Animais , Antibacterianos/química , Compostos Aza/química , Compostos Aza/farmacologia , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases
9.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458396

RESUMO

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Assuntos
Amidoidrolases , Inibidores Enzimáticos , Escherichia coli , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Lipopolissacarídeos/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos
10.
Mol Syst Biol ; 20(8): 880-897, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877321

RESUMO

Bacteria in nature often form surface-attached communities that initially comprise distinct subpopulations, or patches. For pathogens, these patches can form at infection sites, persist during antibiotic treatment, and develop into mature biofilms. Evidence suggests that patches can emerge due to heterogeneity in the growth environment and bacterial seeding, as well as cell-cell signaling. However, it is unclear how these factors contribute to patch formation and how patch formation might affect bacterial survival and evolution. Here, we demonstrate that a 'rich-get-richer' mechanism drives patch formation in bacteria exhibiting collective survival (CS) during antibiotic treatment. Modeling predicts that the seeding heterogeneity of these bacteria is amplified by local CS and global resource competition, leading to patch formation. Increasing the dose of a non-eradicating antibiotic treatment increases the degree of patchiness. Experimentally, we first demonstrated the mechanism using engineered Escherichia coli and then demonstrated its applicability to a pathogen, Pseudomonas aeruginosa. We further showed that the formation of P. aeruginosa patches promoted the evolution of antibiotic resistance. Our work provides new insights into population dynamics and resistance evolution during surface-attached bacterial growth.


Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana , Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/genética , Modelos Biológicos , Evolução Biológica
11.
Proc Natl Acad Sci U S A ; 119(15): e2109370119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385351

RESUMO

Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin­tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin­aztreonam or ciprofloxacin­tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.


Assuntos
Antibacterianos , Ciprofloxacina , Sensibilidade Colateral a Medicamentos , Farmacorresistência Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Sensibilidade Colateral a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
12.
J Infect Dis ; 230(2): 309-318, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366561

RESUMO

BACKGROUND: Lysins (cell wall hydrolases) targeting gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for the engineered lysin CF-370 was examined in vitro and in vivo against gram-negative pathogens important in human infections. METHODS: Minimum inhibitory concentration (MICs) and bactericidal activity were determined using standard methods. An in vivo proof-of-concept efficacy study was conducted using a rabbit acute pneumonia model caused by Pseudomonas aeruginosa. RESULTS: CF-370 exhibited potent antimicrobial activity, with MIC50/90 values (in µg/mL) for: P aeruginosa, 1/2; Acinetobacter baumannii, 1/1; Escherichia coli, 0.25/1; Klebsiella pneumoniae, 2/4; Enterobacter cloacae 1/4; and Stenotrophomonas maltophilia 2/8. CF-370 furthermore demonstrated bactericidal activity, activity in serum, a low propensity for resistance, anti-biofilm activity, and synergy with antibiotics. In the pneumonia model, CF-370 alone decreased bacterial densities in lungs, kidneys, and spleen versus vehicle control, and demonstrated significantly increased efficacy when combined with meropenem (vs either agent alone). CONCLUSIONS: CF-370 is the first engineered lysin described with potent broad-spectrum in vitro activity against multiple clinically relevant gram-negative pathogens, as well as potent in vivo efficacy in an animal model of severe invasive multisystem infection.


Assuntos
Antibacterianos , Sinergismo Farmacológico , Meropeném , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Meropeném/farmacologia , Meropeném/uso terapêutico , Meropeném/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Coelhos , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Modelos Animais de Doenças , Bactérias Gram-Negativas/efeitos dos fármacos , Biofilmes/efeitos dos fármacos
13.
J Bacteriol ; 206(7): e0017624, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38940597

RESUMO

The cystic fibrosis (CF) lung environment is conducive to the colonization of bacteria as polymicrobial biofilms, which are associated with poor clinical outcomes for persons with CF (pwCF). Streptococcus spp. are highly prevalent in the CF airway, but its role in the CF lung microbiome is poorly understood. Some studies have shown Streptococcus spp. to be associated with better clinical outcomes for pwCF, while others show that high abundance of Streptococcus spp. is correlated with exacerbations. Our lab previously reported a polymicrobial culture system consisting of four CF-relevant pathogens that can be used to study microbial behavior in a more clinically relevant setting. Here, we use this model system to identify genetic pathways that are important for Streptococcus sanguinis survival in the context of the polymicrobial community. We identified genes related to reactive oxygen species as differentially expressed in S. sanguinis monoculture versus growth of this microbe in the mixed community. Genetic studies identified Dpr as important for S. sanguinis survival in the community. We show that Dpr, a DNA-binding ferritin-like protein, and PerR, a peroxide-responsive transcriptional regulator of Dpr, are important for protecting S. sanguinis from phenazine-mediated toxicity in co-culture with Pseudomonas aeruginosa and when exposed to hydrogen peroxide, both of which mimic the CF lung environment. Characterizing such interactions in a clinically relevant model system contributes to our understanding of microbial behavior in the context of polymicrobial biofilm infections. IMPORTANCE: Streptococcus spp. are recognized as a highly prevalent pathogen in cystic fibrosis (CF) airway infections. However, the role of this microbe in clinical outcomes for persons with CF is poorly understood. Here, we leverage a polymicrobial community system previously developed by our group to model CF airway infections as a tool to investigate a Pseudomonas-Streptococcus interaction involving reactive oxygen species (ROS). We show that protection against ROS is required for Streptococcus sanguinis survival in a clinically relevant polymicrobial system. Using this model system to study interspecies interactions contributes to our broader understanding of the complex role of Streptococcus spp. in the CF lung.


Assuntos
Proteínas de Bactérias , Fibrose Cística , Peróxido de Hidrogênio , Fibrose Cística/microbiologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Regulação Bacteriana da Expressão Gênica , Streptococcus sanguis/genética , Streptococcus sanguis/fisiologia , Streptococcus sanguis/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Viabilidade Microbiana , Pulmão/microbiologia , Infecções Estreptocócicas/microbiologia
14.
J Bacteriol ; 206(7): e0005424, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38874367

RESUMO

Pseudomonas aeruginosa is a challenging opportunistic pathogen due to its intrinsic and acquired mechanisms of antibiotic resistance. A large repertoire of efflux transporters actively expels antibiotics, toxins, and metabolites from cells and enables growth of P. aeruginosa in diverse environments. In this study, we analyzed the roles of representative efflux pumps from the Resistance-Nodulation-Division (RND), Major Facilitator Superfamily (MFS), and Small Multidrug Resistance (SMR) families of proteins in the susceptibility of P. aeruginosa to antibiotics and bacterial growth under stresses imposed by human hosts during bacterial infections: an elevated temperature, osmotic stress, low iron, bile salts, and acidic pH. We selected five RND pumps MexAB-OprM, MexEF-OprN, MexCD-OprJ, MuxABC-OpmB, and TriABC-OpmH that differ in their substrate specificities and expression profiles, two MFS efflux pumps PA3136-3137 and PA5158-5160 renamed here into MfsAB and MfsCD-OpmG, respectively, and an SMR efflux transporter PA1540-1541 (MdtJI). We found that the most promiscuous RND pumps such as MexEF-OprN and MexAB-OprM are integrated into diverse survival mechanisms and enable P. aeruginosa growth under various stresses. MuxABC-OpmB and TriABC-OpmH pumps with narrower substrate spectra are beneficial only in the presence of the iron chelator 2,2'-dipyridyl and bile salts, respectively. MFS pumps do not contribute to antibiotic efflux but play orthogonal roles in acidic pH, low iron, and in the presence of bile salts. In contrast, MdtJI protects against polycationic antibiotics but does not contribute to survival under stress. Thus, efflux pumps play specific, non-interchangeable functions in P. aeruginosa cell physiology and bacterial survival under stresses. IMPORTANCE: The role of multidrug efflux pumps in the intrinsic and clinical levels of antibiotic resistance in Pseudomonas aeruginosa and other gram-negative bacteria is well-established. Their functions in bacterial physiology, however, remain unclear. The P. aeruginosa genome comprises an arsenal of efflux pumps from different protein families, the substrate specificities of which are typically assessed by measuring their impact on susceptibility to antibiotics. In this study, we analyzed how deletions and overproductions of efflux pumps affect P. aeruginosa growth under human-infection-induced stresses. Our results show that the physiological functions of multidrug efflux pumps are non-redundant and essential for the survival of this important human pathogen under stress.


Assuntos
Antibacterianos , Proteínas de Bactérias , Proteínas de Membrana Transportadoras , Pseudomonas aeruginosa , Estresse Fisiológico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Regulação Bacteriana da Expressão Gênica , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Concentração de Íons de Hidrogênio , Pressão Osmótica
15.
J Bacteriol ; 206(7): e0011224, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38856220

RESUMO

Urinary tract infections (UTIs) are a major global health problem and are caused predominantly by uropathogenic Escherichia coli (UPEC). UTIs are a leading cause of prescription antimicrobial use. Incessant increase in antimicrobial resistance in UPEC and other uropathogens poses a serious threat to the current treatment practices. Copper is an effector of nutritional immunity that impedes the growth of pathogens during infection. We hypothesized that copper would augment the toxicity of select small molecules against bacterial pathogens. We conducted a small molecule screening campaign with a library of 51,098 molecules to detect hits that inhibit a UPEC ΔtolC mutant in a copper-dependent manner. A molecule, denoted as E. coli inhibitor or ECIN, was identified as a copper-responsive inhibitor of wild-type UPEC strains. Our gene expression and metal content analysis results demonstrate that ECIN works in concert with copper to exacerbate Cu toxicity in UPEC. ECIN has a broad spectrum of activity against pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Subinhibitory levels of ECIN eliminate UPEC biofilm formation. Transcriptome analysis of UPEC treated with ECIN reveals induction of multiple stress response systems. Furthermore, we demonstrate that L-cysteine rescues the growth of UPEC exposed to ECIN. In summary, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC.IMPORTANCEUrinary tract infection (UTI) is a ubiquitous infectious condition affecting millions of people annually. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. However, UTIs are becoming increasingly difficult to resolve with antimicrobials due to increased antimicrobial resistance in UPEC and other uropathogens. Here, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC. In addition to E. coli, this small molecule also inhibits pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus.


Assuntos
Antibacterianos , Cobre , Testes de Sensibilidade Microbiana , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Cobre/farmacologia , Antibacterianos/farmacologia , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico
16.
J Biol Chem ; 299(9): 105152, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567475

RESUMO

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Assuntos
Coenzimas , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferases , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Transferases/química , Transferases/metabolismo , Conformação Proteica , Coenzimas/metabolismo , Vitamina B 6/biossíntese , Tiamina/biossíntese , Apoenzimas/química , Apoenzimas/metabolismo , Tiamina Pirofosfato/metabolismo , Domínio Catalítico , Farmacorresistência Bacteriana
17.
Clin Infect Dis ; 79(1): 33-42, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38306487

RESUMO

Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of ß-lactamases. The early ß-lactamase inhibitors (BLIs) are characterized by spectra limited to class A ß-lactamases and ineffective against carbapenemases and most extended spectrum ß-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Inibidores de beta-Lactamases , beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/metabolismo , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Proteínas de Bactérias , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia
18.
Clin Infect Dis ; 79(1): 6-14, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315890

RESUMO

BACKGROUND: Carbapenemase-producing, carbapenem-resistant Pseudomonas aeruginosa (CP-CRPA) are extensively drug-resistant bacteria. We investigated the source of a multistate CP-CRPA outbreak. METHODS: Cases were defined as a US patient's first isolation of P. aeruginosa sequence type 1203 with carbapenemase gene blaVIM-80 and cephalosporinase gene blaGES-9 from any specimen source collected and reported to the Centers for Disease Control and Prevention during 1 January 2022-15 May 2023. We conducted a 1:1 matched case-control study at the post-acute care facility with the most cases, assessed exposures associated with case status for all case-patients, and tested products for bacterial contamination. RESULTS: We identified 81 case-patients from 18 states, 27 of whom were identified through surveillance cultures. Four (7%) of 54 case-patients with clinical cultures died within 30 days of culture collection, and 4 (22%) of 18 with eye infections underwent enucleation. In the case-control study, case-patients had increased odds of receiving artificial tears versus controls (crude matched OR, 5.0; 95% CI, 1.1-22.8). Overall, artificial tears use was reported by 61 (87%) of 70 case-patients with information; 43 (77%) of 56 case-patients with brand information reported use of Brand A, an imported, preservative-free, over-the-counter (OTC) product. Bacteria isolated from opened and unopened bottles of Brand A were genetically related to patient isolates. Food and Drug Administration inspection of the manufacturing plant identified likely sources of contamination. CONCLUSIONS: A manufactured medical product serving as the vehicle for carbapenemase-producing organisms is unprecedented in the United States. The clinical impacts from this outbreak underscore the need for improved requirements for US OTC product importers.


Assuntos
Proteínas de Bactérias , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla , Infecções por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamases , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Estudos de Casos e Controles , Masculino , Feminino , Pessoa de Meia-Idade , Farmacorresistência Bacteriana Múltipla/genética , Idoso , Estados Unidos/epidemiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Idoso de 80 Anos ou mais , Testes de Sensibilidade Microbiana , Adulto Jovem , Cefalosporinase/genética , Cefalosporinase/metabolismo , Carbapenêmicos/farmacologia
19.
Antimicrob Agents Chemother ; 68(2): e0120523, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38206043

RESUMO

FIM-1 is an acquired metallo-ß-lactamase identified in a multidrug-resistant Pseudomonas aeruginosa (index strain FI-14/157) of clinical origin isolated in 2007 in Florence, Italy. Here we report on a second case of infection by FIM-1-positive P. aeruginosa (FI-17645), which occurred in 2020 in the same hospital. Both FIM-1-positive strains exhibited resistance to all anti-Pseudomonas antibiotics except colistin and cefiderocol. Comparative genomic characterization revealed that the two FIM-positive strains were closely related [core genome difference, 16 single nucleotide polymorphisms (SNPs)], suggesting a local circulation of similar strains. In the FI-14/157 index strain, the blaFIM-1 gene was associated with an ISCR19-like element that likely contributed to its capture downstream an integron platform inserted aboard a Tn21-like transposon, named Tn7703.1, which was associated with a large integrative and conjugative element (ICE) named ICE7705.1, integrated into an att site located within the 3'-end of tRNAGly CCC gene of the P. aeruginosa chromosome. In strain FI-17645, blaFIM-1 was associated with a closely related ICE, named ICE7705.2, integrated in the same chromosomal site. Similar ICE platforms, lacking the blaFIM-1-containing region, were detected in other ST235 P. aeruginosa strains from different geographic areas, suggesting a common ancestry and underscoring the role of these elements in the dissemination of resistance genes in P. aeruginosa. Sequence database mining revealed two draft P. aeruginosa genomes, one from Italy and one from the USA (both isolated in 2012), including a contig with blaFIM-1, suggesting that this resistance gene could have a broader distribution than originally anticipated.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamases , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Infecções por Pseudomonas/microbiologia
20.
Antimicrob Agents Chemother ; 68(7): e0057424, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899928

RESUMO

FIM-1 metallo-ß-lactamase was previously detected in sporadic Pseudomonas aeruginosa clinical isolates. Here, we report on FIM-1-positive P. aeruginosa from two patients who had shared the same ward in a long-term acute care rehabilitation hospital. Whole-genome sequencing analysis revealed close relatedness of these isolates, which belonged to an ST235 sublineage (clade 8/14) different from those previously reported. Results highlighted the occurrence of clonal diversity among FIM-positive strains and the possibility of their cross-transmission in some healthcare settings.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Sequenciamento Completo do Genoma , beta-Lactamases , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Hospitais de Reabilitação , Infecção Hospitalar/microbiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa