Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.712
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Genes Dev ; 35(3-4): 177-179, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526584

RESUMO

Molybdenum cofactor (Moco) is synthesized endogenously in humans and is essential for human development. Supplementation of Moco or its precursors has been explored as a therapy to treat Moco-deficient patients but with significant limitations. By using the nematode C. elegans as a model, Warnhoff and colleagues (pp. 212-217) describe the beneficial impact of protein-bound Moco supplementation to treat Moco deficiency. If such an effect is conserved, this advance from basic research in worms may have significant clinical implications as a novel therapy for molybdenum cofactor deficiency.


Assuntos
Caenorhabditis elegans , Pteridinas , Animais , Coenzimas , Humanos , Erros Inatos do Metabolismo dos Metais , Metaloproteínas , Cofatores de Molibdênio
2.
Genes Dev ; 35(3-4): 212-217, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446569

RESUMO

The molybdenum cofactor (Moco) is a 520-Da prosthetic group that is synthesized in all domains of life. In animals, four oxidases (among them sulfite oxidase) use Moco as a prosthetic group. Moco is essential in animals; humans with mutations in genes that encode Moco biosynthetic enzymes display lethal neurological and developmental defects. Moco supplementation seems a logical therapy; however, the instability of Moco has precluded biochemical and cell biological studies of Moco transport and bioavailability. The nematode Caenorhabditis elegans can take up Moco from its bacterial diet and transport it to cells and tissues that express Moco-requiring enzymes, suggesting a system for Moco uptake and distribution. Here we show that protein-bound Moco is the stable, bioavailable species of Moco taken up by C. elegans from its diet and is an effective dietary supplement, rescuing a Celegans model of Moco deficiency. We demonstrate that diverse Moco:protein complexes are stable and bioavailable, suggesting a new strategy for the production and delivery of therapeutically active Moco to treat human Moco deficiency.


Assuntos
Caenorhabditis elegans/metabolismo , Coenzimas/administração & dosagem , Erros Inatos do Metabolismo dos Metais/terapia , Metaloproteínas/administração & dosagem , Pteridinas/administração & dosagem , Animais , Bactérias/metabolismo , Transporte Biológico , Coenzimas/deficiência , Coenzimas/farmacocinética , Humanos , Metaloproteínas/deficiência , Metaloproteínas/farmacocinética , Cofatores de Molibdênio , Ligação Proteica , Pteridinas/farmacocinética
3.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466135

RESUMO

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Assuntos
Lagartos , Pigmentação da Pele , Animais , Feminino , Masculino , Lagartos/genética , Carotenoides/metabolismo , Pteridinas , Reprodução , Pigmentação/genética , Cor
4.
Eur J Immunol ; 54(8): e2350809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727191

RESUMO

HIV infection is associated with gut dysbiosis, and microbiome variability may affect HIV control when antiretroviral therapy (ART) is stopped. The TLR7 agonist, vesatolimod, was previously associated with a modest delay in viral rebound following analytical treatment interruption in HIV controllers (HCs). Using a retrospective analysis of fecal samples from HCs treated with vesatolimod or placebo (NCT03060447), people with chronic HIV (CH; NCT02858401) or without HIV (PWOH), we examined fecal microbiome profile in HCs before/after treatment, and in CH and PWOH. Microbiome diversity and abundance were compared between groups to investigate the association between specific phyla/species, immune biomarkers, and viral outcomes during treatment interruption. Although there were no significant differences in gut microbiome diversity between people with and without HIV, HCs, and CH shared common features that distinguished them from PWOH. there was a trend toward greater microbiome diversity among HCs. Treatment with vesatolimod reduced dysbiosis in HCs. Firmicutes positively correlated with T-cell activation, while Bacteroidetes and Euryarchaeota inversely correlated with TLR7-mediated immune activation. Specific types of fecal microbiome abundance (e.g. Alistipes putredinis) positively correlated with HIV rebound. In conclusion, variability in the composition of the fecal microbiome is associated with markers of immune activation following vesatolimod treatment and ART interruption.


Assuntos
Disbiose , Fezes , Microbioma Gastrointestinal , Infecções por HIV , Humanos , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Infecções por HIV/tratamento farmacológico , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Masculino , Feminino , Adulto , Disbiose/microbiologia , Disbiose/imunologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Carga Viral/efeitos dos fármacos , Receptor 7 Toll-Like/imunologia , HIV-1/imunologia , Pteridinas
5.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690875

RESUMO

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Assuntos
Antivirais , Enterovirus Humano D , Receptor 7 Toll-Like , Replicação Viral , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Humanos , Replicação Viral/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Antivirais/farmacologia , Indóis/farmacologia , Infecções por Enterovirus/virologia , Imunidade Inata/efeitos dos fármacos , Linhagem Celular , Internalização do Vírus/efeitos dos fármacos , Pteridinas
6.
J Biol Chem ; 299(1): 102736, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423681

RESUMO

Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.


Assuntos
Metaloproteínas , Cofatores de Molibdênio , Sulfito Oxidase , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dieta , Metaloproteínas/genética , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio/metabolismo , Pteridinas/metabolismo , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
7.
J Inherit Metab Dis ; 47(4): 598-623, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627985

RESUMO

Sulfite intoxication is the hallmark of four ultrarare disorders that are caused by impaired sulfite oxidase activity due to genetic defects in the synthesis of the molybdenum cofactor or of the apoenzyme sulfite oxidase. Delays on the diagnosis of these disorders are common and have been caused by their unspecific presentation of acute neonatal encephalopathy with high early mortality, followed by the evolution of dystonic cerebral palsy and also by the lack of easily available and reliable diagnostic tests. There is significant variation in survival and in the quality of symptomatic management of affected children. One of the four disorders, molybdenum cofactor deficiency type A (MoCD-A) has recently become amenable to causal treatment with synthetic cPMP (fosdenopterin). The evidence base for the rational use of cPMP is very limited. This prompted the formulation of these clinical guidelines to facilitate diagnosis and support the management of patients. The guidelines were developed by experts in diagnosis and treatment of sulfite intoxication disorders. It reflects expert consensus opinion and evidence from a systematic literature search.


Assuntos
Erros Inatos do Metabolismo dos Metais , Sulfito Oxidase , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Coenzimas/deficiência , Consenso , Erros Inatos do Metabolismo dos Metais/diagnóstico , Erros Inatos do Metabolismo dos Metais/terapia , Metaloproteínas/deficiência , Cofatores de Molibdênio , Pteridinas , Sulfito Oxidase/deficiência , Sulfito Oxidase/genética
8.
Nature ; 563(7731): 360-364, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30283138

RESUMO

The latent viral reservoir is the critical barrier for the development of a cure for HIV-1 infection. Previous studies have shown direct antiviral activity of potent HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) administered when antiretroviral therapy (ART) was discontinued, but it remains unclear whether bNAbs can target the viral reservoir during ART. Here we show that administration of the V3 glycan-dependent bNAb PGT121 together with the Toll-like receptor 7 (TLR7) agonist vesatolimod (GS-9620) during ART delayed viral rebound following discontinuation of ART in simian-human immunodeficiency virus (SHIV)-SF162P3-infected rhesus monkeys in which ART was initiated during early acute infection. Moreover, in the subset of monkeys that were treated with both PGT121 and GS-9620 and that did not show viral rebound after discontinuation of ART, adoptive transfer studies and CD8-depletion studies also did not reveal virus. These data demonstrate the potential of bNAb administration together with innate immune stimulation as a possible strategy for targeting the viral reservoir.


Assuntos
Anticorpos Antivirais/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/agonistas , Transferência Adotiva , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/imunologia , Antígenos CD8/deficiência , Antígenos CD8/imunologia , DNA Viral/análise , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/genética , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Pteridinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Receptor 7 Toll-Like/imunologia , Carga Viral
9.
Biol Pharm Bull ; 47(7): 1282-1287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987177

RESUMO

Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.


Assuntos
Proteínas de Ciclo Celular , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Fluorescência , Quinases Polo-Like , Pteridinas , Proteínas Supressoras de Tumor
10.
Mol Cell ; 64(3): 493-506, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773673

RESUMO

MYCN amplification in human cancers predicts poor prognosis and resistance to therapy. However, pharmacological strategies that directly target N-Myc, the protein encoded by MYCN, remain elusive. Here, we identify a molecular mechanism responsible for reciprocal activation between Polo-like kinase-1 (PLK1) and N-Myc. PLK1 specifically binds to the SCFFbw7 ubiquitin ligase, phosphorylates it, and promotes its autopolyubiquitination and proteasomal degradation, counteracting Fbw7-mediated degradation of N-Myc and additional substrates, including cyclin E and Mcl1. Stabilized N-Myc in turn directly activates PLK1 transcription, constituting a positive feedforward regulatory loop that reinforces Myc-regulated oncogenic programs. Inhibitors of PLK1 preferentially induce potent apoptosis of MYCN-amplified tumor cells from neuroblastoma and small cell lung cancer and synergistically potentiate the therapeutic efficacies of Bcl2 antagonists. These findings reveal a PLK1-Fbw7-Myc signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with Bcl2 antagonists, as potential effective therapeutics for MYC-overexpressing cancers.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Humanos , Camundongos Nus , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pteridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Análise de Sobrevida , Transcrição Gênica , Carga Tumoral/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
11.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461573

RESUMO

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Assuntos
Melanocortinas , Compostos Orgânicos de Estanho , Perciformes , Animais , Pró-Opiomelanocortina , Ecossistema , Melaninas/genética , Pteridinas , Peixes/genética , Perciformes/genética , Pterinas , Redes e Vias Metabólicas
12.
Molecules ; 29(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339452

RESUMO

Molybdenum (Mo) is an essential micronutrient across all kingdoms of life, where it functions as a key component of the active centers of molybdenum-dependent enzymes. For these enzymes to gain catalytic activity, Mo must be complexed with a pterin scaffold to form the molybdenum cofactor (Moco). The final step of Moco biosynthesis is catalyzed by the enzyme Mo-insertase. This review focuses on eukaryotic Mo-insertases, with an emphasis on those found in plants and mammals, which have been instrumental in advancing the understanding of Mo biochemistry. Additionally, a historical perspective is provided, tracing the discovery of Mo-insertase from the early 1960s to the detailed characterization of its reaction mechanism in 2021. This review also highlights key milestones in the study of Mo-insertase, including mutant characterization, gene cloning, structural elucidation at the atomic level, functional domain assignment, and the spatial organization of the enzyme within cellular protein networks.


Assuntos
Metaloproteínas , Cofatores de Molibdênio , Pteridinas , Animais , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/biossíntese , Metaloproteínas/química , Molibdênio/química , Molibdênio/metabolismo , Cofatores de Molibdênio/biossíntese , Pteridinas/metabolismo , Pteridinas/química
13.
Anal Bioanal Chem ; 415(12): 2249-2260, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36920495

RESUMO

In this work, we design and synthesize 2,2'-(7,9-dimethyl-2,4,6,8-tetraoxo-6,7,8,9-tetrahydropyrimido[5,4-g]pteridine-1,3(2H,4H)-diyl)bis(N,N-bis(2-chloroethyl)acetamide) (PT-MCA) as a novel DNA intercalator and potential antitumor agent. Electrochemical analysis reveals the redox process of PT-MCA on the electrode surface. The bioelectrochemical sensors are obtained by modifying the surface of GCE with calf thymus DNA (ctDNA), poly (dG), poly (dA), and G-quadruplex, respectively. The DNA oxidative damage induced by PT-MCA is investigated by comparing the peak intensity change of dGuo and dAdo and monitoring the peaks of the oxidation products of guanine and/or adenine (8-oxoGua and/or 2,8-oxoAde). UV-vis absorption and fluorescence spectra and gel electrophoresis are further employed to understand the intercalation of PT-MCA into DNA base pairs. Moreover, PT-MCA is proved to exhibit stronger anti-proliferation activity than mitoxantrone against both 4T1 and B16-F10 cancer cells. At last, the oxidative damage of PT-MCA toward ctDNA is not interfered by the coexistence of ions and also can be detected in real serums.


Assuntos
Antineoplásicos , Pteridinas , DNA/genética , Antineoplásicos/farmacologia , Adenina , Estresse Oxidativo , Dano ao DNA
14.
Metab Brain Dis ; 38(8): 2645-2651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688715

RESUMO

Inflammation is thought to be involved in the pathogenesis of autism spectrum disorder (ASD). Pteridine metabolites are biomarkers of inflammation that increase on immune system activation. In this study, we investigated the urinary pteridine metabolites in ASD patients as a possible biomarker for immune activation and inflammation. This observational, cross-sectional, prospective study collected urine samples from 212 patients with ASD and 68 age- and sex-matched healthy individuals. Urine neopterin (NE) and biopterin (BIO) levels were measured. Patients who had chronic disorders, active infection at the time of sampling, or high C-reactive protein levels were excluded. The urine NE and BIO concentrations were determined by high-performance liquid chromatography. The ratios of both NE and BIO to creatinine (CRE) were used to standardise the measurements. The NE/CRE and NE/BIO levels were significantly higher in ASD patients than controls. Univariate and multivariate models revealed a significant increase in NE/CRE and NE/BIO in ASD patients. There was a significant relationship between the NE/BIO [average area under the curve (AUC) = 0.717; range: 0.637-0.797] and NE/CRE (average AUC = 0.756; range: 0.684-0.828) ratios, which distinguished individuals with ASD from controls. The elevated NE/CRE and NE/BIO ratios suggest that inflammation and T cell-mediated immunity are involved in the pathophysiology of autism. NE/BIO could serve as a diagnostic inflammatory marker in the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Biopterinas , Humanos , Neopterina , Estudos Transversais , Estudos Prospectivos , Pteridinas/urina , Biomarcadores/urina , Inflamação
15.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895036

RESUMO

Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and ß-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.


Assuntos
Peixes , Perfilação da Expressão Gênica , Animais , Larva/genética , Peixes/genética , Carotenoides , Pteridinas , Esteroides
16.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513211

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Assuntos
Formiato Desidrogenases , Metaloproteínas , Formiato Desidrogenases/metabolismo , Oxirredução , Metaloproteínas/química , Molibdênio/química , Domínio Catalítico , Pteridinas/química , Coenzimas/química
17.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005256

RESUMO

The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.


Assuntos
Leishmania major , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Tetra-Hidrofolato Desidrogenase/metabolismo , Pteridinas/química , Tripanossomíase Africana/tratamento farmacológico
18.
Wien Med Wochenschr ; 173(5-6): 152-157, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36178637

RESUMO

BI2536 is potent inhibitor of polo-like kinases PLK1, 2, and 3. The inhibition of PLKs in nucleated cells induces apoptosis by perturbing the cell cycle with consequent engagement of mitotic catastrophe. BI2536 is being tested as chemotherapy in various phase I/II/III clinical trials. Erythrocytes do not have a nucleus; however, they may undergo programmed suicide with characteristic hallmarks including cell shrinkage and phosphatidylserine translocation to the cell surface. This particular death is baptized eryptosis. Our study explored whether BI2536 induces eryptosis. We used flow cytometry to access death in red blood cells. We analyzed the cellular volume, the intracellular calcium concentration, the cell surface phosphatidylserine exposure, and the ceramide abundance. In addition, we analyzed the effect of BI2536 on hemolysis. Our investigation showed that after 48 h of incubation with PLK inhibitor BI2536, erythrocytes lost volume and were positive for annexin­V without any effect on hemolysis. Cells also showed an abundance of ceramide and an increase of intracellular calcium. All these finding suggest that BI2536 provokes eryptosis in red blood cells, ostensibly in part due to Ca2+ entry and ceramide accumulation.


Assuntos
Eritrócitos , Proteínas Serina-Treonina Quinases , Pteridinas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Eritrócitos/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eriptose/efeitos dos fármacos , Pteridinas/farmacologia , Ceramidas/análise , Cálcio/análise , Hemólise/efeitos dos fármacos
19.
Dev Biol ; 478: 205-211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265355

RESUMO

Ire1 is an endoplasmic reticulum (ER) transmembrane RNase that cleaves substrate mRNAs to help cells adapt to ER stress. Because there are cell types with physiological ER stress, loss of Ire1 results in metabolic and developmental defects in diverse organisms. In Drosophila, Ire1 mutants show developmental defects at early larval stages and in pupal eye photoreceptor differentiation. These Drosophila studies relied on a single Ire1 loss of function allele with a Piggybac insertion in the coding sequence. Here, we report that an Ire1 allele with a specific impairment in the RNase domain, H890A, unmasks previously unrecognized Ire1 phenotypes in Drosophila eye pigmentation. Specifically, we found that the adult eye pigmentation is altered, and the pigment granules are compromised in Ire1H890A homozygous mosaic eyes. Furthermore, the Ire1H890A mutant eyes had dramatically reduced Rhodopsin-1 protein levels. Drosophila eye pigment granules are most notably associated with late endosome/lysosomal defects. Our results indicate that the loss of Ire1, which would impair ER homeostasis, also results in altered adult eye pigmentation.


Assuntos
Olho Composto de Artrópodes/química , Olho Composto de Artrópodes/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Pigmentos Biológicos/análise , Alelos , Animais , Olho Composto de Artrópodes/ultraestrutura , Drosophila melanogaster , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Cor de Olho , Mutação , Fenotiazinas/análise , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentação , Pteridinas/análise , Rodopsina/metabolismo
20.
Cancer Sci ; 113(1): 132-144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668620

RESUMO

In solid tumors, cancer cells have devised multiple approaches to survival and proliferate in response to glucose starvation that is often observed in solid tumor microenvironments. However, the precise mechanisms are far less known. Herein, we report that glucose deprivation activates 90-kDa ribosomal S6 kinase (p90 RSK), a highly conserved Ser/Thr kinase, and activated p90 RSK promotes cancer cell survival. Mechanistically, activated p90 RSK by glucose deprivation phosphorylates checkpoint kinase 1 (CHK1), a key transducer in checkpoint signaling pathways, at Ser280 and triggers CHK1 ubiquitination mediated by SCFß-TrCP ubiquitin ligase and proteasomal degradation, subsequently suppressing cancer cell apoptosis induced by glucose deprivation. Importantly, we identified an inverse correlation between p90 RSK activity and CHK1 levels within the solid tumor mass, with lower levels of CHK1 and higher activity of p90 RSK in the center of the tumor where low glucose concentrations are often observed. Thus, our study indicates that p90 RSK promotes CHK1 phosphorylation at Ser280 and its subsequent degradation, which allows cancer cells to escape from checkpoint signals under the stress of glucose deprivation, leading to cell survival and thus contributing to tumorigenesis.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Glucose/deficiência , Neoplasias/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Quinase 1 do Ponto de Checagem/química , Ativação Enzimática , Células HEK293 , Humanos , Camundongos , Fosforilação , Proteólise/efeitos dos fármacos , Pteridinas/farmacologia , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa