RESUMO
The brain functions as a prediction machine, utilizing an internal model of the world to anticipate sensations and the outcomes of our actions. Discrepancies between expected and actual events, referred to as prediction errors, are leveraged to update the internal model and guide our attention towards unexpected events1-10. Despite the importance of prediction-error signals for various neural computations across the brain, surprisingly little is known about the neural circuit mechanisms responsible for their implementation. Here we describe a thalamocortical disinhibitory circuit that is required for generating sensory prediction-error signals in mouse primary visual cortex (V1). We show that violating animals' predictions by an unexpected visual stimulus preferentially boosts responses of the layer 2/3 V1 neurons that are most selective for that stimulus. Prediction errors specifically amplify the unexpected visual input, rather than representing non-specific surprise or difference signals about how the visual input deviates from the animal's predictions. This selective amplification is implemented by a cooperative mechanism requiring thalamic input from the pulvinar and cortical vasoactive-intestinal-peptide-expressing (VIP) inhibitory interneurons. In response to prediction errors, VIP neurons inhibit a specific subpopulation of somatostatin-expressing inhibitory interneurons that gate excitatory pulvinar input to V1, resulting in specific pulvinar-driven response amplification of the most stimulus-selective neurons in V1. Therefore, the brain prioritizes unpredicted sensory information by selectively increasing the salience of unpredicted sensory features through the synergistic interaction of thalamic input and neocortical disinhibitory circuits.
Assuntos
Córtex Visual Primário , Tálamo , Vias Visuais , Animais , Feminino , Masculino , Camundongos , Interneurônios/fisiologia , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Inibição Neural/fisiologia , Estimulação Luminosa , Córtex Visual Primário/fisiologia , Córtex Visual Primário/citologia , Pulvinar/fisiologia , Pulvinar/citologia , Somatostatina/metabolismo , Tálamo/fisiologia , Tálamo/citologia , Peptídeo Intestinal Vasoativo/metabolismo , Vias Visuais/citologia , Vias Visuais/fisiologia , Neurônios/fisiologiaRESUMO
Synchronous neural oscillations are strongly associated with a variety of perceptual, cognitive, and behavioural processes. It has been proposed that the role of the synchronous oscillations in these processes is to facilitate information transmission between brain areas, the 'communication through coherence,' or CTC hypothesis. The details of how this mechanism would work, however, and its causal status, are still unclear. Here we investigate computationally a proposed mechanism for selective attention that directly implicates the CTC as causal. The mechanism involves alpha band (about 10 Hz) oscillations, originating in the pulvinar nucleus of the thalamus, being sent to communicating cortical areas, organizing gamma (about 40 Hz) oscillations there, and thus facilitating phase coherence and communication between them. This is proposed to happen contingent on control signals sent from higher-level cortical areas to the thalamic reticular nucleus, which controls the alpha oscillations sent to cortex by the pulvinar. We studied the scope of this mechanism in parameter space, and limitations implied by this scope, using a computational implementation of our conceptual model. Our results indicate that, although the CTC-based mechanism can account for some effects of top-down and bottom-up attentional selection, its limitations indicate that an alternative mechanism, in which oscillatory coherence is caused by communication between brain areas rather than being a causal factor for it, might operate in addition to, or even instead of, the CTC mechanism.
Assuntos
Atenção , Modelos Neurológicos , Atenção/fisiologia , Humanos , Biologia Computacional , Simulação por Computador , Encéfalo/fisiologia , Ritmo alfa/fisiologia , Pulvinar/fisiologiaRESUMO
Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7â T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.
Assuntos
Pulvinar , Lobo Temporal , Humanos , Feminino , Masculino , Adulto , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Pulvinar/fisiologia , Pulvinar/diagnóstico por imagem , Vias Neurais/fisiologia , Conectoma , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Idioma , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto JovemRESUMO
Distributed cortical regions show differential responses to visual objects belonging to different domains varying by animacy (e.g., animals vs tools), yet it remains unclear whether this is an organization principle also applying to the subcortical structures. Combining multiple fMRI activation experiments (two main experiments and six validation datasets; 12 females and 9 males in the main Experiment 1; 10 females and 10 males in the main Experiment 2), resting-state functional connectivity, and task-based dynamic causal modeling analysis in human subjects, we found that visual processing of images of animals and tools elicited different patterns of response in the pulvinar, with robust left lateralization for tools, and distinct, bilateral (with rightward tendency) clusters for animals. Such domain-preferring activity distribution in the pulvinar was associated with the magnitude with which the voxels were intrinsically connected with the corresponding domain-preferring regions in the cortex. The pulvinar-to-right-amygdala path showed a one-way shortcut supporting the perception of animals, and the modulation connection from pulvinar to parietal showed an advantage to the perception of tools. These results incorporate the subcortical regions into the object processing network and highlight that domain organization appears to be an overarching principle across various processing stages in the brain.SIGNIFICANCE STATEMENT Viewing objects belonging to different domains elicited different cortical regions, but whether the domain organization applied to the subcortical structures (e.g., pulvinar) was unknown. Multiple fMRI activation experiments revealed that object pictures belonging to different domains elicited differential patterns of response in the pulvinar, with robust left lateralization for tool pictures, and distinct, bilateral (with rightward tendency) clusters for animals. Combining the resting-state functional connectivity and dynamic causal modeling analysis on task-based fMRI data, we found domain-preferring activity distribution in the pulvinar aligned with that in cortical regions. These results highlight the need for coherent visual theories that explain the mechanisms underlying the domain organization across various processing stages.
Assuntos
Pulvinar , Masculino , Feminino , Animais , Humanos , Pulvinar/diagnóstico por imagem , Pulvinar/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico , Tonsila do Cerebelo/fisiologiaRESUMO
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.
Assuntos
Tonsila do Cerebelo , Percepção Auditiva , Claustrum , Imageamento por Ressonância Magnética , Pulvinar , Percepção Visual , Pulvinar/fisiologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Masculino , Animais , Percepção Auditiva/fisiologia , Claustrum/fisiologia , Percepção Visual/fisiologia , Feminino , Expressão Facial , Macaca , Estimulação Luminosa/métodos , Mapeamento Encefálico , Estimulação Acústica , Vocalização Animal/fisiologia , Percepção SocialRESUMO
Causal perturbations suggest that primate dorsal pulvinar plays a crucial role in target selection and saccade planning, though its basic neuronal properties remain unclear. Some functional aspects of dorsal pulvinar and interconnected frontoparietal areas-e.g. ipsilesional choice bias after inactivation-are similar. But it is unknown if dorsal pulvinar shares oculomotor properties of cortical circuitry, in particular delay and choice-related activity. We investigated such properties in macaque dorsal pulvinar during instructed and free-choice memory saccades. Most recorded units showed visual (12%), saccade-related (30%), or both types of responses (22%). Visual responses were primarily contralateral; diverse saccade-related responses were predominantly post-saccadic with a weak contralateral bias. Memory delay and pre-saccadic enhancement was infrequent (11-9%)-instead, activity was often suppressed during saccade planning (25%) and further during execution (15%). Surprisingly, only few units exhibited classical visuomotor patterns combining cue and continuous delay activity or pre-saccadic ramping; moreover, most spatially-selective neurons did not encode the upcoming decision during free-choice delay. Thus, in absence of a visible goal, the dorsal pulvinar has a limited role in prospective saccade planning, with patterns partially complementing its frontoparietal partners. Conversely, prevalent visual and post-saccadic responses imply its participation in integrating spatial goals with processing across saccades.
Assuntos
Pulvinar , Movimentos Sacádicos , Animais , Pulvinar/fisiologia , Estudos Prospectivos , Macaca mulatta , Movimentos OcularesRESUMO
A subcortical pathway through the superior colliculus and pulvinar has been proposed to provide the amygdala with rapid but coarse visual information about emotional faces. However, evidence for short-latency, facial expression-discriminating responses from individual amygdala neurons is lacking; even if such a response exists, how it might contribute to stimulus detection is unclear. Also, no definitive anatomical evidence is available for the assumed pathway. Here we showed that ensemble responses of amygdala neurons in monkeys carried robust information about open-mouthed, presumably threatening, faces within 50 ms after stimulus onset. This short-latency signal was not found in the visual cortex, suggesting a subcortical origin. Temporal analysis revealed that the early response contained excitatory and suppressive components. The excitatory component may be useful for sending rapid signals downstream, while the sharpening of the rising phase of later-arriving inputs (presumably from the cortex) by the suppressive component might improve the processing of facial expressions over time. Injection of a retrograde trans-synaptic tracer into the amygdala revealed presumed monosynaptic labeling in the pulvinar and disynaptic labeling in the superior colliculus, including the retinorecipient layers. We suggest that the early amygdala responses originating from the colliculo-pulvino-amygdalar pathway play dual roles in threat detection.
Assuntos
Pulvinar , Córtex Visual , Animais , Colículos Superiores/fisiologia , Emoções , Pulvinar/fisiologia , PrimatasRESUMO
Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.
Assuntos
Corpos Geniculados/fisiologia , Pulvinar/fisiologia , Córtex Visual/fisiologia , Animais , Estimulação Elétrica , Eletrodos Implantados , Feminino , Masculino , Camundongos , Microeletrodos , Optogenética , Técnicas Estereotáxicas , Vias VisuaisRESUMO
After damage to the primary visual cortex (V1), conscious vision is impaired. However, some patients can respond to visual stimuli presented in their lesion-affected visual field using residual visual pathways bypassing V1. This phenomenon is called "blindsight." Many studies have tried to identify the brain regions responsible for blindsight, and the pulvinar and/or lateral geniculate nucleus (LGN) are suggested to play key roles as the thalamic relay of visual signals. However, there are critical problems regarding these preceding studies in that subjects with different sized lesions and periods of time after lesioning were investigated; furthermore, the ability of blindsight was assessed with different measures. In this study, we used double dissociation to clarify the roles of the pulvinar and LGN by pharmacological inactivation of each region and investigated the effects in a simple task with visually guided saccades (VGSs) using monkeys with a unilateral V1 lesion, by which nearly all of the contralesional visual field was affected. Inactivating either the ipsilesional pulvinar or LGN impaired VGS toward a visual stimulus in the affected field. In contrast, inactivation of the contralesional pulvinar had no clear effect, but inactivation of the contralesional LGN impaired VGS to the intact visual field. These results suggest that the pulvinar and LGN play key roles in performing the simple VGS task after V1 lesioning, and that the visuomotor functions of blindsight monkeys were supported by plastic changes in the visual pathway involving the pulvinar, which emerged after V1 lesioning.SIGNIFICANCE STATEMENT Many studies have been devoted to understanding the mechanism of mysterious symptom called "blindsight," in which patients with damage to the primary visual cortex (V1) can respond to visual stimuli despite loss of visual awareness. However, there is still a debate on the thalamic relay of visual signals. In this study, to pin down the issue, we tried double dissociation in the same subjects (hemi-blindsight macaque monkeys) and clarified that the lateral geniculate nucleus (LGN) plays a major role in simple visually guided saccades in the intact state, while both pulvinar and LGN critically contribute after the V1 lesioning, suggesting that plasticity in the visual pathway involving the pulvinar underlies the blindsight.
Assuntos
Corpos Geniculados/fisiologia , Pulvinar/fisiologia , Movimentos Sacádicos/fisiologia , Córtex Visual/lesões , Percepção Visual/fisiologia , Animais , Feminino , Lateralidade Funcional/fisiologia , Macaca fuscata , Estimulação Luminosa , Vias Visuais/fisiologiaRESUMO
The lateral and central lateral inferior pulvinar (PL/PIcl) of primates has been implicated in playing an important role in visual processing, but its physiological and anatomical characteristics remain to be elucidated. It has been suggested that there are two complete visuotopic maps in the PL/PIcl, each of which sends afferents into V2 and V4 in primates. Given that functionally distinct thin and thick stripes of V2 both receive inputs from the PL/PIcl, this raises the possibility of a presence of parallel segregated pathways within the PL/PIcl. To address this question, we selectively injected three types of retrograde tracers (CTB-488, CTB-555, and BDA) into thin or thick stripes in V2 and examined labeling in the PL/PIcl in macaques. As a result, we found that every cluster of retrograde labeling in the PL/PIcl included all three types of signals next to each other, suggesting that thin stripe- and thick stripe-projecting compartments are not segregated into domains. Unexpectedly, we found at least five topographically organized retrograde labeling clusters in the PL/PIcl, indicating the presence of more than two V2-projecting maps. Our results suggest that the PL/PIcl exhibits greater compartmentalization than previously thought. They may be functionally similar but participate in multiple cortico-pulvinar-cortical loops.
Assuntos
Pulvinar/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Imuno-Histoquímica , Macaca mulatta , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Neuroimagem , Pulvinar/anatomia & histologia , Tálamo/fisiologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologiaRESUMO
Retinotopic specializations in the ventral visual stream, especially foveal adaptations, provide primates with high-acuity vision in the central visual field. However, visual field specializations have not been studied in the dorsal visual stream, dedicated to processing visual motion and visually guided behaviors. To investigate this, we injected retrograde neuronal tracers occupying the whole visuotopic representation of the middle temporal (MT) visual area in marmoset monkeys and studied the distribution and morphology of the afferent primary visual cortex (V1) projections. Contrary to previous reports, we found a heterogeneous population of V1-MT projecting neurons distributed in layers 3C and 6. In layer 3C, spiny stellate neurons were distributed mainly in foveal representations, while pyramidal morphologies were characteristic of peripheral eccentricities. This primate adaptation of the V1 to MT pathway is arranged in a way that we had not previously understood, with abundant stellate projection neurons in the high-resolution foveal portions, suggesting rapid relay of motion information to visual area MT. We also describe that the medial portion of the inferior pulvinar (PIm), which is the main thalamic input to area MT, shows a retinotopic organization, likely reflecting the importance of this pathway during development and the establishment of area MT topography.
Assuntos
Córtex Visual/anatomia & histologia , Animais , Mapeamento Encefálico , Callithrix , Marcadores do Trato Nervoso , Pulvinar/anatomia & histologia , Pulvinar/fisiologia , Córtex Visual/fisiologiaRESUMO
The thalamic pulvinar and the lateral intraparietal area (LIP) share reciprocal anatomical connections and are part of an extensive cortical and subcortical network involved in spatial attention and oculomotor processing. The goal of this study was to compare the effective connectivity of dorsal pulvinar (dPul) and LIP and to probe the dependency of microstimulation effects on task demands and spatial tuning properties of a given brain region. To this end, we applied unilateral electrical microstimulation in the dPul (mainly medial pulvinar) and LIP in combination with event-related BOLD fMRI in monkeys performing fixation and memory-guided saccade tasks. Microstimulation in both dPul and LIP enhanced task-related activity in monosynaptically-connected fronto-parietal cortex and along the superior temporal sulcus (STS) including putative face patch locations, as well as in extrastriate cortex. LIP microstimulation elicited strong activity in the opposite homotopic LIP while no homotopic activation was found with dPul stimulation. Both dPul and LIP stimulation also elicited activity in several heterotopic cortical areas in the opposite hemisphere, implying polysynaptic propagation of excitation. Despite extensive activation along the intraparietal sulcus evoked by LIP stimulation, there was a difference in frontal and occipital connectivity elicited by posterior and anterior LIP stimulation sites. Comparison of dPul stimulation with the adjacent but functionally dissimilar ventral pulvinar also showed distinct connectivity. On the level of single trial timecourses within each region of interest (ROI), most ROIs did not show task-dependence of stimulation-elicited response modulation. Across ROIs, however, there was an interaction between task and stimulation, and task-specific correlations between the initial spatial selectivity and the magnitude of stimulation effect were observed. Consequently, stimulation-elicited modulation of task-related activity was best fitted by an additive model scaled down by the initial response amplitude. In summary, we identified overlapping and distinct patterns of thalamocortical and corticocortical connectivity of pulvinar and LIP, highlighting the dorsal bank and fundus of STS as a prominent node of shared circuitry. Spatial task-specific and partly polysynaptic modulations of cue and saccade planning delay period activity in both hemispheres exerted by unilateral pulvinar and parietal stimulation provide insight into the distributed interhemispheric processing underlying spatial behavior.
Assuntos
Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Pulvinar/fisiologia , Movimentos Sacádicos/fisiologia , Comportamento Espacial/fisiologia , Animais , Estimulação Elétrica/métodos , Macaca mulatta , Masculino , Microeletrodos , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Pulvinar/diagnóstico por imagemRESUMO
The pulvinar is the largest extrageniculate visual nucleus in mammals. Given its extensive reciprocal connectivity with the visual cortex, it allows the cortico-thalamocortical transfer of visual information. Nonetheless, knowledge of the nature of the pulvinar inputs to the cortex remains elusive. We investigated the impact of silencing the pulvinar on the contrast response function of neurons in 2 distinct hierarchical cortical areas in the cat (areas 17 and 21a). Pulvinar inactivation altered the response gain in both areas, but with larger changes observed in area 21a. A theoretical model was proposed, simulating the pulvinar contribution to cortical contrast responses by modifying the excitation-inhibition balanced state of neurons across the cortical hierarchy. Our experimental and theoretical data showed that the pulvinar exerts a greater modulatory influence on neuronal activity in area 21a than in the primary visual cortex, indicating that the pulvinar impact on cortical visual neurons varies along the cortical hierarchy.
Assuntos
Neurônios/fisiologia , Pulvinar/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Gatos , Feminino , Masculino , Modelos Neurológicos , Estimulação Luminosa , Vias Visuais/fisiologiaRESUMO
The medial pulvinar (PM) is a multimodal associative thalamic nucleus, recently evolved in primates. PM participates in integrative and modulatory functions, including directed attention, and consistently exhibits alterations in disorders such as schizophrenia and autism. Despite essential cognitive functions, the cortical inputs to the PM have not been systematically investigated. To date, less than 20 cortices have been demonstrated to project to PM. The goal of this study was to establish a comprehensive map of the cortical afferents to PM in the marmoset monkey. Using a magnetic resonance imaging-guided injection approach, we reveal 62 discrete cortices projecting to the adult marmoset PM. We confirmed previously reported connections and identified further projections from discrete cortices across the temporal, parietal, retrosplenial-cingulate, prefrontal, and orbital lobes. These regions encompass areas recipient of PM efferents, demonstrating the reciprocity of the PM-cortical connectivity. Moreover, our results indicate that PM neurones projecting to distinct cortices are intermingled and form multimodal cell clusters. This microunit organization, believed to facilitate cross-modal integration, contrasts with the large functional subdivisions usually observed in thalamic nuclei. Altogether, we provide the first comprehensive map of PM cortical afferents, an essential stepping stone in expanding our knowledge of PM and its function.
Assuntos
Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Pulvinar/fisiologia , Tálamo/fisiologia , Animais , Callithrix/fisiologia , Macaca mulatta , Masculino , Núcleos Talâmicos/fisiologiaRESUMO
The neural basis of memory is highly distributed, but the thalamus is known to play a particularly critical role. However, exactly how the different thalamic nuclei contribute to different kinds of memory is unclear. Moreover, whether thalamic connectivity with the medial temporal lobe (MTL), arguably the most fundamental memory structure, is critical for memory remains unknown. We explore these questions using an fMRI recognition memory paradigm that taps familiarity and recollection (i.e., the two types of memory that support recognition) for objects, faces, and scenes. We show that the mediodorsal thalamus (MDt) plays a material-general role in familiarity, while the anterior thalamus plays a material-general role in recollection. Material-specific regions were found for scene familiarity (ventral posteromedial and pulvinar thalamic nuclei) and face familiarity (left ventrolateral thalamus). Critically, increased functional connectivity between the MDt and the parahippocampal (PHC) and perirhinal cortices (PRC) of the MTL underpinned increases in reported familiarity confidence. These findings suggest that familiarity signals are generated through the dynamic interaction of functionally connected MTL-thalamic structures.
Assuntos
Giro Para-Hipocampal/diagnóstico por imagem , Córtex Perirrinal/diagnóstico por imagem , Reconhecimento Psicológico/fisiologia , Lobo Temporal/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Núcleos Anteriores do Tálamo/diagnóstico por imagem , Núcleos Anteriores do Tálamo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Núcleo Mediodorsal do Tálamo/fisiologia , Rememoração Mental , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Giro Para-Hipocampal/fisiologia , Córtex Perirrinal/fisiologia , Pulvinar/diagnóstico por imagem , Pulvinar/fisiologia , Lobo Temporal/fisiologia , Tálamo/fisiologia , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/fisiologia , Adulto JovemRESUMO
Spatial attention is comprised of neural mechanisms that boost sensory processing at a behaviorally relevant location while filtering out competing information. The present review examines functional specialization in the network of brain regions that directs such preferential processing. This attention network includes both cortical (e.g., frontal and parietal cortices) and subcortical (e.g., the superior colliculus and the pulvinar nucleus of the thalamus) structures. Here, we piece together existing evidence that these various nodes of the attention network have dissociable functional roles by synthesizing results from electrophysiology and neuroimaging studies. We describe functional specialization across several dimensions (e.g., at different processing stages and within different behavioral contexts), while focusing on spatial attention as a dynamic process that unfolds over time. Functional contributions from each node of the attention network can change on a moment-to-moment timescale, providing the necessary cognitive flexibility for sampling from highly dynamic environments.
Assuntos
Atenção/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Pulvinar/fisiologia , Percepção Espacial/fisiologia , Colículos Superiores/fisiologia , HumanosRESUMO
Prior studies have shown that repetitive presentation of acoustic stimuli results in an alignment of ongoing neuronal oscillations to the sequence rhythm via oscillatory entrainment by external cues. Our study aimed to explore the neural correlates of the perceptual parsing and grouping of complex repeating auditory patterns that occur based solely on statistical regularities, or context. Human psychophysical studies suggest that the recognition of novel auditory patterns amid a continuous auditory stimulus sequence occurs automatically halfway through the first repetition. We hypothesized that once repeating patterns were detected by the brain, internal rhythms would become entrained, demarcating the temporal structure of these repetitions despite lacking external cues defining pattern on- or offsets. To examine the neural correlates of pattern perception, neuroelectric activity of primary auditory cortex (A1) and thalamic nuclei was recorded while nonhuman primates passively listened to streams of rapidly presented pure tones and bandpass noise bursts. At arbitrary intervals, random acoustic patterns composed of 11 stimuli were repeated five times without any perturbance of the constant stimulus flow. We found significant delta entrainment by these patterns in the A1, medial geniculate body, and medial pulvinar. In A1 and pulvinar, we observed a statistically significant, pattern structure-aligned modulation of neuronal firing that occurred earliest in the pulvinar, supporting the idea that grouping and detecting complex auditory patterns is a top-down, context-driven process. Besides electrophysiological measures, a pattern-related modulation of pupil diameter verified that, like humans, nonhuman primates consciously detect complex repetitive patterns that lack physical boundaries.
Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Macaca mulatta/fisiologia , Pulvinar/fisiologia , Estimulação Acústica/métodos , Animais , Sinais (Psicologia) , Eletrocorticografia/métodos , Feminino , Vias Neurais/fisiologia , Neurônios/fisiologia , RuídoRESUMO
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
Assuntos
Callithrix/fisiologia , Força da Mão/fisiologia , Pulvinar/fisiologia , Vias Visuais/fisiologia , Animais , Animais Recém-Nascidos , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Masculino , Neurônios/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologiaRESUMO
The pulvinar is the largest thalamic nucleus in the brain and considered as a key structure in sensory processing and attention. Although its anatomy is well known, in particular thanks to studies in non-human primates, its role in perception and cognition remains poorly understood. Here, we used resting-state functional connectivity from a large sample of high-resolution data provided by the Human Connectome Project, combined with a large-scale meta-analysis approach to segregate and characterize the functional organization of the pulvinar nucleus. We identified five clusters per pulvinar with distinct connectivity profiles and determined their respective co-activation patterns. Using the Neurosynth database, we then investigated the functional significance of these co-activation networks. Our results confirm the functional heterogeneity of the pulvinar, revealing clearcut differences across clusters in terms of their connectivity patterns and associated cognitive domains. While the anterior and lateral clusters appear to be involved in action and attention domains, the ventromedial and dorsomedial clusters may preferentially subserve emotional processes and saliency detection. In contrast, the inferior cluster shows less specificity but correlates with perception and memory processes. Collectively, our results suggest that the pulvinar underwrites different components of cognition, supporting a central role in the coordination of cortico-subcortical processes mediated by distributed brain networks.
Assuntos
Córtex Cerebral/fisiologia , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Pulvinar/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Metanálise como Assunto , Rede Nervosa/diagnóstico por imagem , Pulvinar/diagnóstico por imagem , Adulto JovemRESUMO
Parasympathetic arousal is associated with states of heightened attention and well-being. Arousal may affect widespread cortical and subcortical systems across the brain, however, little is known about its influence on cognitive task processing and performance. In the current study, healthy adult participants (n â= â20) underwent multi-band echo-planar imaging (TR â= â0.72 âs) with simultaneous pulse oximetry recordings during performance of the Multi Source Interference Task (MSIT), the Oddball Task (OBT), and during rest. Processing speed on both tasks was robustly related to heart rate (HR). Participants with slower HR responded faster on both the MSIT (33% variance explained) and the OBT (25% variance explained). Within all participants, trial-to-trial fluctuations in processing speed were robustly related to the heartbeat-stimulus interval, a metric that is dependent both on the concurrent HR and the stimulus timing with respect to the heartbeat. Models examining the cardiac-BOLD response revealed that a distributed set of regions showed arousal-related activity that was distinct for different task conditions. Across these cortical regions, activity increased with slower HR. Arousal-related activity was distinct from task-evoked activity and it was robust to the inclusion of additional physiological nuisance regressors into the models. For the MSIT, such arousal-related activity occurred across visual and dorsal attention network regions. For the OBT, this activity occurred within fronto-parietal regions. For rest, arousal-related activity also occurred, but was confined to visual regions. The pulvinar nucleus of the thalamus showed arousal-related activity during all three task conditions. Widespread cortical activity, associated with increased parasympathetic arousal, may be propagated by thalamic circuits and contributes to improved attention. This activity is distinct from task-evoked activity, but affects cognitive performance and therefore should be incorporated into neurobiological models of cognition and clinical disorders.