Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2207037119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727984

RESUMO

While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ß-strand from one subunit is incorporated into a ß-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.


Assuntos
Proteínas Arqueais , Biofilmes , Fímbrias Bacterianas , Pyrobaculum , Proteínas Arqueais/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Conformação Proteica em Folha beta , Pyrobaculum/química , Pyrobaculum/fisiologia
2.
J Biol Inorg Chem ; 29(3): 339-351, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38227199

RESUMO

Hyperthermophilic ('superheat-loving') archaea found in high-temperature environments such as Pyrobaculum aerophilum contain multicopper oxidases (MCOs) with remarkable efficiency for oxidizing cuprous and ferrous ions. In this work, directed evolution was used to expand the substrate specificity of P. aerophilum McoP for organic substrates. Six rounds of error-prone PCR and DNA shuffling followed by high-throughput screening lead to the identification of a hit variant with a 220-fold increased efficiency (kcat/Km) than the wild-type for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) without compromising its intrinsic activity for metal ions. The analysis of the X-ray crystal structure reveals four proximal mutations close to the T1Cu active site. One of these mutations is within the 23-residues loop that occludes this site, a distinctive feature of prokaryotic MCOs. The increased flexibility of this loop results in an enlarged tunnel and one additional pocket that facilitates bulky substrate-enzyme interactions. These findings underscore the synergy between mutations that modulate the dynamics of the active-site loop enabling enhanced catalytic function. This study highlights the potential of targeting loops close to the T1Cu for engineering improvements suitable for biotechnological applications.


Assuntos
Domínio Catalítico , Oxirredutases , Especificidade por Substrato , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Pyrobaculum/enzimologia , Pyrobaculum/genética , Modelos Moleculares , Cristalografia por Raios X
3.
Prep Biochem Biotechnol ; 53(6): 704-711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306256

RESUMO

Polymerase Chain Reaction (PCR) is widely used for cloning, genetic engineering, mutagenesis, detection and diagnosis. A thermostable DNA polymerase is required for PCR. Here we describe low-cost and high-recovery production of Pyrobaculum calidifontis DNA polymerase (Pca-Pol). The gene was cloned in pET-28a and expressed in Escherichia coli BL21CodonPlus. Gene expression conditions were optimized. Eventually, gene expression was induced with 0.1 mM IPTG for 3 hours at 37 °C. Recombinant Pca-Pol produced was purified to homogeneity by immobilized metal-ion affinity chromatography yielding around 9000 U of Pca-Pol per liter of the culture with a recovery of 92%. Stability and PCR amplification efficiency of Pca-Pol was tested under various storage conditions with highest efficiency in 25 mM Tris-Cl buffer (pH 8.5) containing 0.1% Tween 20, 0.2 mg/mL BSA and 20% glycerol. Under this condition, no loss in PCR activity of Pca-Pol was observed, even after one year of storage. Repeated freeze-thaw, however, deteriorated enzyme activity of Pca-Pol. 55% PCR amplification activity retained after 7 prolong freeze-thaw cycles (freezing overnight at -20 °C and thawing for 45 minutes at 28 °C). Purified Pca-Pol possessed 3'-5' exonuclease (proofreading) activity and is expected to have greater fidelity as compared to Taq polymerase which does not have proofreading activity.


Assuntos
Pyrobaculum , Pyrobaculum/genética , Análise Custo-Benefício , Reação em Cadeia da Polimerase/métodos , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Engenharia Genética , Escherichia coli/metabolismo
4.
J Struct Biol ; 213(2): 107735, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831508

RESUMO

Protein structures are directly linked to biological functions. However, there is a gap of knowledge between the decoded genome and the structure. To bridge the gap, we focused on the secondary structure (SS). From a comprehensive analysis of predicted SS of proteins in different types of organisms, we have arrived at the following findings: The proportions of SS in genomes were different among phylogenic domains. The distributions of strand lengths indicated structural limitations in all of the species. Different from bacteria and archaea, eukaryotes have an abundance of α-helical and random coil proteins. Interestingly, there was a relationship between SS and post-translational modifications. By calculating hydrophobicity moments of helices and strands, highly amphipathic fragments of SS were found, which might be related to the biological functions. In conclusion, comprehensive predictions of SS will provide valuable perspectives to understand the entire protein structures in genomes and will help one to discover or design functional proteins.


Assuntos
Estrutura Secundária de Proteína , Proteínas/química , Proteínas/metabolismo , Aminoácidos/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Methanocaldococcus/genética , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Fosforilação , Conformação Proteica em alfa-Hélice , Processamento de Proteína Pós-Traducional , Proteínas/classificação , Proteínas/genética , Pyrobaculum/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Especificidade da Espécie
5.
J Phys Chem A ; 125(1): 139-145, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33389998

RESUMO

Mössbauer spectroscopy, nuclear forward scattering, and Raman spectroscopy were applied to study redox transformations of the synthesized mixed-valence (III/V) antimony oxide. The transformations were induced by a culture of a hyperthermophilic archaeon of the genus Pyrobaculum. The applied methods allowed us to reveal the minor decrease of ca. 11.0 ± 1.2% of the antimony(V) content of the mixed-valence oxide with the concomitant increase of antimony(III). The method sensitivities for the quantitative assessment of the Sb(III/V) ratio have been considered.


Assuntos
Antimônio/análise , Óxidos/análise , Pyrobaculum/química , Antimônio/metabolismo , Oxirredução , Óxidos/metabolismo , Pyrobaculum/metabolismo , Espectroscopia de Mossbauer , Análise Espectral Raman
6.
J Biol Chem ; 294(9): 3271-3283, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567738

RESUMO

Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.


Assuntos
Proteínas Arqueais/metabolismo , Biocatálise , Flavoproteínas Transferidoras de Elétrons/metabolismo , NAD/metabolismo , Pyrobaculum
7.
Proteins ; 88(5): 669-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693208

RESUMO

A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.


Assuntos
Proteínas Arqueais/química , Galactosefosfatos/química , Subunidades Proteicas/química , Pyrobaculum/química , UTP-Hexose-1-Fosfato Uridililtransferase/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosefosfatos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrobaculum/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
8.
PLoS Comput Biol ; 15(4): e1006683, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951524

RESUMO

The actin family of cytoskeletal proteins is essential to the physiology of virtually all archaea, bacteria, and eukaryotes. While X-ray crystallography and electron microscopy have revealed structural homologies among actin-family proteins, these techniques cannot probe molecular-scale conformational dynamics. Here, we use all-atom molecular dynamic simulations to reveal conserved dynamical behaviors in four prokaryotic actin homologs: MreB, FtsA, ParM, and crenactin. We demonstrate that the majority of the conformational dynamics of prokaryotic actins can be explained by treating the four subdomains as rigid bodies. MreB, ParM, and FtsA monomers exhibited nucleotide-dependent dihedral and opening angles, while crenactin monomer dynamics were nucleotide-independent. We further show that the opening angle of ParM is sensitive to a specific interaction between subdomains. Steered molecular dynamics simulations of MreB, FtsA, and crenactin dimers revealed that changes in subunit dihedral angle lead to intersubunit bending or twist, suggesting a conserved mechanism for regulating filament structure. Taken together, our results provide molecular-scale insights into the nucleotide and polymerization dependencies of the structure of prokaryotic actins, suggesting mechanisms for how these structural features are linked to their diverse functions.


Assuntos
Actinas/química , Proteínas de Bactérias/química , Biologia Computacional , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pyrobaculum/química , Homologia Estrutural de Proteína
9.
Extremophiles ; 24(1): 53-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31278423

RESUMO

The genome of the archaeon Pyrobaculum aerophilum (Topt ~ 100 °C) contains an operon (PAE2859-2861) encoding a putative pyranopterin-containing oxidoreductase of unknown function and metal content. These genes (with one gene modified to encode a His-affinity tag) were inserted into the fermentative anaerobic archaeon, Pyrococcus furiosus (Topt ~ 100 °C). Dye-linked assays of cytoplasmic extracts from recombinant P. furiosus show that the P. aerophilum enzyme is a thiosulfate reductase (Tsr) and reduces thiosulfate but not polysulfide. The enzyme (Tsr-Mo) from molybdenum-grown cells contains Mo (Mo:W = 9:1) while the enzyme (Tsr-W) from tungsten-grown cells contains mainly W (Mo:W = 1:6). Purified Tsr-Mo has over ten times the activity (Vmax = 1580 vs. 141 µmol min-1 mg-1) and twice the affinity for thiosulfate (Km = ~ 100 vs. ~ 200 µM) than Tsr-W and is reduced at a lower potential (Epeak = - 255 vs - 402 mV). Tsr-Mo and Tsr-W proteins are heterodimers lacking the membrane anchor subunit (PAE2861). Recombinant P. furiosus expressing P. aerophilum Tsr could not use thiosulfate as a terminal electron acceptor. P. furiosus contains five pyranopterin-containing enzymes, all of which utilize W. P. aerophilum Tsr-Mo is the first example of an active Mo-containing enzyme produced in P. furiosus.


Assuntos
Pyrobaculum , Pyrococcus furiosus , Sulfurtransferases , Tungstênio
10.
Biosci Biotechnol Biochem ; 84(10): 2045-2053, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32538302

RESUMO

NDP-forming type acyl-CoA synthetase superfamily proteins are known to have six essential subdomains (1, 2, 3, a, b, c) of which partition and order are varied, suggesting yet-to-be-defined subdomain rearrangement happened in its evolution. Comparison in physicochemical and biochemical characteristics between the recombinant proteins which we made from fragmented subdomains and wild-type protein, acetate-CoA ligase in a hyperthermophilic archaeon, consisting of two distinct subunits (α1-2-3 and ßa-b-c) provided a clue to the mystery of its molecular evolutionary passage. Although solubility and thermostability of each fragmented subdomain turned out to be lower than that of wild-type, mixture of the three synthetic subunits of α1-2, α3, and ßa-b-c had quaternary structure, thermostability, and enzymatic activity comparable to those of the wild-type. This suggests that substantial independence and mobility of subdomain 3 have enabled rearrangement of the subdomains; and thermostability of the subdomains has constrained the composition of the subunits.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Estabilidade Enzimática , Domínios Proteicos , Pyrobaculum/enzimologia , Temperatura
11.
Nucleic Acids Res ; 46(11): 5678-5691, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29771354

RESUMO

Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.


Assuntos
Evolução Molecular , Pyrobaculum/genética , RNA Arqueal/genética , RNA Nucleolar Pequeno/genética , Proteínas Arqueais/genética , Pareamento Incorreto de Bases , Genes Duplicados , Genômica , Metilação , Família Multigênica , RNA Arqueal/química , RNA Arqueal/classificação , RNA Arqueal/metabolismo , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/classificação , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/metabolismo , RNA não Traduzido/genética , Alinhamento de Sequência
12.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737350

RESUMO

LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1) coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation prone and are mainly expressed as catalytically active inclusion bodies in Escherichia coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis (PyTreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constant, Keq, for the reversible synthesis of trehalose from glucose and a nucleotide sugar was determined in both the synthesis and hydrolysis directions utilizing UDP-glucose and ADP-glucose, respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control.IMPORTANCE The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here, we present an efficient methodology for the production and analysis of a thermostable, aggregation-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis directions. Our results show that uridine establishes an equilibrium constant which is more in favor of the product trehalose than when adenosine is employed as the nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control as the position of the equilibrium depends solely on the reaction conditions and is not affected by the nature of the catalyst.


Assuntos
Estabilidade Enzimática , Proteínas Recombinantes de Fusão/metabolismo , Transferases/metabolismo , Trealose/metabolismo , Adenosina Difosfato Glucose , Ânions , Catálise , Cátions , Ativação Enzimática , Estabilidade Enzimática/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Glucose/metabolismo , Glicosiltransferases/metabolismo , Cinética , Agregados Proteicos , Pyrobaculum/enzimologia , Pyrobaculum/genética , Proteínas Recombinantes de Fusão/genética , Solubilidade , Transferases/genética , Uridina Difosfato Glucose
13.
Bioorg Chem ; 91: 103117, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31377385

RESUMO

Porphobilinogen synthase (PBG synthase) gene from Pyrobaculum calidifontis was cloned and expressed in E. coli. The recombinant enzyme was purified as an octamer and was found by mass spectrometry to have a subunit Mr of 37676.59 (calculated, 37676.3). The enzyme showed high thermal stability and retained almost all of its activity after incubation at 70 °C for 16 h in the presence of ß-mercaptoethanol (ß-ME) and zinc chloride. However, in the absence of the latter the enzyme was inactivated after 16 h although it regained full activity in the presence of ß-ME and zinc chloride. The protein contained 4 mol of tightly bound zinc per octamer. Further, 4 mol of low affinity zinc could be incorporated following incubation with exogenous zinc salts. The enzyme was inactivated by incubation with levulinic acid followed by treatment with sodium borohydride. Tryptic digest of the modified enzyme and mass spectrometric analysis showed that Lys257 was the site of modification, which has previously been shown to be the site for the binding of 5-aminolevulinic acid giving rise to the propionate-half of porphobilinogen. P. calidifontis PBG synthase was inactivated by 5-chlorolevulinic acid and the residue modified was shown to be the central cysteine (Cys127) of the zinc-binding cysteine-triad, comprising Cys125, 127, 135. The present results in conjunction with earlier findings on zinc containing PBG synthases, are discussed which advocate that the catalytic role of zinc in the activation of the 5-aminolevulinic acid molecule forming the acetate-half of PBG is possible.


Assuntos
Sintase do Porfobilinogênio/metabolismo , Pyrobaculum/enzimologia , Relação Dose-Resposta a Droga , Ácidos Levulínicos/farmacologia , Estrutura Molecular , Sintase do Porfobilinogênio/antagonistas & inibidores , Sintase do Porfobilinogênio/química , Relação Estrutura-Atividade
14.
J Bacteriol ; 200(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866806

RESUMO

The genome of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0041, annotated as encoding a PfkB family ribokinase, consisting of phosphofructokinase and pyrimidine kinase domains. Among the biochemically characterized enzymes, the Pcal_0041 protein was 37% identical to the phosphofructokinase (Ape_0012) from Aeropyrum pernix, which displayed kinase activity toward a broad spectrum of substrates, including sugars, sugar phosphates, and nucleosides, and 36% identical to a phosphofructokinase from Desulfurococcus amylolyticus To examine the biochemical function of the Pcal_0041 protein, we cloned and expressed the gene and purified the recombinant protein. Although the Pcal_0041 protein contained a putative phosphofructokinase domain, it exhibited only low levels of phosphofructokinase activity. The recombinant enzyme catalyzed the phosphorylation of nucleosides and, to a lower extent, sugars and sugar phosphates. Surprisingly, among the substrates tested, the highest activity was detected with ribose 1-phosphate (R1P), followed by cytidine and uridine. The catalytic efficiency (kcat/Km ) toward R1P was 11.5 mM-1 · s-1 ATP was the most preferred phosphate donor, followed by GTP. Activity measurements with cell extracts of P. calidifontis indicated the presence of nucleoside phosphorylase activity, which would provide the means to generate R1P from nucleosides. The study suggests that, in addition to the recently identified ADP-dependent ribose 1-phosphate kinase (R1P kinase) in Thermococcus kodakarensis that functions in the pentose bisphosphate pathway, R1P kinase is also present in members of the Crenarchaeota.IMPORTANCE The discovery of the pentose bisphosphate pathway in Thermococcus kodakarensis has clarified how this archaeon can degrade nucleosides. Homologs of the enzymes of this pathway are present in many members of the Thermococcales, suggesting that this metabolism occurs in these organisms. However, this is not the case in other archaea, and degradation mechanisms for nucleosides or ribose 1-phosphate are still unknown. This study reveals an important first step in understanding nucleoside metabolism in Crenarchaeota and identifies an ATP-dependent ribose 1-phosphate kinase in Pyrobaculum calidifontis The enzyme is structurally distinct from previously characterized archaeal members of the ribokinase family and represents a group of proteins found in many crenarchaea.


Assuntos
Fosfofrutoquinases/genética , Nucleosídeos de Pirimidina/metabolismo , Pyrobaculum/enzimologia , Pyrobaculum/genética , Ribosemonofosfatos/metabolismo , Estabilidade Enzimática , Fosfofrutoquinases/metabolismo , Fosforilação , Proteínas Recombinantes , Especificidade por Substrato
15.
J Gen Virol ; 99(10): 1357-1358, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091697

RESUMO

The family Globuloviridae comprises enveloped viruses with linear, double-stranded DNA genomes of about 21-28 kbp. The virions are spherical with a diameter of 70-100 nm. No information is available about genome replication. Globuloviruses infect hyperthermophilic archaea belonging to the genera Pyrobaculum and Thermoproteus, which thrive in extreme geothermal environments. Infection does not cause lysis of host cells and is noncytocidal. The viral genome does not integrate into the host chromosome. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Globuloviridae, which is available at www.ictv.global/report/globuloviridae.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA/genética , Pyrobaculum/virologia , Thermoproteus/virologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Vírion/ultraestrutura
16.
Extremophiles ; 22(2): 247-257, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29275440

RESUMO

The genome of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_1032, annotated as glucokinase. Amino acid sequence analysis showed that Pcal_1032 belonged to ROK (repressor, open reading frame, and kinase) family of sugar kinases. To examine the properties of Pcal_1032, the coding gene was cloned and expressed in Escherichia coli. However, expression of the gene was low resulting in a poor yield of the recombinant protein. A single site directed mutation in Pcal_1032 gene, without altering the amino acid sequence, resulted in approximately tenfold higher expression. Purified recombinant Pcal_1032 efficiently phosphorylated various hexoses with a marked preference for glucose. ATP was the most preferred phosphoryl group donor. Optimum temperature and pH for the glucokinase activity of Pcal_1032 were 95 °C and 8.5, respectively. Catalytic efficiency (k cat/K m) towards glucose was 437 mM-1 s-1. The recombinant enzyme was highly stable against temperature with a half-life of 25 min at 100 °C. In addition, Pcal_1032 was highly stable in the presence of denaturants. There was no significant change in the CD spectra and enzyme activity of Pcal_1032 even after overnight incubation in the presence of 8 M urea. To the best of our knowledge, Pcal_1032 is the most active and highly stable glucokinase characterized to date from archaea, and this is the first description of the characterization of a glucokinase from genus Pyrobaculum.


Assuntos
Proteínas Arqueais/genética , Glucoquinase/genética , Pyrobaculum/enzimologia , Proteínas Arqueais/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Glucoquinase/metabolismo , Pyrobaculum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
17.
Extremophiles ; 22(1): 99-107, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29124361

RESUMO

Pyrobaculum islandicum is a hyperthermophilic archaeon that grows optimally at 95-100 °C. In the previous study, we extensively purified a serine racemase from this organism and cloned the gene for overexpression in Escherichia coli (Ohnishi et al. 2008). This enzyme also exhibits highly thermostable L-serine/L-threonine dehydratase activity. In the present study, we aimed to elucidate the molecular mechanisms underlying the high thermostability of this enzyme. A recombinant variant of this enzyme, PiSRvt, constructed by truncating the C-terminal 72 amino acids, was compared with the native enzyme, PiSR. The dehydratase activity of PiSR and PiSRvt was found to owe to a homotrimer and a monomer, respectively, that demonstrated high and moderate thermostability, respectively. These observations reveal that the C-terminal region contributes to monomer trimerization that provides the extreme thermostability.


Assuntos
Proteínas Arqueais/química , Racemases e Epimerases/química , Termotolerância , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Estabilidade Enzimática , Desnaturação Proteica , Domínios Proteicos , Pyrobaculum/enzimologia , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo
18.
Extremophiles ; 22(1): 121-129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29177716

RESUMO

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.


Assuntos
Proteínas Arqueais/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Pyrobaculum/enzimologia , Termotolerância , Proteínas Arqueais/química , Estabilidade Enzimática , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Desnaturação Proteica , Especificidade por Substrato
19.
Extremophiles ; 22(3): 395-405, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29353380

RESUMO

A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP+/sulfate ion at 1.18 Å and the structure in complex with NADP+/L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP+ and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.


Assuntos
Oxirredutases do Álcool/química , Proteínas Arqueais/química , Simulação de Acoplamento Molecular , Pyrobaculum/enzimologia , Oxirredutases do Álcool/metabolismo , Proteínas Arqueais/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta , NADP/química , NADP/metabolismo , Ligação Proteica , Serina/química , Serina/metabolismo , Especificidade por Substrato , Tartaratos/química , Tartaratos/metabolismo
20.
RNA Biol ; 15(4-5): 614-622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28901837

RESUMO

tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.


Assuntos
Desulfurococcaceae/enzimologia , Methanosarcina/enzimologia , Nucleotidiltransferases/metabolismo , Pyrobaculum/enzimologia , RNA de Transferência de Histidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Desulfurococcaceae/genética , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Methanosarcina/genética , Modelos Moleculares , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Polimerização , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Pyrobaculum/genética , RNA de Transferência de Histidina/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa