Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Toxicol Appl Pharmacol ; 438: 115905, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122773

RESUMO

Systemic therapies targeting transforming growth factor beta (TGFß) or TGFßR1 kinase (ALK5) have been plagued by toxicities including cardiac valvulopathy and bone physeal dysplasia in animals, posing a significant challenge for clinical development in pulmonary indications. The current work aims to demonstrate that systemic ALK5-associated toxicities can be mitigated through localized lung delivery. Lung-selective (THRX-144644) and systemically bioavailable (galunisertib) ALK5 inhibitors were compared to determine whether lung selectivity is sufficient to maintain local tissue concentrations while mitigating systemic exposure and consequent pathway-related findings. Both molecules demonstrated potent ALK5 activity in rat precision cut lung slices (PCLS; p-SMAD3 half-maximal inhibitory concentration [IC50], 141 nM and 1070 nM for THRX-144644 and galunisertib, respectively). In 14-day repeat-dose studies in rats, dose-related cardiac valvulopathy was recapitulated with oral galunisertib at doses ≥150 mg/kg/day. In contrast, inhaled nebulized THRX-144644 did not cause similar systemic findings up to the maximally tolerated doses in rats or dogs (10 and 1.5 mg/kg/day, respectively). THRX-144644 lung-to-plasma ratios ranged from 100- to 1200-fold in rats and dogs across dose levels. THRX-144644 lung trough (24 h) concentrations in rats and dogs ranged from 3- to 17-fold above the PCLS IC50 across tolerated doses. At a dose level exceeding tolerability (60 mg/kg/day; 76-fold above PCLS IC50) minimal heart and bone changes were observed when systemic drug concentrations reached pharmacologic levels. In conclusion, the current preclinical work demonstrates that localized pulmonary delivery of an ALK5 inhibitor leads to favorable TGFß pathway pharmacodynamic inhibition in lung while minimizing key systemic toxicities.


Assuntos
Pulmão/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Animais , Cães , Feminino , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirazóis/toxicidade , Quinolinas/toxicidade , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
2.
Toxicol Appl Pharmacol ; 423: 115577, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019861

RESUMO

Lenvatinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of resistant differentiated thyroid cancer, advanced renal cell carcinoma, unresectable hepatocellular carcinoma, and endometrial carcinoma. Although it is successful in cancer treatment, it can cause life-threatening side effects such as cardiotoxicity. The molecular mechanism of cardiotoxicity caused by lenvatinib is not fully known. In this study, the molecular mechanism of lenvatinib's cardiotoxicity was investigated focusing on mitochondrial toxicity in the H9c2 cardiomyoblastic cell line. Lenvatinib inhibited cell viability at 48 and 72 h exposure with three selected concentrations (1.25 µM, 5 µM and 10 µM); and inhibited intracellular ATP after 72 h exposure compared to the control group. Mitochondrial membrane potential was decreased after 48 h and did not show significant changes after 72 h exposure. Evaluated with real-time PCR, mitochondrial dynamics (Mfn1, Mfn2, OPA1, DRP1, Fis1) expression levels after lenvatinib treatment significantly changed. Lenvatinib triggered the tendency from fusion to fission in mitochondria after 48 h exposure, and increased both fusion and fission after 72 h. The mtDNA ratio increased after 48 h and decreased after 72 h. ASK1, JNK and AMPKα2 increased. UCP2 showed downregulation, SOD2 level showed upregulation and Cat levels decreased after drug treatment. Nrf1 and Nrf2 also changed concentration-dependently. Protein carbonyl levels increased significantly after lenvatinib treatments indicating oxidative stress. The protein levels of the electron transport chain complexes, LONP1, UCP2, and P21 showed significant differences after lenvatinib treatment. The outcome of our study is expected to be a contribution to the understanding of the molecular mechanisms of TKI-induced cardiotoxicity.


Assuntos
Antineoplásicos/toxicidade , Cardiotoxinas/toxicidade , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Compostos de Fenilureia/toxicidade , Quinolinas/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos
3.
Chem Res Toxicol ; 33(3): 742-750, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31957441

RESUMO

The aryl hydrocarbon receptor (AHR) and estrogen receptor alpha (ERα) are two ligand activated transcription factors that are targeted by a wide range of anthropogenic compounds. Crosstalk between both receptors is well established but little understood. We previously developed a dual color luciferase assay (i.e., XEER) which allows time dissolved monitoring of the activation of both receptors in situ. The system was now used in conjunction with HPLC-qTOF to identify several quinophthalone dyes as transient receptor agonists of the AHR. Altogether the approach identified three widely used dyes, that is the plastic colorant latyl yellow 3G (LY), the structurally related textile dye disperse yellow 64 (DY), and the cosmetic dye quinoline yellow (QY). The latter was the most potent agonist followed by LY and DY as confirmed by the XEER assay and CYP1A1 gene induction in MCF7 cells. In addition QY, LY, and DY also inhibited ER signaling in an AHR-dependent manner. This establishes some evidence for quinoline yellow dyes as potential disruptors of AHR/ER signaling, raising potential toxicological concern. Although none of the dyes featured any signs of genotoxicity in vitro, our data point to the need for a systematic approach when screening for substances of potential toxicological and endocrine relevance.


Assuntos
Corantes/farmacologia , Corantes/toxicidade , Quinolinas/farmacologia , Quinolinas/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Corantes/química , Humanos , Estrutura Molecular , Quinolinas/química , Receptores de Hidrocarboneto Arílico/metabolismo , Células Tumorais Cultivadas
4.
Ecotoxicol Environ Saf ; 192: 110328, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078840

RESUMO

In this study pillar[5]arene (P5) and a quinoline-functionalized pillar[5]arene (P5-6Q) which is used for detecting radioactive element, gas adsorption and toxic ions were synthesized. These materials were characterized by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FTIR), elemental analysis, melting point, Mass Spectroscopy, Scanning Electron Microscopy (SEM) and Zeta Potential. The cytotoxic and genotoxic potential of P5 and P5-6Q at distinct concentrations of 12.5, 25, 50, and 100 µg/mL were also investigated by Allium ana-telophase and comet assays on Allium cepa roots and Drosophila melanogaster haemocytes. P5 and P5-6Q showed dose dependent cytotoxic effect by decreasing mitotic index (MI) and genotoxic effect by increasing chromosomal aberrations (CAs such as disturbed anaphase-telophase, polyploidy, stickiness, chromosome laggards and bridges) and DNA damage at the exposed concentrations. These changes in P5-6Q were lower than P5. Further research is necessary to clarify the cytotoxic and genotoxic action mechanisms of P5 and P5-6Q at molecular levels.


Assuntos
Calixarenos/toxicidade , Dano ao DNA , Drosophila melanogaster/efeitos dos fármacos , Cebolas/efeitos dos fármacos , Anáfase/efeitos dos fármacos , Animais , Calixarenos/química , Aberrações Cromossômicas , Ensaio Cometa , Citotoxinas/química , Citotoxinas/toxicidade , Drosophila melanogaster/genética , Hemócitos/efeitos dos fármacos , Índice Mitótico , Cebolas/genética , Raízes de Plantas/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/química , Quinolinas/toxicidade , Telófase/efeitos dos fármacos
5.
Ecotoxicol Environ Saf ; 203: 111054, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888616

RESUMO

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid, QNC) is a highly selective auxin herbicide that is typically applied to paddy rice fields. Its residue is a serious problem in crop rotations. In this study, Oryza sativa L. seedlings was used as a model plant to explore its biochemical response to abiotic stress caused by QNC and nZVI coexposure, as well as the interactions between QNC and nZVI treatments. Exposure to 5 and 10 mg/L QNC reduced the fresh biomass by 26.6% and 33.9%, respectively, compared to the control. The presence of 50 and 250 mg/L nZVI alleviated the QNC toxicity, but the nZVI toxicity was aggravated by the coexist of QNC. Root length was enhanced upon exposure to low or medium doses of both QNC and nZVI, whereas root length was inhibited under high-dose coexposure. Both nZVI and QNC, either alone or in combination, significantly inhibited the biosynthesis of chlorophyll, and the inhibition rate increased with elevated nZVI and QNC concentration. It was indicated that nZVI or QNC can affect the plant photosynthesis, and there was a significant interaction between the two treatments. Effects of QNC on the antioxidant response of Oryza sativa L. differed in the shoots and roots; generally, the introduction of 50 and 250 mg/L nZVI alleviated the oxidative stress (POD in shoots, SOD and MDA in roots) induced by QNC. However, 750 mg/kg nZVI seriously damaged Oryza sativa L. seedlings, which likely resulted from active iron deficiency. QNC could be removed from the culture solution by nZVI; as a result, nZVI suppressed QNC uptake by 20%-30%.


Assuntos
Antioxidantes/metabolismo , Ferro/toxicidade , Nanopartículas/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/toxicidade , Poluentes do Solo/toxicidade , Transporte Biológico , Biomassa , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
6.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106618

RESUMO

Echinochloa crus-galli var. mitis has rarely been reported for herbicide resistance, and no case of quinclorac resistance has been reported so far. Synthetic auxin-type herbicide quinclorac is used extensively to control rice weeds worldwide. A long history of using quinclorac in Chinese rice fields escalated the resistance in E. crus-galli var. mitis against this herbicide. Bioassays in Petri plates and pots exhibited four biotypes that evolved into resistance to quinclorac ranking as JS01-R > AH01-R > JS02-R > JX01-R from three provinces of China. Ethylene production in these biotypes was negatively correlated with resistance level and positively correlated with growth inhibition. Determination of the related ethylene response pathway exhibited resistance in biotypes that recorded a decline in 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase oxidase activities, and less inducible ACS and ACO genes expressions than the susceptible biotype, suggesting that there was a positive correlation between quinclorac resistance and ethylene biosynthesis inhibition. Cyanides produced during the ethylene biosynthesis pathway mainly degraded by the activity of ß-cyanoalanine synthase (ß-CAS). Resistant biotypes exhibited higher ß-CAS activity than the susceptible ones. Nucleotide changes were found in the EcCAS gene of resistant biotypes as compared to sensitive ones that caused three amino acid substitutions (Asn-105-Lys, Gln-195-Glu, and Gly-298-Val), resulting in alteration of enzyme structure, increased binding residues in the active site with its cofactor, and decreased binding free energy; hence, its activity was higher in resistant biotypes. Moreover, these mutations increased the structural stability of the enzyme. In view of the positive correlation between ethylene biosynthesis inhibition and cyanide degradation with resistance level, it is concluded that the alteration in ethylene response pathway or at least variation in ACC synthase and ACC oxidase enzyme activities-due to less relative expression of ACS and ACO genes and enhanced ß-CAS activity, as well as mutation and increased relative expression of EcCAS gene-can be considered as a probable mechanism of quinclorac resistance in E. crus-galli var. mitis.


Assuntos
Cianetos/metabolismo , Echinochloa/genética , Etilenos/biossíntese , Resistência a Herbicidas , Herbicidas/toxicidade , Quinolinas/toxicidade , Substituição de Aminoácidos , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Echinochloa/efeitos dos fármacos , Echinochloa/metabolismo , Ecótipo , Liases/genética , Liases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Toxicol Appl Pharmacol ; 364: 68-76, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578885

RESUMO

Cortex Dictamni is extensively used as an herbal medicine worldwide, but is believed to induce hepatotoxicity and even causes mortality in many Asian and European countries. As the most abundant furoquinoline alkaloid ingredient of Cortex Dictamni, dictamnine (DIC) can be metabolically activated by CYP3A to an epoxide metabolite, which possesses the potential to induce hepatotoxicity by covalent binding with proteins. As yet, the hepatotoxicity of DIC and the role played by metabolic activation remain unknown. Here, we found that DIC caused acute liver injury in a time- and dose-dependent manner in mice. The hepatic and urinary DIC epoxide intermediates were observed in DIC-treated mice. Ketoconazole, a CYP3A inhibitor, significantly reduced the hepatotoxicity of DIC and inhibited the formation of reactive metabolites of DIC. Moreover, treatment with 2,3-dihydro-DIC, a DIC analog synthesized by selective reduction of the furan moiety, produced no hepatotoxicity in mice, and no reactive metabolite was formed, suggesting a structural necessity of furan moiety in DIC hepatotoxicity. A time course of gradual hepatic glutathione consumption was observed in DIC-treated mice, while depletion of hepatic glutathione by L-buthionine-S,R-sulfoximine enhanced the hepatotoxicity of DIC. Collectively, this study demonstrates that DIC induces acute hepatocellular injury in mice, and that metabolic activation of furan plays a crucial role in DIC-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Furanos/metabolismo , Fígado/efeitos dos fármacos , Preparações de Plantas/toxicidade , Quinolinas/toxicidade , Ativação Metabólica , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Cetoconazol/farmacologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Tempo , Toxicocinética
8.
Mutagenesis ; 34(3): 279-287, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31233596

RESUMO

Quantitative analysis of the mutagenicity and carcinogenicity of the low doses of genotoxic carcinogens present in food is of pressing concern. The purpose of the present study was to determine the mutagenicity and carcinogenicity of low doses of the dietary genotoxic carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Male F344 gpt delta transgenic rats were fed diets supplemented with 0, 0.1, 1, 10 or 100 ppm IQ for 4 weeks. The frequencies of gpt transgene mutations in the liver were significantly increased in the 10 and 100 ppm groups. In addition, the mutation spectra was altered in the 1, 10 and 100 ppm groups: frequencies of G:C to T:A transversion were significantly increased in groups administered 1, 10 and 100 ppm IQ in a dose-dependent manner, and the frequencies of G:C to A:T transitions, A:T to T:A transversions and A:T to C:G transversions were significantly increased in the 100 ppm group. Increased frequencies of single base pair deletions and Spi- mutants in the liver, and an increase in glutathione S-transferase placental form (GST-P)-positive foci, a preneoplastic lesion of the liver in rats, was also observed in the 100 ppm group. In contrast, neither mutations nor mutation spectra or GST-P-positive foci were statistically altered by administration of IQ at 0.1 ppm. We estimated the point of departure for the mutagenicity and carcinogenicity of IQ using the no-observed-effect level approach and the Benchmark dose approach to characterise the dose-response relationship of low doses of IQ. Our findings demonstrate the existence of no effect levels of IQ for both in vivo mutagenicity and hepatocarcinogenicity. The findings of the present study will facilitate an understanding of the carcinogenic effects of low doses of IQ and help to determine a margin of exposure that may be useful for practical human risk assessment.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Testes de Mutagenicidade , Mutagênicos/toxicidade , Quinolinas/toxicidade , Animais , Testes de Carcinogenicidade/métodos , Relação Dose-Resposta a Droga , Humanos , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Quinolinas/química , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
9.
Acta Pharmacol Sin ; 40(9): 1193-1204, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30833709

RESUMO

Gluconeogenesis is a major source of hyperglycemia in patients with type 2 diabetes mellitus (T2DM), thus targeting gluconeogenesis to suppress glucose production is a promising strategy for anti-T2DM drug discovery. In our preliminary in vitro studies, we found that a small-molecule (E)-3-(2-(quinoline-4-yl)vinyl)-1H-indol-6-ol (QVO) inhibited the hepatic glucose production (HGP) in primary hepatocytes. We further revealed that QVO suppressed hepatic gluconeogenesis involving calmodulin-dependent protein kinase kinase ß- and liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathways as well as AMPK-independent mitochondrial function-related signaling pathway. To evaluate QVO's anti-T2DM activity in vivo, which was impeded by the complicated synthesis route of QVO with a low yield, we designed and synthesized 4-[2-(1H-indol-3-yl)vinyl]quinoline (IVQ) as a prodrug with easier synthesis route and higher yield. IVQ did not inhibit the HGP in primary hepatocytes in vitro. Pharmacokinetic studies demonstrated that IVQ was quickly converted to QVO in mice and rats following administration. In both db/db and ob/ob mice, oral administration of IVQ hydrochloride (IVQ-HCl) (23 and 46 mg/kg every day, for 5 weeks) ameliorated hyperglycemia, and suppressed hepatic gluconeogenesis and activated AMPK signaling pathway in the liver tissues. Furthermore, IVQ caused neither cardiovascular system dysfunction nor genotoxicity. The good druggability of IVQ has highlighted its potential in the treatment of T2DM and the prodrug design for anti-T2DM drug development.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Indóis/uso terapêutico , Pró-Fármacos/uso terapêutico , Quinolinas/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Ativadores de Enzimas/uso terapêutico , Ativadores de Enzimas/toxicidade , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/toxicidade , Glucose-6-Fosfatase/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/toxicidade , Indóis/toxicidade , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (GTP)/antagonistas & inibidores , Pró-Fármacos/toxicidade , Quinolinas/toxicidade , Transdução de Sinais/efeitos dos fármacos
10.
Exp Parasitol ; 206: 107756, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494217

RESUMO

Toxoplasma gondii is a widely distributed protozoan parasite, which affects worm-blooded animals including human. The commonest chemotherapeutics used for treatment of symptomatic toxoplasmosis have numerous adverse effects. Thus there is an eminent need to develop new therapeutic agents. Here we described the therapeutic efficacy of 4-(2-chloroquinolin-3-yl)-6-(2,5-dimethoxyphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (PPQ-8); a quinoline-related compound in a mouse model of acute and chronic toxoplasmosis. In acute infection, PPQ-8 decreased the parasite load in liver and spleen with amelioration of the hepatic and splenic pathology. In addition, recovered tachyzoites showed distorted shapes, reduced sizes, irregularities, surface protrusions, erosions and peeling besides apical region distortion when seen by scanning electron microscopy. In chronic toxoplasmosis, PPQ-8 produced degeneration and reduction of the brain cysts without stimulating a damaging inflammatory response within the brain. In both models acute and chronic, PPQ-8 prolonged the survival time of mice. These findings hold promise for the development of a novel anti-toxoplasmosis drug using PPQ-8, but further in vivo studies should be carried out to elucidate PPQ-8 mechanism of action and to report its efficacy in combination with other anti-toxoplasmosis agents.


Assuntos
Quinolinas/uso terapêutico , Toxoplasma/patogenicidade , Toxoplasmose Animal/tratamento farmacológico , Doença Aguda , Análise de Variância , Animais , Líquido Ascítico/parasitologia , Encéfalo/parasitologia , Encéfalo/patologia , Doença Crônica , Feminino , Estimativa de Kaplan-Meier , Fígado/parasitologia , Fígado/patologia , Camundongos , Microscopia Eletrônica de Varredura , Distribuição Normal , Quinolinas/síntese química , Quinolinas/química , Quinolinas/toxicidade , Distribuição Aleatória , Baço/parasitologia , Baço/patologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/ultraestrutura , Toxoplasmose Animal/parasitologia
11.
Regul Toxicol Pharmacol ; 109: 104486, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31580888

RESUMO

Artemisinin-piperaquine tablet (trade name Artequick, ATQ), is a novel combination therapy for the treatment of malaria and especially for resistant P.falciparum malaria. The aim of our study was to assess the potential sub-acute toxicity profile of ATQ by oral administration route in rhesus monkeys. Monkeys were administrated once daily with doses of ATQ (39.1, 78.2, 156.4 mg/kg) for 21 days and then followed-up a 56-day recovery period. The administration of ATQ at high dose produced significant changes in the clinical signs primarily involved in gastrointestinal and nervous systems. Body weight loss, significant decrease in food consumption and body temperature were observed in monkeys at high dose. Various hematological and biochemical parameters changes, and significant pathological lesions (adrenal gland, thymus and femur epiphyseal) were observed in the middle and high dose group at the end of the treatment period. However, the toxic effects of ATQ were reversed and delayed adverse drug reaction did not occur during the recovery period. Based on the results of this study, the no-observed-adverse-effect level for ATQ was considered to be 39.1 mg/kg in rhesus monkeys.


Assuntos
Antimaláricos/toxicidade , Artemisininas/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Quinolinas/toxicidade , Administração Oral , Animais , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Temperatura Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Macaca mulatta , Masculino , Nível de Efeito Adverso não Observado , Quinolinas/administração & dosagem , Comprimidos , Testes de Toxicidade Subaguda , Redução de Peso/efeitos dos fármacos
12.
Altern Ther Health Med ; 25(1): 28-34, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30982784

RESUMO

Chronic, excessive exposure, and accumulation of neurotoxic agents such as heavy metals (lead, mercury, cadmium), mefloquine (Lariam), and food additives such as monosodium glutamate and aspartame cause neurotoxicity and brain damage. This chemical-induced brain damage closely resembles the pathophysiology of classical traumatic brain injury with decreased cognitive function, neurodegeneration, and increased psychiatric manifestations (depression, anxiety, sleep disturbances, and irritability). Current evidence supports a strong causal relationship between military-related exposure to specific neurotoxins, and the development of serious medical conditions and higher rates of suicide among service members. To address this current deficit in military health care, it is recommended that efficacious, nontoxic, neuroprotective, and neuroregenerative agents such as highly bioavailable magnesium, nutritional lithium, zinc, selenium, boron, ascorbate, tocopherols, heavy metal chelators, and glutathione precursors such as N-acetyl-cysteine be immediately used as a "protective shield" and to support critical healing processes in the brain and nervous system.


Assuntos
Lesões Encefálicas Traumáticas/induzido quimicamente , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Militares/psicologia , Doenças Neurodegenerativas/induzido quimicamente , Quinolinas/toxicidade , Cádmio , Humanos , Zinco
13.
Neurochem Res ; 43(6): 1200-1209, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29802529

RESUMO

Necroptosis is a manner of caspase-independent cell death,which accounts for delayed ischemic cerebral injury, and can be used as a novel tool to expand the treatment time window in ischemic cerebral injury. Q-VD-OPH, a novel pan caspase inhibitor, has been identified as an inducer of necroptosis. In this study, we determined the optimal dose of Q-VD-OPH, which induces necroptosis in rats by the middle cerebral artery occlusion, followed by reperfusion. Furthermore, we report that the NLRP3 inflammasome is involved in necroptosis, with levels of NLRP3 inflammasome proteins as well as inflammatory cytokines, such as IL-1ß, being elevated. We also demonstrated that NLRP3 was not only expressed in microglia and vascular endothelial cell, but also in neurons when necroptosis is induced with Q-VD-OPH. Inhibition of NLRP3 by glyburide strongly suppressed the expression of NLRP3 inflammasome proteins and IL-1ß, and markedly reduced brain tissue damage. Our findings provide evidence that pretreatment with Q-VD-OPH suppresses apoptosis and induces necroptosis in the cerebral ischemia-reperfusion model. We also identified that the NLRP3 inflammasome plays an important role in neuronal necroptosis, and that NLRP3 inflammasome deficiency reduces brain tissue damage after cerebral ischemia-reperfusion injury in rats.


Assuntos
Clorometilcetonas de Aminoácidos/toxicidade , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Quinolinas/toxicidade , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/fisiologia , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/patologia , Glibureto/farmacologia , Inflamassomos/biossíntese , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/patologia
14.
Bioorg Med Chem Lett ; 28(8): 1309-1312, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29551480

RESUMO

The success in exploring anti-tubercular potency of nitroimidazole and quinoline, the core moieties of recently approved anti-tubercular drugs instigated us to synthesize a series of alkylated/aminated 2-methyl-5-nitroimidazoles and nitroimidazole-7-chloroquinoline conjugates and to evaluate them for their activities against Mycobacterium tuberculosis as well as for their cytotoxicity towards the J774 murine macrophage cell line. Although the synthesized compounds did not surpass the activity of the standard drug Isoniazid, they have appreciable activities with minimal cytotoxicity. The synthesized nitroimidazole-7-chloroquinoline conjugate, 11c, having butyl chain as linker, proved to be the most potent among the series with an MIC50 value of 2.2 µg/mL.


Assuntos
Antituberculosos/farmacologia , Nitroimidazóis/farmacologia , Quinolinas/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/toxicidade , Linhagem Celular , Isoniazida/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/síntese química , Nitroimidazóis/química , Nitroimidazóis/toxicidade , Quinolinas/síntese química , Quinolinas/química , Quinolinas/toxicidade , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 28(13): 2244-2249, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29853331

RESUMO

A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC50 values ranging from 2.3 to 10.2 µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pirazóis/farmacologia , Quinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Pirazóis/síntese química , Pirazóis/toxicidade , Quinolinas/síntese química , Quinolinas/toxicidade
16.
Arch Toxicol ; 92(2): 921-934, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29218508

RESUMO

Cell lines which are currently used in genotoxicity tests lack enzymes which activate/detoxify mutagens. Therefore, rodent-derived liver preparations are used which reflect their metabolism in humans only partly; as a consequence misleading results are often obtained. Previous findings suggest that certain liver cell lines express phase I/II enzymes and detect promutagens without activation; however, their use is hampered by different shortcomings. The aim of this study was the identification of a suitable cell line. The sensitivity of twelve hepatic cell lines was investigated in single cell gel electrophoresis assays. Furthermore, characteristics of these lines were studied which are relevant for their use in genotoxicity assays (mitotic activity, p53 status, chromosome number, and stability). Three lines (HuH6, HCC1.2, and HepG2) detected representatives of five classes of promutagens, namely, IQ and PhIP (HAAs), B(a)P (PAH), NDMA (nitrosamine), and AFB1 (aflatoxin), and were sensitive towards reactive oxygen species (ROS). In contrast, the commercially available line HepaRG, postulated to be a surrogate for hepatocytes and an ideal tool for mutagenicity tests, did not detect IQ and was relatively insensitive towards ROS. All other lines failed to detect two or more compounds. HCC1.2 cells have a high and unstable chromosome number and mutated p53, these features distract from its use in routine screening. HepG2 was frequently employed in earlier studies, but pronounced inter-laboratory variations were observed. HuH6 was never used in genotoxicity experiments and is highly promising, it has a stable karyotype and we demonstrated that the results of genotoxicity experiments are reproducible.


Assuntos
Fígado/diagnóstico por imagem , Testes de Mutagenicidade/métodos , Mutagênicos/análise , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Dimetilnitrosamina/toxicidade , Humanos , Peróxido de Hidrogênio/toxicidade , Imidazóis/toxicidade , Inativação Metabólica , Fígado/citologia , Quinolinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética
17.
Chem Pharm Bull (Tokyo) ; 66(3): 309-318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491264

RESUMO

The reactivity of compounds 2-(1-(2-chloroacetyl)-1H-benzo[d]imidazol-2-yl)acetonitrile 2 and 3-(1-(2-chloroacetyl)-1H-benzo[d]imidazol-2-yl)-2H-chromen-2-one 8 towards different chemical reagents were studied and a series of novel benzimidazole derivatives were obtained (2-6a-d and 8-12a-d). Moreover, in vitro growth inhibitory effect of the newly synthesized compounds were evaluated in term of [IC50 µM] against the six cancer cell lines, human lung carcinoma (A549), lung cancer (H460), human colorectal (HT29), gasteric cancer cell (MKN-45), glioma cell line (U87MG) and cellosaurus cell line (SMMC-7721) where foretinib was used as standard reference. The results showed that compounds 2 (only for A549 cell line), 3a, 4, 6c, 6d, 8, 9a, 9e and 9f were the most active compounds towards the six cancer cell lines. On the other hand, the toxicity of these most potent compounds against shrimp larvae indicated that compounds 3a, 4, 6d, 9e and 9f were non toxic while compounds 6c and 8 were very toxic and compounds 2 and 9a were harmful against the tested organisms.


Assuntos
Antineoplásicos/síntese química , Benzimidazóis/química , Cumarínicos/química , Tiazóis/química , Tiofenos/química , Anilidas/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/toxicidade , Decápodes/crescimento & desenvolvimento , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Quinolinas/toxicidade , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/toxicidade , Tiofenos/síntese química , Tiofenos/toxicidade
18.
Drug Chem Toxicol ; 41(4): 385-393, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29482462

RESUMO

Cinnamon (Cinnamomum cassia) is an important spice which is widely consumed in the Indian subcontinent as well as in several other parts of the world. In the present study, NMR spectroscopy showed the presence of cinnamaldehyde to be the major component of the bark. The possible mutagenic effects of cinnamon bark ethanolic extract (CEE, 0.01-1 mg/plate) cinnamon oil (CNO, 0.125-1 mg/plate), and its active component cinnamadehyde (CLD, 0.125-1 mg/plate) were evaluated. Antimutagenic activity of CEE, CNO, and CLD was also tested against various food borne mutagens (heterocyclic amines and aflatoxin B1 (AFB1)) and sodium azide (SA) using Ames assay. Similarly, the antimicrobial activity was studied using agar well diffusion assay against various pathogens. CEE was non-mutagenic in any of the five tester strains of Salmonella typhimurium (TA97a, TA98, TA100, TA102, and TA104) in Ames test. CEE exhibited antimutagenic activity against all the mutagens tested in the higher doses. Additionally, CEE, CNO, and CLD were effective against various pathogens such as Staphylococcus aureus, Proteus vulgaris, S. typhimurium, Klebsiella pneumoniae, and Escherichia coli in the agar well diffusion assay. Promising antimutagenic and antimicrobial properties were shown by the cinnamon bark ethanolic extract and cinnamaldehyde, respectively. Therefore, their role in cancer chemoprevention, as well as a natural antimicrobial agent must be exploited and studied in depth in in vivo conditions.


Assuntos
Antimutagênicos/farmacologia , Cinnamomum zeylanicum , Casca de Planta , Extratos Vegetais/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Aflatoxina B1/toxicidade , Animais , Anti-Infecciosos/farmacologia , Cinnamomum zeylanicum/química , Imidazóis/toxicidade , Espectroscopia de Ressonância Magnética , Masculino , Testes de Mutagenicidade , Óleos Voláteis/farmacologia , Casca de Planta/química , Quinolinas/toxicidade , Ratos , Ratos Wistar , Azida Sódica/toxicidade
19.
Molecules ; 23(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274140

RESUMO

Cortex Dictamni is a commonly-used traditional Chinese herbal medicine for the treatment of skin inflammation, tinea, and eczema. Recently, some studies reported that Cortex Dictamni might induce liver injury, suggesting more attention to its safety. The current study was designed to investigate subchronic toxicity of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDEE) in mice and the potential hepatotoxicity mechanisms in vitro. Firstly, CDAE or CDEE groups were administrated with varying dosages (2.3, 4.6, or 9.2 g/kg/day, p.o.) in mice for 28 days in subchronic toxicity studies. General clinical signs and biochemical parameters were examined, and morphological analyses were conducted. Secondly, we identified the different constituents of CDAE and CDEE using HPLC-MS/MS and chose major components for further study. In order to determine the toxic components, we investigated the cytotoxicity of extracts and chosen components using CCK-8 assay in HepG2 cells. Furthermore, we explored the possible hepatotoxicity mechanisms of Cortex Dictamni using a high content analysis (HCA). The results showed that no significant differences of general clinical signs were observed in mice. Aspartate alanine aminotransferase (ALT) and aminotransferase (AST) were significantly increased in the high-dose CDAE and CDEE groups compared to the control group. Meanwhile, the absolute and relative liver weights and liver/brain ratio were significantly elevated, and histological examination of liver demonstrated cellular enlargement or nuclear shrinkage. In UPLC analysis, we compared the chemical constituents between CDAE and CDEE, and chose dictamnine, obakunone, and fraxinellone for hepatotoxicity evaluation in the in vitro studies. In the CCK-8 assay, CDAE, CDEE, dictamnine, obakunone, and fraxinellone decreased the cell viability in a dose-dependent manner after treatment for 48 h. Furthermore, the cell number decreased, while the nuclear intensity, cell membrane permeability, and concentration of reactive oxygen species were shown to increase, meanwhile, mitochondrial membrane potential was also changed in HepG2 cells following 48 h of compounds treatment using HCA. Our studies suggested that CDAE and CDEE have potential hepatotoxicity, and that the alcohol extraction process could increase toxicity. Dictamnine, obakunone, and fraxinellone may be the possible toxic components in Cortex Dictamni with dictamnine as the most potentially hepatotoxic component, whose potential hepatotoxicity mechanism may be associated with cell apoptosis. Moreover, this study could provide valuable data for clinical drug safety research of Cortex Dictamni and a good example for safety study of other Chinese herbal medicines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dictamnus/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/química , Benzofuranos/toxicidade , Benzoxepinas/química , Benzoxepinas/toxicidade , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/química , Feminino , Células Hep G2 , Humanos , Limoninas/química , Limoninas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Quinolinas/química , Quinolinas/toxicidade , Testes de Toxicidade Subcrônica , Água/química
20.
Bull Environ Contam Toxicol ; 101(2): 284-287, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29947913

RESUMO

Quinclorac is a selective herbicide commonly used in China to control monocotyledonous weeds in paddy fields. A field experiment was conducted to quantify the environmental behavior of quinclorac in acidic paddy soil under rice (Oryza sativa L.) field conditions, and to evaluate the risk of its residues to the subsequent crop of tobacco (Nicotiana tabacum L.). Rice was sprayed once with quinclorac 50% WP at 562.5, 375.0, or 187.5 g a.i. ha-1 at 7 days after transplanting the seedlings. Decay of quinclorac in paddy field soil followed first-order kinetics, with a half-life of 28.29-30.27 days. At harvest time, 0.090, 0.074 and 0.034 mg kg-1 of quinclorac were found in soils following the above-described treatments, respectively. Leaves of the subsequent crop, tobacco, sown the year after the quinclorac treatments, exhibited different dose-dependent degrees of visible phytotoxicity symptoms.


Assuntos
Herbicidas/toxicidade , Nicotiana/efeitos dos fármacos , Resíduos de Praguicidas/toxicidade , Quinolinas/toxicidade , Poluentes do Solo/toxicidade , Herbicidas/análise , Oryza , Resíduos de Praguicidas/análise , Folhas de Planta/efeitos dos fármacos , Quinolinas/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa