Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753485

RESUMO

In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24-nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 coimmunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that an interval near the RDR2 active site contacts the Pol IV catalytic subunit, NRPD1, the largest of Pol IV's 12 subunits. Contacts between the catalytic regions of the two enzymes suggests that RDR2 is positioned to rapidly engage the free 3' ends of Pol IV transcripts and convert these single-stranded transcripts into double-stranded RNAs (dsRNAs).


Assuntos
Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Domínio Catalítico/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
J Virol ; 96(17): e0112122, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000840

RESUMO

Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.


Assuntos
Proteases Virais 3C , Picornaviridae , Proteólise , RNA Helicases , Proteases Virais 3C/metabolismo , Animais , Cromatografia Líquida , Imunoprecipitação , Picornaviridae/enzimologia , Picornaviridae/genética , Picornaviridae/crescimento & desenvolvimento , Picornaviridae/fisiologia , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA Viral/biossíntese , Suínos/virologia , Doença Vesicular Suína/virologia , Espectrometria de Massas em Tandem , Replicação Viral
3.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30158112

RESUMO

Elevated expression of RNA binding protein HNRNPC has been reported in cancer cells, while the essentialness and functions of HNRNPC in tumors were not clear. We showed that repression of HNRNPC in the breast cancer cells MCF7 and T47D inhibited cell proliferation and tumor growth. Our computational inference of the key pathways and extensive experimental investigations revealed that the cascade of interferon responses mediated by RIG-I was responsible for such tumor-inhibitory effect. Interestingly, repression of HNRNPC resulted in accumulation of endogenous double-stranded RNA (dsRNA), the binding ligand of RIG-I. These up-regulated dsRNA species were highly enriched by Alu sequences and mostly originated from pre-mRNA introns that harbor the known HNRNPC binding sites. Such source of dsRNA is different than the recently well-characterized endogenous retroviruses that encode dsRNA In summary, essentialness of HNRNPC in the breast cancer cells was attributed to its function in controlling the endogenous dsRNA and the down-stream interferon response. This is a novel extension from the previous understandings about HNRNPC in binding with introns and regulating RNA splicing.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/biossíntese , Interferons/metabolismo , Proteínas de Neoplasias/biossíntese , RNA de Cadeia Dupla/biossíntese , RNA Neoplásico/biossíntese , Regulação para Cima , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Humanos , Interferons/genética , Íntrons , Células MCF-7 , Camundongos , Proteínas de Neoplasias/genética , Splicing de RNA , RNA de Cadeia Dupla/genética , RNA Neoplásico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055254

RESUMO

Here, we screened steroid compounds to obtain a drug expected to block host inflammatory responses and Middle East respiratory syndrome coronavirus (MERS-CoV) replication. Ciclesonide, an inhaled corticosteroid, suppressed the replication of MERS-CoV and other coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), in cultured cells. The 90% effective concentration (EC90) of ciclesonide for SARS-CoV-2 in differentiated human bronchial tracheal epithelial cells was 0.55 µM. Eight consecutive passages of 43 SARS-CoV-2 isolates in the presence of ciclesonide generated 15 resistant mutants harboring single amino acid substitutions in nonstructural protein 3 (nsp3) or nsp4. Of note, ciclesonide suppressed the replication of all these mutants by 90% or more, suggesting that these mutants cannot completely overcome ciclesonide blockade. Under a microscope, the viral RNA replication-transcription complex in cells, which is thought to be detectable using antibodies specific for nsp3 and double-stranded RNA, was observed to fall in the presence of ciclesonide in a concentration-dependent manner. These observations indicate that the suppressive effect of ciclesonide on viral replication is specific to coronaviruses, highlighting it as a candidate drug for the treatment of COVID-19 patients.IMPORTANCE The outbreak of SARS-CoV-2, the cause of COVID-19, is ongoing. New and effective antiviral agents that combat the disease are needed urgently. Here, we found that an inhaled corticosteroid, ciclesonide, suppresses the replication of coronaviruses, including betacoronaviruses (murine hepatitis virus type 2 [MHV-2], MERS-CoV, SARS-CoV, and SARS-CoV-2) and an alphacoronavirus (human coronavirus 229E [HCoV-229E]), in cultured cells. Ciclesonide is safe; indeed, it can be administered to infants at high concentrations. Thus, ciclesonide is expected to be a broad-spectrum antiviral drug that is effective against many members of the coronavirus family. It could be prescribed for the treatment of MERS and COVID-19.


Assuntos
COVID-19/metabolismo , Pregnenodionas/farmacologia , RNA de Cadeia Dupla/biossíntese , RNA Viral/biossíntese , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Células Vero , Tratamento Farmacológico da COVID-19
5.
Arch Insect Biochem Physiol ; 108(3): e21840, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34569086

RESUMO

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the cotton bollworm, is a destructive pest which is famous for its resistance to a variety of insecticides. RNA interference is a posttranscriptional gene silencing mechanism that has become a popular tool to control insect pests, triggered by double-stranded RNAs (dsRNAs). The effect of ingestion and injection delivery methods of dsRNA related to some protease genes including Trypsin (Ha-TRY39 and Ha-TRY96), Chymotrypsin (Ha-CHY), and Cathepsin L (Ha-CAT) on growth and development of H. armigera was investigated in this study. All protease genes encoded full ORFs and were expressed in all H. armigera larvae stages and tissues. In both injection and feeding bioassays, Ha-RNAi CHY's performance outperformed that of other protease genes. CHY enzyme activity in the midgut of larvae was significantly reduced after treatment with ds-HaCHY. Oral administration of ds-CHY also resulted in significant mortality of H. armigera larvae. However, because of the high RNase activity in the midgut lumen of lepidoptera, a large amount of dsRNA was needed to effectively kill instars of H. armigera. To reduce dsRNA degradation, bacterial expression and dsRNA formulation were used. After oral administration, it was toxic to H. armigera larvae. Before oral administration, bacterial cells were sonicated to increase dsRNA release. The RNA interference efficiency of sonicated bacteria was significantly increased, resulting in higher larval mortality when administered orally. All of these findings point to Ha-CHY as a new candidate for developing an effective dsRNA-based pesticide for H. armigera control.


Assuntos
Mariposas , Peptídeo Hidrolases , RNA de Cadeia Dupla/farmacologia , Animais , Bactérias/genética , Catepsinas/efeitos dos fármacos , Catepsinas/genética , Quimotripsina/efeitos dos fármacos , Quimotripsina/genética , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Mortalidade , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Organismos Geneticamente Modificados , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/genética , Controle de Pragas/métodos , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/metabolismo , Tripsina/efeitos dos fármacos , Tripsina/genética
6.
Nucleic Acids Res ; 47(13): 6569-6577, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31170298

RESUMO

The RNA World hypothesis posits that RNA was once responsible for genetic information storage and catalysis. However, a prebiotic mechanism has yet to be reported for the replication of duplex RNA that could have operated before the emergence of polymerase ribozymes. Previously, we showed that a viscous solvent enables information transfer from one strand of long RNA duplex templates, overcoming 'the strand inhibition problem'. Here, we demonstrate that the same approach allows simultaneous information transfer from both strands of long duplex templates. An additional challenge for the RNA World is that structured RNAs (like those with catalytic activity) function poorly as templates in model prebiotic RNA synthesis reactions, raising the question of how a single sequence could serve as both a catalyst and as a replication template. Here, we show that a viscous solvent also facilitates the transition of a newly synthesized hammerhead ribozyme sequence from its inactive, duplex state to its active, folded state. These results demonstrate how fluctuating environmental conditions can allow a ribozyme sequence to alternate between acting as a template for replication and functioning as a catalyst, and illustrate the potential for temporally changing environments to enable molecular processes necessary for the origin of life.


Assuntos
Modelos Genéticos , Origem da Vida , RNA Catalítico/efeitos dos fármacos , RNA de Cadeia Dupla/genética , Solventes/farmacologia , Moldes Genéticos , Catálise , Eletroforese em Gel de Ágar , Técnicas In Vitro , Conformação de Ácido Nucleico , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , RNA Catalítico/metabolismo , RNA de Cadeia Dupla/biossíntese , Viscosidade
7.
Mol Cell ; 48(5): 811-8, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23142082

RESUMO

In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases Pol IV and Pol V and the putative RNA-dependent RNA polymerase RDR2. Here we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to α-amanitin, and differ in their ability to displace the nontemplate DNA strand during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs), which guide cytosine methylation to corresponding sequences, requires both Pol IV and RDR2, which physically associate in vivo. Whereas Pol IV does not require RDR2 for activity, RDR2 is nonfunctional in the absence of associated Pol IV. These results suggest that the physical and mechanistic coupling of Pol IV and RDR2 results in the channeled synthesis of double-stranded precursors for 24 nt siRNA biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Plantas/biossíntese , RNA Interferente Pequeno/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Alfa-Amanitina/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ligação Competitiva , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Mutação , Inibidores da Síntese de Ácido Nucleico/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Ligação Proteica , Interferência de RNA/efeitos dos fármacos , RNA Polimerase Dependente de RNA/genética , Transcrição Gênica
8.
Methods ; 126: 54-65, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28723582

RESUMO

The Dicer family of ribonucleases plays a key role in small RNA-based regulatory pathways by generating short dsRNA fragments that modulate expression of endogenous genes, or protect the host from invasive nucleic acids. Beginning with its initial discovery, biochemical characterization of Dicer has provided insight about its catalytic properties. However, a comprehensive understanding of how Dicer's domains contribute to substrate-specific recognition and catalysis is lacking. One reason for this void is the lack of high-resolution structural information for a metazoan Dicer in the apo- or substrate-bound state. Both biochemical and structural studies are facilitated by large amounts of highly purified, active protein, and Dicer enzymes have historically been recalcitrant to overexpression and purification. Here we describe optimized procedures for the large-scale expression of Dicer in baculovirus-infected insect cells. We then outline a three-step protocol for the purification of large amounts (3-4mg of Dicer per liter of insect cell culture) of highly purified and active Dicer protein, suitable for biochemical and structural studies. Our methods are general and are extended to enable overexpression, purification and biochemical characterization of accessory dsRNA binding proteins that interact with Dicer and modulate its catalytic activity.


Assuntos
Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/isolamento & purificação , RNA Helicases/biossíntese , RNA Helicases/isolamento & purificação , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/isolamento & purificação , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/isolamento & purificação , Ribonuclease III/biossíntese , Ribonuclease III/isolamento & purificação , Animais , Baculoviridae , Fenômenos Bioquímicos/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Expressão Gênica , RNA Helicases/genética , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Células Sf9
9.
Development ; 141(13): 2592-601, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24903754

RESUMO

The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans.


Assuntos
Proteínas Argonautas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Histonas/genética , Planárias/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA Mensageiro/metabolismo , Animais , Proteínas Argonautas/genética , Northern Blotting , Bromodesoxiuridina , Imunofluorescência , Histonas/metabolismo , Hibridização in Situ Fluorescente , Oligonucleotídeos/genética , Planárias/genética , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Insect Mol Biol ; 26(2): 164-180, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27883266

RESUMO

RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival.


Assuntos
Metamorfose Biológica , Mariposas/crescimento & desenvolvimento , Mucinas/fisiologia , RNA de Cadeia Dupla/administração & dosagem , Receptores de Esteroides/fisiologia , Animais , Ecdisona/metabolismo , Escherichia coli , Feminino , Expressão Gênica , Masculino , Oviposição , Interferência de RNA , RNA de Cadeia Dupla/biossíntese
11.
J Virol ; 89(22): 11406-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26339052

RESUMO

UNLABELLED: The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes. IMPORTANCE: Patients infected with certain genotypes of HBV have a lower risk of hepatocellular carcinoma and exhibit a more favorable response to antiviral therapy than patients infected with other HBV genotypes. Using cultured human hepatoma cells as a model of HBV infection, we found that the expression of 2.2DS-RNA caused a decrease in HBV replication. In cultured cells, the ectopic expression of 2.2DS-RNA obviously reduced the intracellular levels of HBV mRNAs. Our analysis of the 2.2DS-RNA-mediated suppression of viral RNA expression showed that 2.2DS-RNA inhibited transcription via binding to the TATA-binding protein and stress granule proteins. Our findings suggest that the 2.2DS-RNA acts as a suppressive noncoding RNA that modulates HBV replication, which may in turn influence the development of chronic hepatitis B.


Assuntos
Vírus da Hepatite B/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Replicação Viral/genética , Células 3T3 , Animais , Sítios de Ligação/genética , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/virologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , DNA Helicases , Regulação Viral da Expressão Gênica , Células HEK293 , Células Hep G2 , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/virologia , Camundongos , Plasmídeos/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Precursores de RNA/biossíntese , Proteínas com Motivo de Reconhecimento de RNA , Splicing de RNA/genética , RNA de Cadeia Dupla/biossíntese , RNA Viral/genética , Transcrição Gênica/genética
12.
Exp Parasitol ; 162: 35-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26778819

RESUMO

The aim of this study was to investigate the functions of Trichinella spiralis Nudix hydrolase (TsNd) during the larval invasion of intestinal epithelial cells (IECs), development and survival in host by RNAi. The TsNd-specific double-stranded RNA (dsRNA) was designed to silence the expression of TsNd in T. spiralis larvae. DsRNA were delivered to the larvae by soaking incubation or electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of larvae treated with dsRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. After being soaked with 40 ng/µl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 65.8% and 56.4%, respectively. After being electroporated with 40 ng/µl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 74.2% and 58.2%, respectively. Silencing TsNd expression by both soaking and electroporation inhibited significantly the larval invasion of IECs in a dose-dependent manner (r1 = -0.96798, r2 = -0.98707). Compared with the mice inoculated with untreated larvae, mice inoculated with larvae soaked with TsNd dsRNA displayed a 49.9% reduction in adult worms and 39.9% reduction in muscle larvae, while mice inoculated with larvae electroporated with TsNd dsRNA displayed a 83.4% reduction in adult worms and 69.5% reduction in muscle larvae, indicating that electroporation has a higher efficiency than soaking in inhibiting the larval development and survival in mice. Our results showed that silencing TsNd expression in T. spiralis inhibited significantly the larval invasion and survival in host.


Assuntos
Pirofosfatases/antagonistas & inibidores , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/fisiologia , Trichinella spiralis/fisiologia , Animais , Eletroporação , Feminino , Fertilidade/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/parasitologia , Larva/enzimologia , Larva/genética , Larva/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/isolamento & purificação , RNA de Helmintos/biossíntese , RNA de Helmintos/isolamento & purificação , RNA de Helmintos/fisiologia , Organismos Livres de Patógenos Específicos , Suínos , Transcrição Gênica , Trichinella spiralis/enzimologia , Trichinella spiralis/genética , Nudix Hidrolases
13.
BMC Biotechnol ; 15: 64, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198409

RESUMO

BACKGROUND: RNA interference (RNAi) technology shows a great potential in controlling agricultural pests, despite the difficulty of introducing exogenous dsRNA/siRNA into target pests. Isaria fumosorosea is a common fungal pathogen of the B-biotype Bemisia tabaci (whitefly), which is a widespread pest. Entomopathogenic fungi directly penetrate the cuticle and invade insect hemocoel. Application of I. fumosorosea expressing dsRNA of whitefly immunity-related gene may aid in developing RNAi technology to effectively control whiteflies. METHODS: A dsRNA expression plasmid, psTLR7, was constructed by introducing the Toll-like receptor 7 (TLR7) gene of B-biotype whitefly to the silent vector, pSilent-1. The plasmid psTLR7 was transferred into the protoplast of the I. fumosorosea strain IfB01. Then, the recombinant strain was screened out based on the biological stability and bioactivity against whitefly. RESULTS: A genetically stable recombinant strain IfB01-TRL7 was screened out. The impact of IfB01-TRL7 against whitefly TRL7 gene was validated by qPCR. Lower expression levels of the TLR7 gene was observed in the whiteflies infected by the recombinant strain. The bioassay results indicated that compared to IfB01 strain, IfB01-TRL7 increased the mortality of whitefly nymphs, and decreased and shortened the values of LC50 and LT50, thus indicating higher virulence of IfB01-TRL7. CONCLUSION: The expression of the dsRNA of whitefly TLR7 gene in recombinant I. fumosorosea strain successfully knocked down the host target gene by infecting the nymphs and enhanced the whiteflies mortality. The present study will give insight to new application of RNAi technology for more effective biocontrol of this pests.


Assuntos
Fungos/genética , Hemípteros/genética , Receptor 7 Toll-Like/genética , Animais , Fungos/patogenicidade , Regulação da Expressão Gênica , Hemípteros/microbiologia , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor 7 Toll-Like/biossíntese
14.
BMC Biotechnol ; 15: 110, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26626024

RESUMO

BACKGROUND: RNA interference (RNAi) is a specific and effective approach for inhibiting viral replication by introducing double-stranded (ds)RNA targeting the viral gene. In this study, we employed a combinatorial approach to interfere multiple gene functions of white spot syndrome virus (WSSV), the most lethal shrimp virus, using a single-batch of dsRNA, so-called "multi-WSSV dsRNA." A co-cultivation of RNase-deficient E. coli was developed to produce dsRNA targeting a major structural protein (VP28) and a hub protein (WSSV051) with high number of interacting protein partners. RESULTS: For a co-cultivation of transformed E. coli, use of Terrific broth (TB) medium was shown to improve the growth of the E. coli and multi-WSSV dsRNA yields as compared to the use of Luria Bertani (LB) broth. Co-culture expression was conducted under glycerol feeding fed-batch fermentation. Estimated yield of multi-WSSV dsRNA (µg/mL culture) from the fed-batch process was 30 times higher than that obtained under a lab-scale culture with LB broth. Oral delivery of the resulting multi-WSSV dsRNA reduced % cumulative mortality and delayed average time to death compared to the non-treated group after WSSV challenge. CONCLUSION: The present study suggests a co-cultivation technique for production of antiviral dsRNA with multiple viral targets. The optimal multi-WSSV dsRNA production was achieved by the use of glycerol feeding fed-batch cultivation with controlled pH and dissolved oxygen. The cultivation technique developed herein should be feasible for industrial-scale RNAi applications in shrimp aquaculture. Interference of multiple viral protein functions by a single-batch dsRNA should also be an ideal approach for RNAi-mediated fighting against viruses, especially the large and complicated WSSV.


Assuntos
Ração Animal/análise , Aquicultura/métodos , Biotecnologia/métodos , Penaeidae/imunologia , Penaeidae/virologia , RNA de Cadeia Dupla/farmacologia , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Animais , Clonagem Molecular , Meios de Cultura/química , Primers do DNA/genética , Escherichia coli , Fermentação , Plasmídeos/genética , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/química
15.
PLoS Pathog ; 9(9): e1003610, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039580

RESUMO

Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-ß independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-ß through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-ß induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-ß production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.


Assuntos
Infecções por Alphavirus/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Floresta de Semliki/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Infecções por Alphavirus/genética , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Receptores Imunológicos , Proteínas Virais/genética
16.
Nature ; 461(7261): 230-5, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19701182

RESUMO

Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (RMRP), a gene that is mutated in the inherited pleiotropic syndrome cartilage-hair hypoplasia. Human TERT and RMRP form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with RMRP.


Assuntos
Endorribonucleases/genética , RNA não Traduzido/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Telomerase/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Longo não Codificante , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética , Ribonuclease III/deficiência , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonucleoproteínas/genética , Telomerase/genética
17.
Nature ; 457(7228): 396-404, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19158785

RESUMO

The finding that sequence-specific gene silencing occurs in response to the presence of double-stranded RNAs has had an enormous impact on biology, uncovering an unsuspected level of regulation of gene expression. This process, known as RNA interference (RNAi) or RNA silencing, involves small non-coding RNAs, which associate with nuclease-containing regulatory complexes and then pair with complementary messenger RNA targets, thereby preventing the expression of these mRNAs. Remarkable progress has been made towards understanding the underlying mechanisms of RNAi, raising the prospect of deciphering the 'RNAi code' that, like transcription factors, allows the fine-tuning and networking of complex suites of gene activity, thereby specifying cellular physiology and development.


Assuntos
Interferência de RNA/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/biossíntese , Complexo de Inativação Induzido por RNA/metabolismo
18.
Clin Exp Nephrol ; 19(5): 761-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25471749

RESUMO

BACKGROUND: Mesangial proinflammatory chemokine/cytokine expressions via innate immunity play a pivotal role in the pathogenesis of glomerulonephritis. CXCL1/GROα is a strong neutrophil chemoattractant cytokine and reportedly plays an important role in regional inflammatory reactions. However, detailed signaling of mesangial CXCL1 expression induced by viral or "pseudoviral" immunity remains to be determined. METHODS: We treated normal human mesangial cells (MCs) in culture with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expression of CXCL1 by reverse transcription-polymerase chain reaction (RT-PCR), real-time quantitative RT-PCR and enzyme-linked immunosorbent assay. To elucidate the poly IC-induced signaling pathway for CXCL1 expression, we subjected the cells to RNA interference against Toll-like receptor (TLR) 3, retinoic acid-inducible gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), interferon (IFN)-ß, nuclear factor (NF)-κB p65 and IFN regulatory factor (IRF) 3. We also conducted an immunofluorescence study to examine mesangial CXCL1 expression in biopsy specimens from patients with lupus nephritis (LN) and IgA nephropathy (IgAN). RESULTS: We found that activation of TLR3 signaling could induce the expression of CXCL1 in MCs. NF-κB, IRF3 and IFN-ß, but neither RIG-I nor MDA5, were found to be involved in mesangial CXCL1 expression in this setting. Induction of CXCL1 by poly IC was inhibited by pretreatment of cells with dexamethasone. Intense glomerular CXCL1 expression was observed in biopsy specimens from patients with LN, whereas only a trace staining occurred in specimens from patients with IgAN. CONCLUSION: TLR3 signaling also contributes to the CXCL1 expression in MCs. These observations further support the implication of viral and "pseudoviral" immunity in the pathogenesis of inflammatory renal diseases, especially in LN.


Assuntos
Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/genética , Células Mesangiais/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Anti-Inflamatórios/farmacologia , Células Cultivadas , Dexametasona/farmacologia , Glomerulonefrite por IGA/metabolismo , Humanos , Imunidade Celular/genética , Nefrite Lúpica/metabolismo , Poli I-C/farmacologia , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , Transdução de Sinais/genética
19.
Exp Parasitol ; 148: 17-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450776

RESUMO

Multistep processes likely underlie cholangiocarcinogenesis induced by chronic infection with the fish-borne liver fluke, Opisthorchis viverrini. One process appears to be cellular proliferation of the host bile duct epithelia driven by excretory-secretory (ES) products of this pathogen. Specifically, the secreted growth factor Ov-GRN-1, a liver fluke granulin, is a prominent component of ES and a known driver of hyper-proliferation of cultured human and mouse cells in vitro. We show potent hyper-proliferation of human cholangiocytes induced by low nanomolar levels of recombinant Ov-GRN-1 and similar growth produced by low microgram concentrations of ES products and soluble lysates of the adult worm. To further explore the influence of Ov-GRN-1 on the flukes and the host cells, expression of Ov-grn-1 was repressed using RNA interference. Expression of Ov-grn-1 was suppressed by 95% by day 3 and by ~100% by day 7. Co-culture of Ov-grn-1 suppressed flukes with human cholangiocyte (H-69) or human cholangiocarcinoma (KKU-M214) cell lines retarded cell hyper-proliferation by 25% and 92%, respectively. Intriguingly, flukes in which expression of Ov-grn-1 was repressed were less viable in culture, suggesting that Ov-GRN-1 is an essential growth factor for survival of the adult stage of O. viverrini, at least in vitro. To summarize, specific knock down of Ov-grn-1 reduced in vitro survival and capacity of ES products to drive host cell proliferation. These findings may help to contribute to a deeper understanding of liver fluke induced cholangiocarcinogenesis.


Assuntos
Ductos Biliares/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Opisthorchis/química , Animais , Neoplasias dos Ductos Biliares/parasitologia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/prevenção & controle , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/parasitologia , Colangiocarcinoma/patologia , Colangiocarcinoma/prevenção & controle , Cricetinae , Células Epiteliais/citologia , Regulação da Expressão Gênica , Inativação Gênica , Granulinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesocricetus , Opistorquíase/complicações , Opisthorchis/genética , Opisthorchis/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/metabolismo , RNA de Helmintos/isolamento & purificação
20.
Regul Toxicol Pharmacol ; 73(2): 607-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26361852

RESUMO

A biotechnology-derived corn variety, MON 87411, containing a suppression cassette that expresses an inverted repeat sequence that matches the sequence of western corn rootworm (WCR; Diabrotica virgifera virgifera) has been developed. The expression of the cassette results in the formation of a double-stranded RNA (dsRNA) transcript containing a 240 bp fragment of the WCR Snf7 gene (DvSnf7) that confers resistance to corn rootworm by suppressing levels of DvSnf7 mRNA in WCR after root feeding. Internationally accepted guidelines for the assessment of genetically modified crop products have been developed to ensure that these plants are as safe for food, feed, and environmental release as their non-modified counterparts (Codex, 2009). As part of these assessments MON 87411 must undergo an extensive environmental assessment that requires large quantities of DvSnf7 dsRNA that was produced by in vitro transcription (IVT). To determine if the IVT dsRNA is a suitable surrogate for the MON 87411-produced DvSnf7 dsRNA in regulatory studies, the nucleotide sequence, secondary structure, and functional activity of each were characterized and demonstrated to be comparable. This comprehensive characterization indicates that the IVT DvSnf7 dsRNA is equivalent to the MON 87411-produced DvSnf7 dsRNA and it is a suitable surrogate for regulatory studies.


Assuntos
Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/genética , Zea mays/genética , Animais , Besouros , Relação Dose-Resposta a Droga , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , RNA de Cadeia Dupla/biossíntese , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa