Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.256
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
J Fluoresc ; 34(1): 341-352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37249676

RESUMO

Diversely substituted methoxy derivatives of arylpiperazinyl-alkyl benzothiazolone has been evaluated as specific probe for 5HT7. To determine the best methoxy derivative for 5HT7 receptor affinity, we synthesised a number of 2-benzothiazolone arylalkyl piperazine derivatives. In-vitro/vivo studies with C-2 substituted [11C]ABT showed 5HT7 specific binding. The radiochemical purity of [11C]ABT was found to be more than 99% with radiochemical stability persistence for more than 1.5 hr at 25 °C. The interaction of BSA and ABT has been analysed by photophysical studies for better understanding of properties such as adsortion, distribution, metabolism and elemination (ADME). The interaction between ABT and BSA was analyzed by using the UV-vis and fluorescence spectra. UV-vis spectra analyzed the changes in primary structure of BSA on its interaction with ABT. ABT showed quenched fluorescence emission intensity of tryptophan residues in BSA via static quenching mechanism. This study might help to understand how ABT binds to serum protein or subsequently to know the ADME of this drug candidate.


Assuntos
Serotonina , Soroalbumina Bovina , Soroalbumina Bovina/química , Serotonina/metabolismo , Espectrometria de Fluorescência , Dicroísmo Circular , Radiobiologia , Ligação Proteica , Termodinâmica
2.
J Appl Clin Med Phys ; 25(7): e14321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436509

RESUMO

PURPOSE: Carbon ion radiotherapy (CIRT) relies on relative biological effectiveness (RBE)-weighted dose calculations. Japanese clinics predominantly use the microdosimetric kinetic model (MKM), while European centers utilize the local effect model (LEM). Despite both models estimating RBE-distributions in tissue, their physical and mathematical assumptions differ, leading to significant disparities in RBE-weighted doses. Several European clinics adopted Japanese treatment schedules, necessitating adjustments in dose prescriptions and organ at risk (OAR) constraints. In the context of these two clinically used standards for RBE-weighted dose estimation, the objective of this study was to highlight specific scenarios for which the translations between models diverge, as shortcomings between them can influence clinical decisions. METHODS: Our aim was to discuss planning strategies minimizing those discrepancies, ultimately striving for more accurate and robust treatments. Evaluations were conducted in a virtual water phantom and patient CT-geometry, optimizing LEM RBE-weighted dose first and recomputing MKM thereafter. Dose-averaged linear energy transfer (LETd) distributions were also assessed. RESULTS: Results demonstrate how various parameters influence LEM/MKM translation. Similar LEM-dose distributions lead to markedly different MKM-dose distributions and variations in LETd. Generally, a homogeneous LEM RBE-weighted dose aligns with lower MKM values in most of the target volume. Nevertheless, paradoxical MKM hotspots may emerge (at the end of the range), potentially influencing clinical outcomes. Therefore, translation between models requires great caution. CONCLUSIONS: Understanding the relationship between these two clinical standards enables combining European and Japanese based experiences. The implementation of optimal planning strategies ensures the safety and acceptability of the clinical plan for both models and therefore enhances plan robustness from the RBE-weighted dose and LETd distribution point of view. This study emphasizes the importance of optimal planning strategies and the need for comprehensive CIRT plan quality assessment tools. In situations where simultaneous LEM and MKM computation capabilities are lacking, it can provide guidance in plan design, ultimately contributing to enhanced CIRT outcomes.


Assuntos
Radioterapia com Íons Pesados , Órgãos em Risco , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Humanos , Radioterapia com Íons Pesados/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Radiobiologia , Neoplasias/radioterapia , Transferência Linear de Energia , Cinética , Radioterapia de Intensidade Modulada/métodos
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731948

RESUMO

Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate normal and tumor cell survival α and ß coefficients of the linear quadratic (LQ) established model, as well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and Python programming language. We also produced complex DNA damage results through the fast Monte Carlo code MCDS in order to complete any missing data. The calculated α/ß values are in good agreement with those valued reported in the literature, where α shows a relatively good association with linear energy transfer (LET), but not ß. In general, a positive correlation between DSBs and LET was observed as far as the experimental values are concerned. Furthermore, we developed a biophysical prediction model by using machine learning, which showed a good performance for α, while it underscored LET as the most important feature for its prediction. In this study, we designed and developed the novel radiobiological 'RadPhysBio' database for the prediction of irradiated cell survival (α and ß coefficients of the LQ model). The incorporation of machine learning and repair models increases the applicability of our results and the spectrum of potential users.


Assuntos
Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Transferência Linear de Energia , Radiação Ionizante , Radiobiologia , Humanos , Sobrevivência Celular/efeitos da radiação , Radiobiologia/métodos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Bases de Dados Factuais , Método de Monte Carlo
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473799

RESUMO

Major strides have been made in the development of FLASH radiotherapy (FLASH RT) in the last ten years, but there are still many obstacles to overcome for transfer to the clinic to become a reality. Although preclinical and first-in-human clinical evidence suggests that ultra-high dose rates (UHDRs) induce a sparing effect in normal tissue without modifying the therapeutic effect on the tumor, successful clinical translation of FLASH-RT depends on a better understanding of the biological mechanisms underpinning the sparing effect. Suitable in vitro studies are required to fully understand the radiobiological mechanisms associated with UHDRs. From a technical point of view, it is also crucial to develop optimal technologies in terms of beam irradiation parameters for producing FLASH conditions. This review provides an overview of the research progress of FLASH RT and discusses the potential challenges to be faced before its clinical application. We critically summarize the preclinical evidence and in vitro studies on DNA damage following UHDR irradiation. We also highlight the ongoing developments of technologies for delivering FLASH-compliant beams, with a focus on laser-driven plasma accelerators suitable for performing basic radiobiological research on the UHDR effects.


Assuntos
Dano ao DNA , Motivação , Humanos , Cabeça , Plasma , Radiobiologia
5.
Semin Cancer Biol ; 86(Pt 3): 857-867, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122974

RESUMO

Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor ß (TGFß). TGFß is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFß unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFß responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFß activation, how TGFß regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFß exploit fundamental radiobiology that may be the missing link to deploying TGFß inhibitors for optimal patient benefit from cancer treatment.


Assuntos
Neoplasias , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Radiobiologia , Dano ao DNA , Transdução de Sinais , Neoplasias/radioterapia , Microambiente Tumoral
6.
Br J Cancer ; 128(3): 407-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344595

RESUMO

Pivotal research led by Louis Harold Gray in the 1950s suggested that oxygen plays a vital role during radiotherapy. By proving that tumours have large necrotic cores due to hypoxia and that hypoxic cells require significantly larger doses of ionising radiation to achieve the same cell kill, Thomlinson and Gray inspired the subsequent decades of research into better defining the mechanistic role of molecular oxygen at the time of radiation. Ultimately, the work pioneered by Thomlinson and Gray led to numerous elegant studies which demonstrated that tumour hypoxia predicts for poor patient outcomes. Furthermore, this subsequently resulted in investigations into markers and measurement of hypoxia, as well as modification strategies. However, despite an abundance of pre-clinical data supporting hypoxia-targeted treatments, there is limited widespread application of hypoxia-targeted therapies routinely used in clinical practice. Significant contributing factors underpinning disappointing clinical trial results include the use of model systems which are more hypoxic than human tumours and a failure to stratify patients based on levels of hypoxia. However, translating the original findings of Thomlinson and Gray remains a research priority with the potential to significantly improve patient outcomes and specifically those receiving radiotherapy.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Hipóxia Celular , Neoplasias/tratamento farmacológico , Hipóxia , Radiobiologia , Oxigênio , Neoplasias Pulmonares/radioterapia
7.
J Transl Med ; 21(1): 144, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829143

RESUMO

BACKGROUND: Alpha-emitter radiopharmaceutical therapy (αRPT) has shown promising outcomes in metastatic disease. However, the short range of the alpha particles necessitates dosimetry on a near-cellular spatial scale. Current knowledge on cellular dosimetry is primarily based on in vitro experiments using cell monolayers. The goal of such experiments is to establish cell sensitivity to absorbed dose (AD). However, AD cannot be measured directly and needs to be modeled. Current models, often idealize cells as spheroids in a regular grid (geometric model), simplify binding kinetics and ignore the stochastic nature of radioactive decay. It is unclear what the impact of such simplifications is, but oversimplification results in inaccurate and non-generalizable results, which hampers the rigorous study of the underlying radiobiology. METHODS: We systematically mapped out 3D cell geometries, clustering behavior, agent binding, internalization, and subcellular trafficking kinetics for a large cohort of live cells under representative experimental conditions using confocal microscopy. This allowed for realistic Monte Carlo-based (micro)dosimetry. Experimentally established surviving fractions of the HER2 + breast cancer cell line treated with a 212Pb-labelled anti-HER2 conjugate or external beam radiotherapy, anchored a rigorous statistical approach to cell sensitivity and relative biological effectiveness (RBE) estimation. All outcomes were compared to a reference geometric model, which allowed us to determine which aspects are crucial model components for the proper study of the underlying radiobiology. RESULTS: In total, 567 cells were measured up to 26 h post-incubation. Realistic cell clustering had a large (2x), and cell geometry a small (16.4% difference) impact on AD, compared to the geometric model. Microdosimetry revealed that more than half of the cells do not receive any dose for most of the tested conditions, greatly impacting cell sensitivity estimates. Including these stochastic effects in the model, resulted in significantly more accurate predictions of surviving fraction and RBE (permutation test; p < .01). CONCLUSIONS: This comprehensive integration of the biological and physical aspects resulted in a more accurate method of cell survival modelling in αRPT experiments. Specifically, including realistic stochastic radiation effects and cell clustering behavior is crucial to obtaining generalizable radiobiological parameters.


Assuntos
Microscopia , Compostos Radiofarmacêuticos , Humanos , Eficiência Biológica Relativa , Tolerância a Radiação , Radiobiologia , Radiometria/métodos , Método de Monte Carlo
8.
Strahlenther Onkol ; 199(12): 1225-1241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37872399

RESUMO

The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Humanos , Íons , Radioterapia com Íons Pesados/métodos , Radiobiologia , Carbono/uso terapêutico , Eficiência Biológica Relativa
9.
PLoS Biol ; 18(5): e3000669, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32428004

RESUMO

With exciting new NASA plans for a sustainable return to the moon, astronauts will once again leave Earth's protective magnetosphere only to endure higher levels of radiation from galactic cosmic radiation (GCR) and the possibility of a large solar particle event (SPE). Gateway, lunar landers, and surface habitats will be designed to protect crew against SPEs with vehicle optimization, storm shelter concepts, and/or active dosimetry; however, the ever penetrating GCR will continue to pose the most significant health risks especially as lunar missions increase in duration and as NASA sets its aspirations on Mars. The primary risks of concern include carcinogenesis, central nervous system (CNS) effects resulting in potential in-mission cognitive or behavioral impairment and/or late neurological disorders, degenerative tissue effects including circulatory and heart disease, as well as potential immune system decrements impacting multiple aspects of crew health. Characterization and mitigation of these risks requires a significant reduction in the large biological uncertainties of chronic (low-dose rate) heavy-ion exposures and the validation of countermeasures in a relevant space environment. Historically, most research on understanding space radiation-induced health risks has been performed using acute exposures of monoenergetic single-ion beams. However, the space radiation environment consists of a wide variety of ion species over a broad energy range. Using the fast beam switching and controls systems technology recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory, a new era in radiobiological research is possible. NASA has developed the "GCR Simulator" to generate a spectrum of ion beams that approximates the primary and secondary GCR field experienced at human organ locations within a deep-space vehicle. The majority of the dose is delivered from protons (approximately 65%-75%) and helium ions (approximately 10%-20%) with heavier ions (Z ≥ 3) contributing the remainder. The GCR simulator exposes state-of-the art cellular and animal model systems to 33 sequential beams including 4 proton energies plus degrader, 4 helium energies plus degrader, and the 5 heavy ions of C, O, Si, Ti, and Fe. A polyethylene degrader system is used with the 100 MeV/n H and He beams to provide a nearly continuous distribution of low-energy particles. A 500 mGy exposure, delivering doses from each of the 33 beams, requires approximately 75 minutes. To more closely simulate the low-dose rates found in space, sequential field exposures can be divided into daily fractions over 2 to 6 weeks, with individual beam fractions as low as 0.1 to 0.2 mGy. In the large beam configuration (60 × 60 cm2), 54 special housing cages can accommodate 2 to 3 mice each for an approximately 75 min duration or 15 individually housed rats. On June 15, 2018, the NSRL made a significant achievement by completing the first operational run using the new GCR simulator. This paper discusses NASA's innovative technology solution for a ground-based GCR simulator at the NSRL to accelerate our understanding and mitigation of health risks faced by astronauts. Ultimately, the GCR simulator will require validation across multiple radiogenic risks, endpoints, doses, and dose rates.


Assuntos
Radiação Cósmica , Radiobiologia/instrumentação , Simulação de Ambiente Espacial , Animais , Humanos , Camundongos , Ratos , Voo Espacial
10.
J Theor Biol ; 558: 111371, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36462667

RESUMO

A spatially-distributed continuous mathematical model of solid tumor growth and treatment by fractionated radiotherapy is presented. The model explicitly accounts for the factors, widely referred to as 4 R's of radiobiology, which influence the efficacy of radiotherapy fractionation protocols: tumor cell repopulation, their redistribution in cell cycle, reoxygenation and repair of sublethal damage of both tumor and normal tissues. With the use of special algorithm the fractionation protocols that provide increased tumor control probability, compared to standard clinical protocol, are found for various physiologically-based values of model parameters under the constraints of fixed overall normal tissue damage and maximum admissible fractional dose. In particular, it is shown that significant gain in treatment efficacy can be achieved for tumors of low malignancy by the use of protracted hyperfractionated protocols. The optimized non-uniform protocols are characterized by gradual escalation of fractional doses in their last parts, which start after the levels of oxygen and nutrients significantly elevate throughout the tumor and accelerated tumor proliferation manifests itself, which is a well-known experimental phenomenon.


Assuntos
Neoplasias , Radiobiologia , Humanos , Fracionamento da Dose de Radiação , Neoplasias/patologia , Divisão Celular , Modelos Teóricos
11.
J Appl Clin Med Phys ; 24(2): e13879, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36546569

RESUMO

Nanoscopic lesions (complex damages), are the most lethal lesions for the cells. As nanoparticles have become increasingly popular in radiation therapy and the importance of analyzing nanoscopic dose enhancement has increased, a reliable tool for nanodosimetry has become indispensable. In this regard, the DNA plasmid is a widely used tool as a nanodosimetry probe in radiobiology and nano-radiosensitization studies. This approach is helpful for unraveling the radiosensitization role of nanoparticles in terms of physical and physicochemical effects and for quantifying radiation-induced biological damage. This review discusses the potential of using plasmid DNA assays for assessing the relative effects of nano-radiosensitizers, which can provide a theoretical basis for the development of nanoscopic biodosimetry and nanoparticle-based radiotherapy.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Humanos , Radiobiologia , DNA , Plasmídeos
12.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982899

RESUMO

It is generally recognized that the biological response to irradiation by light ions is initiated by complex damages at the DNA level. In turn, the occurrence of complex DNA damages is related to spatial and temporal distribution of ionization and excitation events, i.e., the particle track structure. It is the aim of the present study to investigate the correlation between the distribution of ionizations at the nanometric scale and the probability to induce biological damage. By means of Monte Carlo track structure simulations, the mean ionization yield M1 and the cumulative probabilities F1, F2, and F3 of at least one, two and three ionizations, respectively, were calculated in spherical volumes of water-equivalent diameters equal to 1, 2, 5 and 10 nm. When plotted as a function of M1, the quantities F1, F2 and F3 are distributed along almost unique curves, largely independent of particle type and velocity. However, the shape of the curves depends on the size of the sensitive volume. When the site size is 1 nm, biological cross sections are strongly correlated to combined probabilities of F2 and F3 calculated in the spherical volume, and the proportionality factor is the saturation value of biological cross sections.


Assuntos
DNA , Radiobiologia , Íons , Método de Monte Carlo , DNA/química , Dano ao DNA
13.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445795

RESUMO

Cancer is intrinsically complex, comprising both heterogeneous cellular composition and extracellular matrix. In vitro cancer research models have been widely used in the past to model and study cancer. Although two-dimensional (2D) cell culture models have traditionally been used for cancer research, they have many limitations, such as the disturbance of interactions between cellular and extracellular environments and changes in cell morphology, polarity, division mechanism, differentiation and cell motion. Moreover, 2D cell models are usually monotypic. This implies that 2D tumor models are ineffective at accurately recapitulating complex aspects of tumor cell growth, as well as their radiation responses. Over the past decade there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers, highlighting a complementary model for studies of radiation effects on tumors, especially in conjunction with chemotherapy. The introduction of 3D cell culture approaches aims to model in vivo tissue interactions with radiation by positioning itself halfway between 2D cell and animal models, and thus opening up new possibilities in the study of radiation response mechanisms of healthy and tumor tissues.


Assuntos
Bioimpressão , Neoplasias , Animais , Neoplasias/radioterapia , Proliferação de Células , Radiobiologia , Técnicas de Cultura de Células/métodos , Bioimpressão/métodos
14.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175984

RESUMO

Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Prótons , Meduloblastoma/radioterapia , Caspase 3 , Neoplasias Cerebelares/radioterapia , Radiobiologia
15.
J Radiol Prot ; 43(2)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37339605

RESUMO

The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.


Assuntos
Neoplasias Induzidas por Radiação , Proteção Radiológica , Humanos , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Induzidas por Radiação/epidemiologia , Modelos Lineares , Radiobiologia , Carcinogênese , Relação Dose-Resposta à Radiação , Medição de Risco/métodos
16.
Expert Rev Mol Med ; 24: e8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101155

RESUMO

Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.


Assuntos
Íons Pesados , Radioterapia (Especialidade) , Fracionamento da Dose de Radiação , Humanos , Prótons , Radiobiologia
17.
Expert Rev Mol Med ; 24: e14, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357286

RESUMO

Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Nêutrons , Qualidade de Vida , Radiobiologia
18.
Expert Rev Mol Med ; 24: e10, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225211

RESUMO

FLASH radiotherapy is a novel technique that has been shown in numerous preclinical in vivo studies to have the potential to be the next important improvement in cancer treatment. However, the biological mechanisms responsible for the selective FLASH sparing effect of normal tissues are not yet known. An optimal translation of FLASH radiotherapy into the clinic would require a good understanding of the specific beam parameters that induces a FLASH effect, environmental conditions affecting the response, and the radiobiological mechanisms involved. Even though the FLASH effect has generally been considered as an in vivo effect, studies finding these answers would be difficult and ethically challenging to carry out solely in animals. Hence, suitable in vitro studies aimed towards finding these answers are needed. In this review, we describe and summarise several in vitro assays that have been used or could be used to finally elucidate the mechanisms behind the FLASH effect.


Assuntos
Radioterapia (Especialidade) , Projetos de Pesquisa , Instituições de Assistência Ambulatorial , Animais , Humanos , Radiobiologia , Traduções
19.
Expert Rev Mol Med ; 24: e21, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35586915

RESUMO

Ionising radiotherapy is a well-established, effective cancer treatment modality, whose efficacy has improved with the application of newer technological modalities. However, patient outcomes are governed and potentially limited by aspects of tumour biology that are associated with radioresistance. Patients also still endure treatment-associated toxicities owed to the action of ionising radiation in normoxic tissue adjacent to the tumour mass. Tumour hypoxia is recognised as a key component of the tumour microenvironment and is well established as leading to therapy resistance and poor prognosis. In this review, we outline the current understanding of hypoxia-mediated radiotherapy resistance, before exploring targeting tumour hypoxia for radiotherapy sensitisation to improve treatment outcomes and increase the therapeutic window. This includes increasing oxygen availability in solid tumours, the use of hypoxia-activated prodrugs, targeting of hypoxia-regulated or associated signalling pathways, as well as the use of high-LET radiotherapy modalities. Ultimately, targeting hypoxic radiobiology combined with precise radiotherapy delivery modalities and modelling should be associated with improvement to patient outcomes.


Assuntos
Neoplasias , Pró-Fármacos , Hipóxia Celular , Humanos , Hipóxia , Neoplasias/metabolismo , Pró-Fármacos/uso terapêutico , Radiobiologia , Microambiente Tumoral
20.
Radiat Environ Biophys ; 61(4): 507-543, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36241855

RESUMO

Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.


Assuntos
Exposição à Radiação , Lesões por Radiação , Proteção Radiológica , Animais , Humanos , Doses de Radiação , Radiação Ionizante , Radiobiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa