Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Virol ; 95(17): e0081621, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133900

RESUMO

The complete eradication of human immunodeficiency virus type 1 (HIV-1) is blocked by latent reservoirs in CD4+ T cells and myeloid lineage cells. Toll-like receptors (TLRs) can induce the reversal of HIV-1 latency and trigger the innate immune response. To the best of our knowledge, there is little evidence showing the "killing" effect of TLR1/2 agonists but only a small "shock" potential. To identify a new approach for eradicating the HIV latent reservoir, we evaluated the effectiveness of SMU-Z1, a novel small-molecule TLR1/2 agonist, in the "shock-and-kill" strategy. The results showed that SMU-Z1 could enhance latent HIV-1 transcription not only ex vivo in peripheral blood mononuclear cells from aviremic HIV-1-infected donors receiving combined antiretroviral therapy but also in vitro in cells of myeloid-monocytic origin targeting the NF-κB and mitogen-activated protein kinase pathways. Interestingly, the activation marker CD69 was significantly upregulated in natural killer (NK) cells, B cells, and monocytes 48 h after SMU-Z1 treatment. Furthermore, SMU-Z1 was able to activate T cells without global T cell activation, as well as increasing NK cell degranulation and gamma interferon (IFN-γ) production, which further block HIV-1-infected CD4+ lymphocytes. In summary, the present study found that SMU-Z1 can both enhance HIV-1 transcription and promote NK cell-mediated inhibition of HIV-1-infected autologous CD4+ T cells. These findings indicate that the novel TLR1/2 agonist SMU-Z1 is a promising latency-reversing agent (LRA) for eradication of HIV-1 reservoirs. IMPORTANCE Multiple in vivo studies showed that many LRAs used in the shock-and-kill approach could activate viral transcription but could not induce killing effectively. Therefore, a dual-function LRA is needed for elimination of HIV-1 reservoirs. We previously developed a small-molecule TLR1/2 agonist, SMU-Z1, and demonstrated that it could upregulate NK cells and CD8+ T cells with immune adjuvant and antitumor properties in vivo. In the present study, SMU-Z1 could activate innate immune cells without global T cell activation, induce production of proinflammatory and antiviral cytokines, and enhance the cytotoxic function of NK cells. We showed that SMU-Z1 displayed dual potential ex vivo in the shock of exposure of latently HIV-1-infected cells and in the kill of clearance of infected cells, which is critical for effective use in combination with therapeutic vaccines or broadly neutralizing antibody treatments aimed at curing AIDS.


Assuntos
Antirretrovirais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , Imidazóis/farmacologia , Células Matadoras Naturais/imunologia , Fenóis/farmacologia , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Latência Viral , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Imidazóis/uso terapêutico , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/virologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Fenóis/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Carga Viral , Ativação Viral
2.
Proc Natl Acad Sci U S A ; 115(37): E8698-E8706, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150374

RESUMO

Successful cancer immunotherapy entails activation of innate immune receptors to promote dendritic cell (DC) maturation, antigen presentation, up-regulation of costimulatory molecules, and cytokine secretion, leading to activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs). Here we screened a synthetic library of 100,000 compounds for innate immune activators using TNF production by THP-1 cells as a readout. We identified and optimized a potent human and mouse Toll-like receptor (TLR)1/TLR2 agonist, Diprovocim, which exhibited an EC50 of 110 pM in human THP-1 cells and 1.3 nM in primary mouse peritoneal macrophages. In mice, Diprovocim-adjuvanted ovalbumin immunization promoted antigen-specific humoral and CTL responses and synergized with anti-PD-L1 treatment to inhibit tumor growth, generating long-term antitumor memory, curing or prolonging survival of mice engrafted with the murine melanoma B16-OVA. Diprovocim induced greater frequencies of tumor-infiltrating leukocytes than alum, of which CD8 T cells were necessary for the antitumor effect of immunization plus anti-PD-L1 treatment.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Melanoma Experimental/terapia , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Sinergismo Farmacológico , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Células THP-1 , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
3.
Chembiochem ; 21(8): 1150-1154, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31702879

RESUMO

The activation of toll-like receptors (TLRs) plays important roles in the immune response. The ability to control the activities of TLRs could be usable as a switch for immune response. Here we have rationally designed and synthesized a photoswitchable Pam3 CSK4 derivative-P10-to control the activation of TLR1/2. The ground-state trans-P10 was able to stimulate and activate antigen-presenting cells (APCs) by promoting TLR1/2 heterodimerization. However, cis-P10, derived from UV irradiation of trans-P10, reduced the activities of APCs by impeding the TLR1/2 heterodimerization. In the absence of UV radiation, the cis-P10 slowly returned to its ground trans state, restoring the activities of the APCs stimulation. Our results indicated that optical control of TLR1/2 heterodimerization mediated by the photoswitchable P10 offers the potential to regulate immune activation and inflammation.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunidade/imunologia , Lipopeptídeos/farmacologia , Multimerização Proteica , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Raios Ultravioleta , Animais , Células Apresentadoras de Antígenos/metabolismo , Humanos , Camundongos , Células RAW 264.7 , Transdução de Sinais , Células THP-1 , Receptor 1 Toll-Like/química , Receptor 2 Toll-Like/química
4.
Rheumatology (Oxford) ; 59(11): 3533-3539, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594150

RESUMO

OBJECTIVE: RA is an autoimmune inflammatory joint disease. Both RF and ACPA are associated with more progressive disease and higher levels of systemic inflammation. Monocyte activation of toll-like receptors (TLRs) by endogenous ligands is a potential source of increased production of systemic cytokines. RA monocytes have elevated TLRs, some of which are associated with the disease activity score using 28 joints (DAS28). The aim of this study was to measure TLR-induced cytokine production from monocytes, stratified by autoantibody status, to assess if their capacity to induce cytokines is related to autoantibody status or DAS28. METHODS: Peripheral blood monocytes isolated from RA patients and healthy controls were stimulated with TLR1/2, TLR2/6, TLR4, TLR5, TLR7, TLR8 and TLR9 ligands for 18 h before measuring IL-6, TNFα and IL-10. Serum was used to confirm the autoantibody status. Cytokine levels were compared with RF, ACPA and DAS28. RESULTS: RA monocytes demonstrated significantly increased IL-6 and TNFα upon TLR1/2 stimulation and IL-6 and IL-10 upon TLR5 activation. TLR7 and TLR9 activation did not induce cytokines and no significant differences were observed between RA and healthy control monocytes upon TLR2/6, TLR4 or TLR8 activation. When stratified by ACPA or RF status there were no correlations between autoantibody status and elevated cytokine levels. However, TLR1/2-induced IL-6 did correlate with DAS28. CONCLUSIONS: Elevated TLR-induced cytokines in RA monocytes were not related to ACPA or RF status. However, TLR1/2-induced IL-6 was associated with disease activity.


Assuntos
Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Citocinas/imunologia , Monócitos/imunologia , Fator Reumatoide/imunologia , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/fisiopatologia , Estudos de Casos e Controles , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-6/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Receptor 5 Toll-Like/agonistas , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
5.
Bioconjug Chem ; 31(11): 2499-2503, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33147965

RESUMO

Cyclic dinucleotides (CDNs), agonists of stimulator of interferon genes (STING), are promising agents for immunotherapy. However, the application of CDNs has been limited by their instability and low transmembrane efficiency. Here, we introduced a conjugated adjuvant of STING and TLR1/2, Pam3CSK4-CDGSF. Conjugating CDGSF with Pam3CSK4 increased the stability and intracellular delivery. In addition, by synergistically activating the STING and TLR pathways, Pam3CSK4-CDGSF was able to enhance immune activation. Both humoral and cellular immune responses were triggered by Pam3CSK4-CDGSF plus OVA (V4), and tumor growth was significantly inhibited after V4 administration. More importantly, V4 can also boost the antigen-specific CD8+ T cell response for cancer cell killing. Thus, the conjugated STING and TLR1/2 agonist Pam3CSK4-CDGSF can serve as a potent adjuvant for vaccine construction to augment antitumor immunotherapy.


Assuntos
Imunoterapia , Lipopeptídeos/farmacologia , Proteínas de Membrana/agonistas , Neoplasias/terapia , Receptor 2 Toll-Like/agonistas , Animais , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunidade Celular , Camundongos , Neoplasias/imunologia , Receptor 1 Toll-Like/agonistas
6.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30337494

RESUMO

Chitin is the second most abundant polysaccharide in nature and linked to fungal infection and asthma. However, bona fide immune receptors directly binding chitin and signaling immune activation and inflammation have not been clearly identified because polymeric crude chitin with unknown purity and molecular composition has been used. By using defined chitin (N-acetyl-glucosamine) oligomers, we here identify six-subunit-long chitin chains as the smallest immunologically active motif and the innate immune receptor Toll-like receptor (TLR2) as a primary fungal chitin sensor on human and murine immune cells. Chitin oligomers directly bind TLR2 with nanomolar affinity, and this fungal TLR2 ligand shows overlapping and distinct signaling outcomes compared to known mycobacterial TLR2 ligands. Unexpectedly, chitin oligomers composed of five or less subunits are inactive, hinting to a size-dependent system of immuno-modulation that appears conserved in plants and humans. Since blocking of the chitin-TLR2 interaction effectively prevents chitin-mediated inflammation in vitro and in vivo, our study highlights the chitin-TLR2 interaction as a potential target for developing novel therapies in chitin-related pathologies and fungal disease.


Assuntos
Quitina/química , Quitina/metabolismo , Fungos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptor 2 Toll-Like/metabolismo , Animais , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitinases/metabolismo , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fatores Imunológicos/farmacologia , Ligantes , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células THP-1 , Receptor 1 Toll-Like/agonistas , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/química , Zimosan/metabolismo
7.
J Am Chem Soc ; 140(43): 14440-14454, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30272974

RESUMO

A screen conducted with nearly 100000 compounds and a surrogate functional assay for stimulation of an immune response that measured the release of TNF-α from treated human THP-1 myeloid cells differentiated along the macrophage line led to the discovery of the diprovocims. Unique to these efforts and of special interest, the screening leads for this new class of activators of an immune response came from a compound library designed to promote cell-surface receptor dimerization. Subsequent comprehensive structure-activity relationship studies improved the potency 800-fold over that of the screening leads, providing diprovocim-1 and diprovocim-2. The diprovocims act by inducing cell-surface toll-like receptor (TLR)-2 dimerization and activation with TLR1 (TLR1/TLR2 agonist), bear no structural similarity to any known natural or synthetic TLR agonist, and are easy to prepare and synthetically modify, and selected members are active in both human and murine systems. The most potent diprovocim (3, diprovocim-1) elicits full agonist activity at extraordinarily low concentrations (EC50 = 110 pM) in human THP-1 cells, being more potent than the naturally derived TLR1/TLR2 agonist Pam3CSK4 or any other known small molecule TLR agonist.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma Experimental/patologia , Camundongos , Conformação Molecular , Células THP-1
8.
J Biol Chem ; 289(5): 3001-12, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24337578

RESUMO

Macrophages in infected tissues may sense microbial molecules that significantly alter their metabolism. In a seeming paradox, these critical host defense cells often respond by increasing glucose catabolism while simultaneously storing fatty acids (FA) as triglycerides (TAG) in lipid droplets. We used a load-chase strategy to study the mechanisms that promote long term retention of TAG in murine and human macrophages. Toll-like receptor (TLR)1/2, TLR3, and TLR4 agonists all induced the cells to retain TAG for ≥3 days. Prolonged TAG retention was accompanied by the following: (a) enhanced FA uptake and FA incorporation into TAG, with long lasting increases in acyl-CoA synthetase long 1 (ACSL1) and diacylglycerol acyltransferase-2 (DGAT2), and (b) decreases in lipolysis and FA ß-oxidation that paralleled a prolonged drop in adipose triglyceride lipase (ATGL). TLR agonist-induced TAG storage is a multifaceted process that persists long after most early pro-inflammatory responses have subsided and may contribute to the formation of "lipid-laden" macrophages in infected tissues.


Assuntos
Células Espumosas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Receptor 1 Toll-Like/agonistas , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Coenzima A Ligases/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Receptor 2 Toll-Like/agonistas , Receptor 3 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
9.
Clin Immunol ; 154(1): 26-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928324

RESUMO

Adoptive immunotherapy is an attractive strategy for glioma treatment. However, some obstacles still need be overcome. In this study, GL261-bearing mice treated with adoptively transferred antigen-specific T cells and systemic injection of bacterial lipoprotein (BLP), a TLR1/2 agonist, got a long-term survival and even immune protection. By analyzing adoptive T cells, it was found that BLP maintained T cell survival, proliferation and anti-tumor efficacy in the brains of tumor-bearing hosts. Moreover, tumor microenvironment was modified by up-regulating IFN-γ-secreting CD8+ T cells and down-regulating MDSC, which might be related with high CXCL10 and low CCL2 expression. In addition, TLR2 deficiency abrogated therapeutic effect with increased MDSC accumulation and decreased IFN-γ-secreting CD8+ T cells in the brains. Thus, the systemic injection of BLP could improve the adoptive T cell therapy by maintaining T cell persistence, modifying the tumor microenvironment and even inducing systemic anti-tumor immunity, which might offer a clinically promising immunotherapeutic strategy for glioma.


Assuntos
Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/transplante , Terapia Baseada em Transplante de Células e Tecidos , Glioma/terapia , Imunoterapia Adotiva , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Lipoproteínas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase
10.
Cell Immunol ; 289(1-2): 119-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759079

RESUMO

Dendritic cells (DCs) are the major sentinel, antigen-presenting and regulatory components of the immune system. One of the central DC functions is to rapidly sense and alert host immune system of a pathogen invasion. In the present study, we investigated the role of DC exosomes (DCex) in this sentinel function. We demonstrated that DCex could bind bacterial Toll-like-receptor ligands (TLR-Ls), and acquire their ability to strongly activate bystander DCs. Consequently, bystander DCs enhance the expression of transmembrane tumor necrosis factor, secretion of proinflammatory cytokines and cross-talk with natural killer cells leading to the elevated secretion of IFNγ. These findings newly show that DCex can bind and cross-present TLR-Ls to innate-immunity effector cells, and indicate a potent mechanism to systemically alert the host immune system of pathogen invasion. They also suggest a potential novel strategy to generate effective vaccines by binding TLR-L-immune adjuvants to DCex.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Efeito Espectador/imunologia , Células Dendríticas/imunologia , Exossomos/imunologia , Células Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno/imunologia , Feminino , Interferon gama/metabolismo , Lipopeptídeos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos SCID , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/imunologia
11.
Genes Immun ; 14(1): 52-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23151486

RESUMO

Toll-like receptor (TLR)-mediated innate immune responses are important in early host defense. Using a candidate gene approach, we previously identified genetic variation within TLR1 that is associated with hyper-responsiveness to a TLR1/2 agonist in vitro and with death and organ dysfunction in patients with sepsis. Here we report a genome-wide association study (GWAS) designed to identify genetic loci controlling whole blood cytokine responses to the TLR1/2 lipopeptide agonist, Pam(3)CSK(4) (N-palmitoyl-S-dipalmitoylglyceryl Cys-Ser-(Lys)(4)) ex vivo. We identified a very strong association (P<1 × 10(-27)) between genetic variation within the TLR10/1/6 locus on chromosome 4, and Pam(3)CSK(4)-induced cytokine responses. This was the predominant association explaining over 35% of the population variance for this phenotype. Notably, strong associations were observed within TLR10, suggesting that genetic variation in TLR10 may influence bacterial lipoprotein-induced responses. These findings establish the TLR10/1/6 locus as the dominant common genetic factor controlling interindividual variability in Pam(3)CSK(4)-induced whole blood responses in the healthy population.


Assuntos
Citocinas/sangue , Polimorfismo Genético/imunologia , Receptores Toll-Like/genética , Adulto , Cromossomos Humanos Par 4/genética , Citocinas/genética , Citocinas/imunologia , Feminino , Genes Dominantes , Estudo de Associação Genômica Ampla , Humanos , Imunidade Inata/genética , Lipopeptídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo Genético/genética , Receptor 1 Toll-Like/agonistas , Receptor 1 Toll-Like/genética , Receptor 10 Toll-Like/genética , Receptor 2 Toll-Like/agonistas , Receptor 6 Toll-Like/genética , Receptores Toll-Like/agonistas
12.
Retrovirology ; 10: 119, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24156240

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are crucial for recognition of pathogen-associated molecular patterns by cells of the innate immune system. TLRs are present and functional in CD4⁺ T cells. Memory CD4⁺ T cells, predominantly central memory cells (TCM), constitute the main reservoir of latent HIV-1. However, how TLR ligands affect the quiescence of latent HIV within central memory CD4⁺ T cells has not been studied. RESULTS: We evaluated the ability of a broad panel of TLR agonists to reactivate latent HIV-1. The TLR-1/2 agonist Pam3CSK4 leads to viral reactivation of quiescent HIV in a model of latency based on cultured TCM and in resting CD4⁺ T cells isolated from aviremic patients. In addition, we investigated the signaling pathway associated with Pam3CSK4 involved in HIV-1 reactivation. We show that the transcription factors NFκB, NFAT and AP-1 cooperate to induce viral reactivation downstream of TLR-1/2 stimulation. Furthermore, increasing levels of cyclin T1 is not required for TLR-mediated viral reactivation, but induction of viral expression requires activated pTEFb. Finally, Pam3CSK4 reactivates latent HIV-1 in the absence of T cell activation or proliferation, in contrast to antigen stimulation. CONCLUSIONS: Our findings suggest that the signaling through TLR-1/2 pathway via Pam3CSK4 or other reagents should be explored as an anti-latency strategy either alone or in combination with other anti-latency drugs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Lipopeptídeos/metabolismo , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Ativação Viral , Adolescente , Adulto , Humanos , Lipopeptídeos/imunologia , Transdução de Sinais , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia , Adulto Jovem
13.
Cancer Immunol Immunother ; 62(10): 1587-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917775

RESUMO

Liposomes are frequently used in cancer therapy to encapsulate and apply anticancer drugs. Here, we show that a systemic treatment of mice bearing skin tumors with empty phosphatidylcholine liposomes (PCL) resulted in inhibition of tumor growth, which was similar to that observed with the synthetic bacterial lipoprotein and TLR1/2 agonist Pam(3)CSK(4) (BLP). Both compounds led to a substantial decrease of macrophages in spleen and in the tumor-bearing skin. Furthermore, both treatments induced the expression of typical macrophage markers in the tumor-bearing tissue. As expected, BLP induced the expression of the M1 marker genes Cxcl10 and iNOS, whereas PCL, besides inducing iNOS, also increased the M2 marker genes Arg1 and Trem2. In vitro experiments demonstrated that neither PCL nor BLP influenced proliferation or survival of tumor cells, whereas both compounds inhibited proliferation and survival and increased the migratory capacity of bone marrow-derived macrophages (BMDM). However, in contrast to BLP, PCL did not activate cytokine secretion and induced a different BMDM phenotype. Together, the data suggest that similar to BLP, PCL induce an antitumor response by influencing the tumor microenvironment, in particular by functional alterations of macrophages, however, in a distinct manner from those induced by BLP.


Assuntos
Carcinoma Basocelular/tratamento farmacológico , Lipopeptídeos/farmacologia , Lipossomos/farmacologia , Macrófagos/efeitos dos fármacos , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Carcinoma Basocelular/imunologia , Carcinoma Basocelular/metabolismo , Expressão Gênica , Macrófagos/imunologia , Camundongos , Distribuição Aleatória , Receptor 1 Toll-Like/imunologia , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
14.
Clin Exp Allergy ; 43(7): 785-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23786285

RESUMO

BACKGROUND: Exposure to the environment of traditional farms can protect children from some allergic disease. Due to this exposure, TLR2 expression in these children is increased. TLR2 ligands derived from gram-positive bacteria are found in the dust of these farms. OBJECTIVES: We proved whether a synthetic lipopeptide binding to the TLR1/2 heterodimer is able to protect from allergic disease in two different murine models of allergy. We also investigated the immunological mechanisms underlying the protective properties of the lipopeptide. METHODS: We synthesized a lipopeptide derived from a germination lipoprotein of Bacillus cereus (LPGerD). We evaluated the immunomodulatory activity of LPGerD in a murine model of systemic sensitization (OVA/Alum) and in a model in which mice were sensitized with OVA pulsed bone-marrow-derived dendritic cells (BMDCs) via the airways. Furthermore, the induction of LPS tolerance was studied. RESULTS: Treatment of mice with LPGerD in a mouse model of asthma led to protection against sensitization and airway inflammation. Similarly, bone-marrow-derived dendritic cells (BMDCs) pre-treated with LPGerD were not able to prime mice for allergic immune response. We observed that pre-treatment with LPGerD led to the induction of a LPS-tolerant state in BMDCs. These cells secreted markedly lower amounts of pro-inflammatory cytokines upon LPS stimulation. Furthermore, we observed an up-regulation of IRAK-M mRNA in BMDCs pre-treated with LPGerD. CONCLUSIONS AND CLINICAL RELEVANCE: Our results suggest that induction of a LPS-tolerant state in antigen-presenting cells (APCs) may contribute to the protective effect of a farming environment. TLR2 agonists similar to those appearing in cowshed dust extracts, such as our synthetic LPGerD, lead to the ignorance of the LPS stimulus, which is important for the activation of APCs to mount a Th2 immune response. This substance might be a promising candidate for allergy-preventive treatments as LPGerD had only low pro-inflammatory characteristics.


Assuntos
Asma/tratamento farmacológico , Bacillus cereus/química , Proteínas de Bactérias , Tolerância Imunológica/efeitos dos fármacos , Lipopeptídeos , Lipopolissacarídeos/toxicidade , Animais , Asma/induzido quimicamente , Asma/imunologia , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Tolerância Imunológica/genética , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor 1 Toll-Like/agonistas , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
15.
J Immunol ; 186(4): 1963-9, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21217015

RESUMO

Using TLR agonists in cancer treatment can have either beneficial or detrimental effects. Therefore, it is important to determine their effect on the tumor growth and understand the underlying mechanisms in animal tumor models. In this study, we report a general immunotherapeutic activity of a synthetic bacterial lipoprotein (BLP), a TLR1/TLR2 agonist, on established lung carcinoma, leukemia, and melanoma in mice. Systemic treatment of 3LL tumor-bearing mice with BLP, but not LPS, led to a dose-dependent tumor regression and a long-lasting protective response against tumor rechallenge. The BLP-mediated tumor remission was neither mediated by a direct tumoricidal activity nor by innate immune cells, because it lacked therapeutic effect in immunodeficient SCID mice. Instead, BLP treatment reduced the suppressive function of Foxp3(+) regulatory T cells (Tregs) and enhanced the cytotoxicity of tumor-specific CTL in vitro and in vivo. Furthermore, adoptive cotransfer of BLP-pretreated but not untreated CTL and Tregs from wild-type but not from TLR2(-/-) mice was sufficient to restore antitumor immunity in SCID mice by reciprocally modulating Treg and CTL function. These results demonstrate that the TLR1/TLR2 agonist BLP may have a general tumor therapeutic property involving reciprocal downregulation of Treg and upregulation of CTL function. This property may play an important role in the development of novel antitumor strategies.


Assuntos
Carcinoma Pulmonar de Lewis/prevenção & controle , Leucemia Experimental/prevenção & controle , Melanoma Experimental/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Antineoplásicos/agonistas , Antineoplásicos/síntese química , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/uso terapêutico , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Regulação para Baixo/imunologia , Humanos , Leucemia Experimental/imunologia , Leucemia Experimental/patologia , Lipoproteínas/síntese química , Lipoproteínas/uso terapêutico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Camundongos SCID , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/transplante , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/transplante , Receptor 1 Toll-Like/fisiologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/fisiologia , Regulação para Cima/imunologia
16.
J Nanobiotechnology ; 11: 29, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23964697

RESUMO

BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NP>chitosan DNA NP=DNA unloaded chitosan NP>control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).


Assuntos
Brônquios/metabolismo , DNA/metabolismo , Epitélio/metabolismo , Nanopartículas/química , Plasmídeos/metabolismo , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Quitosana/farmacologia , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Interleucina-8/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microscopia Confocal , Modelos Biológicos , Peso Molecular , Monócitos/citologia , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
J Lipid Res ; 53(10): 2126-2132, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22822027

RESUMO

Atherosclerosis is a chronic inflammatory vascular disease. Toll-like receptors (TLRs) are major initiators of inflammation. TLR2 promotes atherosclerosis in LDL receptor (LDLr)-deficient mice fed a high-fat diet (HFD). TLR2 forms heterodimers with TLR1 or TLR6 to enable inflammatory responses in the presence of distinct ligands. Here we asked whether TLR1 and/or TLR6 are required. We studied atherosclerotic disease using either TLR1- or TLR6-deficient mice. Deficiency of TLR1 or TLR6 did not diminish HFD-driven disease. When HFD-fed LDLr-deficient mice were challenged with Pam3 or MALP2, specific exogenous ligands of TLR2/1 or TLR2/6, respectively, atherosclerotic lesions developed with remarkable intensity in the abdominal segment of the descending aorta. In contrast to atherosclerosis induced by the endogenous agonists, these lesions were diminished by deficiency of either TLR1 or TLR6. The endogenous ligand(s) that arise from consumption of a HFD and promote disease via TLR2 are unknown. Either TLR1 or TLR6 are redundant for this endogenous ligand detection, or they are both irrelevant to endogenous ligand detection. However, the exogenous ligands Pam3 and MALP2 promote severe abdominal atherosclerosis in the descending aorta that is dependent on TLR1 and TLR6, respectively.


Assuntos
Aterosclerose/metabolismo , Receptor 1 Toll-Like/agonistas , Receptor 6 Toll-Like/agonistas , Animais , Dieta Hiperlipídica , Ligantes , Lipopeptídeos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais
18.
J Immunol ; 184(9): 5094-103, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20348427

RESUMO

TLRs are central receptors of the innate immune system that drive host inflammation and adaptive immune responses in response to invading microbes. Among human TLRs, TLR10 is the only family member without a defined agonist or function. Phylogenetic analysis reveals that TLR10 is most related to TLR1 and TLR6, both of which mediate immune responses to a variety of microbial and fungal components in cooperation with TLR2. The generation and analysis of chimeric receptors containing the extracellular recognition domain of TLR10 and the intracellular signaling domain of TLR1, revealed that TLR10 senses triacylated lipopeptides and a wide variety of other microbial-derived agonists shared by TLR1, but not TLR6. TLR10 requires TLR2 for innate immune recognition, and these receptors colocalize in the phagosome and physically interact in an agonist-dependent fashion. Computational modeling and mutational analysis of TLR10 showed preservation of the essential TLR2 dimer interface and lipopeptide-binding channel found in TLR1. Coimmunoprecipitation experiments indicate that, similar to TLR2/1, TLR2/10 complexes recruit the proximal adaptor MyD88 to the activated receptor complex. However, TLR10, alone or in cooperation with TLR2, fails to activate typical TLR-induced signaling, including NF-kappaB-, IL-8-, or IFN-beta-driven reporters. We conclude that human TLR10 cooperates with TLR2 in the sensing of microbes and fungi but possesses a signaling function distinct from that of other TLR2 subfamily members.


Assuntos
Imunidade Inata , Modelos Imunológicos , Transdução de Sinais/imunologia , Receptor 10 Toll-Like/fisiologia , Receptor 1 Toll-Like/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Espaço Extracelular/química , Espaço Extracelular/genética , Espaço Extracelular/imunologia , Humanos , Imunidade Inata/genética , Lipopeptídeos/síntese química , Lipopeptídeos/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Estrutura Terciária de Proteína/genética , Pseudogenes/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Receptor 1 Toll-Like/agonistas , Receptor 1 Toll-Like/química , Receptor 1 Toll-Like/deficiência , Receptor 10 Toll-Like/agonistas , Receptor 10 Toll-Like/química , Receptor 10 Toll-Like/deficiência , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/fisiologia
19.
J Med Chem ; 65(13): 9230-9252, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767437

RESUMO

The diprovocims, a new class of toll-like receptor (TLR) agonists, bear no similarity to prior TLR agonists, act through a well-defined mechanism (TLR1/TLR2 agonist), exhibit exquisite structure-activity relationships, and display in vivo adjuvant activity. They possess potent and efficacious agonist activity toward human TLR1/TLR2 but modest agonism toward the murine receptor. A manner by which diprovocims can be functionalized without impacting hTLR1/TLR2 activity is detailed, permitting future linkage to antigenic, targeting, or delivery moieties. Improvements in both potency and its low efficacy in the murine system were also achieved, permitting more effective use in animal models while maintaining the hTLR1/TLR2 activity. The prototypical member diprovocim-X exhibits the excellent potency/efficacy of diprovocim-1 in human cells, displays substantially improved potency/efficacy in mouse macrophages, and serves as an adjuvant in mice when coadministered with a nonimmunogenic antigen, indicating stimulation of the adaptive as well as innate immune response.


Assuntos
Receptor 1 Toll-Like , Receptor 2 Toll-Like , Imunidade Adaptativa , Adjuvantes Imunológicos/farmacologia , Animais , Ciclopropanos , Humanos , Camundongos , Pirrolidinas , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas
20.
Immunobiology ; 227(2): 152186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131544

RESUMO

In this study, we have identified Interferon-stimulated genes (ISGs), especially IFIT1, 2 and 3, as target genes of propionate-induced signalling in the human epithelial cell line A549, the monocytic cell line THP-1 as well as in primary, human peripheral blood-derived macrophages (PBMs). Induction of the IFIT gene family by propionate negatively regulates TLR-induced signalling. Propionate stimulation results in downregulation of pro-inflammatory cytokine and chemokine expression as well as MHC class II expression upon TLR1/2 and TLR4 re-stimulation in A549 and THP-1 cells as well as in PBMs, demonstrating that propionate-induced signalling is involved in the induction of TLR cross-tolerance. Signalling pathway analysis clearly demonstrates that propionate-induced IFIT expression is mediated by FFAR2 in a Gαq/11 signalling pathway-dependent manner. Furthermore, propionate-induced IFIT expression is dependent on IFN type I and/or type III-mediated signalling since pre-treatment of A549 cells with Ruxolitinib, a specific JAK1/2 tyrosine kinase inhibitor, prior to stimulation with propionate, inhibited the upregulation of IFIT1 expression. The hypo-responsiveness towards TLR1/2 and TLR4 agonists seems to be mediated by different members of the IFIT gene family in a cell type-specific manner. Collectively, our data indicate that propionate-induced signalling controls pro-inflammatory responses by activation of IFN type I and/or type III-induced and IFIT-mediated counter-regulatory mechanisms in order to protect against exacerbating inflammatory reactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Propionatos , Proteínas de Ligação a RNA , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Propionatos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Células THP-1 , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa