Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.143
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664585

RESUMO

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Assuntos
Ferro , Microambiente Tumoral , Animais , Ferro/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Lipocalina-2/imunologia , Feminino , Simbiose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Macrófagos/imunologia , Camundongos Knockout
2.
Nat Immunol ; 22(7): 829-838, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963333

RESUMO

The innate immune response is critical for recognizing and controlling infections through the release of cytokines and chemokines. However, severe pathology during some infections, including SARS-CoV-2, is driven by hyperactive cytokine release, or a cytokine storm. The innate sensors that activate production of proinflammatory cytokines and chemokines during COVID-19 remain poorly characterized. In the present study, we show that both TLR2 and MYD88 expression were associated with COVID-19 disease severity. Mechanistically, TLR2 and Myd88 were required for ß-coronavirus-induced inflammatory responses, and TLR2-dependent signaling induced the production of proinflammatory cytokines during coronavirus infection independent of viral entry. TLR2 sensed the SARS-CoV-2 envelope protein as its ligand. In addition, blocking TLR2 signaling in vivo provided protection against the pathogenesis of SARS-CoV-2 infection. Overall, our study provides a critical understanding of the molecular mechanism of ß-coronavirus sensing and inflammatory cytokine production, which opens new avenues for therapeutic strategies to counteract the ongoing COVID-19 pandemic.


Assuntos
COVID-19/imunologia , Proteínas do Envelope de Coronavírus/metabolismo , Síndrome da Liberação de Citocina/imunologia , SARS-CoV-2/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Chlorocebus aethiops , Síndrome da Liberação de Citocina/diagnóstico , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares , Macrófagos , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Cultura Primária de Células , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Células Vero , Tratamento Farmacológico da COVID-19
3.
Nat Immunol ; 21(1): 30-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819254

RESUMO

NLRP3-inflammasome-driven inflammation is involved in the pathogenesis of a variety of diseases. Identification of endogenous inflammasome activators is essential for the development of new anti-inflammatory treatment strategies. Here, we identified that apolipoprotein C3 (ApoC3) activates the NLRP3 inflammasome in human monocytes by inducing an alternative NLRP3 inflammasome via caspase-8 and dimerization of Toll-like receptors 2 and 4. Alternative inflammasome activation in human monocytes is mediated by the Toll-like receptor adapter protein SCIMP. This triggers Lyn/Syk-dependent calcium entry and the production of reactive oxygen species, leading to activation of caspase-8. In humanized mouse models, ApoC3 activated human monocytes in vivo to impede endothelial regeneration and promote kidney injury in an NLRP3- and caspase-8-dependent manner. These data provide new insights into the regulation of the NLRP3 inflammasome and the pathophysiological role of triglyceride-rich lipoproteins containing ApoC3. Targeting ApoC3 might prevent organ damage and provide an anti-inflammatory treatment for vascular and kidney diseases.


Assuntos
Injúria Renal Aguda/imunologia , Apolipoproteína C-III/imunologia , Caspase 8/metabolismo , Nefropatias/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Injúria Renal Aguda/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apolipoproteína C-III/genética , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Nefropatias/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Cell ; 168(5): 789-800.e10, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28235196

RESUMO

The molecular basis of the incomplete penetrance of monogenic disorders is unclear. We describe here eight related individuals with autosomal recessive TIRAP deficiency. Life-threatening staphylococcal disease occurred during childhood in the proband, but not in the other seven homozygotes. Responses to all Toll-like receptor 1/2 (TLR1/2), TLR2/6, and TLR4 agonists were impaired in the fibroblasts and leukocytes of all TIRAP-deficient individuals. However, the whole-blood response to the TLR2/6 agonist staphylococcal lipoteichoic acid (LTA) was abolished only in the index case individual, the only family member lacking LTA-specific antibodies (Abs). This defective response was reversed in the patient, but not in interleukin-1 receptor-associated kinase 4 (IRAK-4)-deficient individuals, by anti-LTA monoclonal antibody (mAb). Anti-LTA mAb also rescued the macrophage response in mice lacking TIRAP, but not TLR2 or MyD88. Thus, acquired anti-LTA Abs rescue TLR2-dependent immunity to staphylococcal LTA in individuals with inherited TIRAP deficiency, accounting for incomplete penetrance. Combined TIRAP and anti-LTA Ab deficiencies underlie staphylococcal disease in this patient.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/deficiência , Receptores de Interleucina-1/deficiência , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Ácidos Teicoicos/metabolismo , Imunidade Adaptativa , Criança , Feminino , Fibroblastos/metabolismo , Humanos , Imunidade Inata , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Linhagem , Fagócitos/metabolismo , Mutação Puntual , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Receptores de Interleucina-1/análise , Receptores de Interleucina-1/genética , Infecções Estafilocócicas/tratamento farmacológico , Ácidos Teicoicos/imunologia , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
5.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110312

RESUMO

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/tratamento farmacológico , Parabiose , Ligação Proteica , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Nat Immunol ; 16(8): 838-849, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147685

RESUMO

Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.


Assuntos
Interferon gama/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/imunologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/genética , Microscopia de Fluorescência , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição HES-1
7.
Mol Cell Proteomics ; 23(8): 100809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936775

RESUMO

Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.


Assuntos
Canal de Potássio Kv1.3 , Microglia , Proteômica , Fator de Transcrição STAT1 , Receptor 4 Toll-Like , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Animais , Proteômica/métodos , Camundongos , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição STAT1/metabolismo , Linhagem Celular , Receptor 2 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Ligação Proteica
8.
Proc Natl Acad Sci U S A ; 120(29): e2207993120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428931

RESUMO

Osteoarthritis (OA) is a joint disease featuring cartilage breakdown and chronic pain. Although age and joint trauma are prominently associated with OA occurrence, the trigger and signaling pathways propagating their pathogenic aspects are ill defined. Following long-term catabolic activity and traumatic cartilage breakdown, debris accumulates and can trigger Toll-like receptors (TLRs). Here we show that TLR2 stimulation suppressed the expression of matrix proteins and induced an inflammatory phenotype in human chondrocytes. Further, TLR2 stimulation impaired chondrocyte mitochondrial function, resulting in severely reduced adenosine triphosphate (ATP) production. RNA-sequencing analysis revealed that TLR2 stimulation upregulated nitric oxide synthase 2 (NOS2) expression and downregulated mitochondria function-associated genes. NOS inhibition partially restored the expression of these genes, and rescued mitochondrial function and ATP production. Correspondingly, Nos2-/- mice were protected from age-related OA development. Taken together, the TLR2-NOS axis promotes human chondrocyte dysfunction and murine OA development, and targeted interventions may provide therapeutic and preventive approaches in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Condrócitos/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Osteoartrite/metabolismo , Receptores Toll-Like/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas
9.
Traffic ; 24(11): 508-521, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37491993

RESUMO

Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.


Assuntos
Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Transporte Proteico
10.
Eur J Immunol ; 54(3): e2350776, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191758

RESUMO

Gingival fibroblasts (GFs) are abundant structural cells of the periodontium that contribute to the host's innate immunity by producing cytokines and chemokines in response to oral pathogens, such as Porphyromonas gingivalis. Isolated lipopolysaccharide (Pg-LPS) is commonly used to study GF responses to P. gingivalis; however, this approach produced conflicting observations regarding its proinflammatory potential and the engagement of specific Toll-like receptors (TLRs). In this work, we demonstrate that commercially available Pg-LPS preparations are weak activators of GF innate immune responses compared with live P. gingivalis or other relevant virulence factors, such as P. gingivalis fimbriae or LPS from Escherichia coli. GF's nonresponsiveness to Pg-LPS can be only partly attributed to the low expression of TLR4 and its accessory molecules, CD14 and LY36, and is likely caused by the unique structure and composition of the Pg-LPS lipid A. Finally, we combined gene silencing and neutralizing antibody studies to demonstrate that GF response to infection with live P. gingivalis relies predominantly on TLR2. In contrast, the LPS-TLR4 signaling plays a negligible role in inflammatory cytokine production by GFs exposed to this oral pathogen, confirming that Pg-LPS stimulation is not an optimal model for studies of GF responses to P. gingivalis.


Assuntos
Lipopolissacarídeos , Porphyromonas gingivalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fibroblastos
11.
Eur J Immunol ; 54(10): e2350897, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38988146

RESUMO

The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.


Assuntos
Temperatura Baixa , Inflamação , Receptor 2 Toll-Like , Animais , Ratos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Inflamação/imunologia , Masculino , Humanos , Termogênese/imunologia , Citocinas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Tecido Adiposo Marrom/imunologia , Tecido Adiposo Marrom/metabolismo , Aclimatação/imunologia , Linfócitos T/imunologia
12.
Eur J Immunol ; 54(5): e2350715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446066

RESUMO

Although a role for TLR2 on T cells has been indicated in prior studies, in vivo stimulation of TLR2 on T cells by Mtb and its impact on Mtb infection has not been tested. Furthermore, it is not known if the enhanced susceptibility to Mtb of Tlr2 gene knockout mice is due to its role in macrophages, T cells, or both. To address TLR2 on T cells, we generated Tlr2fl/flxCd4cre/cre mice, which lack expression of TLR2 on both CD4 and CD8 T cells, to study the in vivo role of TLR2 on T cells after aerosol infection with virulent Mtb. Deletion of TLR2 in CD4+ and CD8+ T cells reduces their ability to be co-stimulated by TLR2 ligands for cytokine production. These include both pro- (IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-10). Deletion of TLR2 in T cells affected control of Mtb in the lungs and spleens of infected mice. This suggests that T-cell co-stimulation by mycobacterial TLR2 ligands in vivo contributes to the control of Mtb infection in the lung and spleen.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Camundongos Knockout , Mycobacterium tuberculosis , Receptor 2 Toll-Like , Tuberculose , Animais , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/microbiologia , Baço/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Citocinas/metabolismo , Citocinas/imunologia
13.
PLoS Pathog ; 19(4): e1011284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37023213

RESUMO

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that thrives in the inflamed environment of the gingival crevice, and is strongly associated with periodontal disease. The host response to P. gingivalis requires TLR2, however P. gingivalis benefits from TLR2-driven signaling via activation of PI3K. We studied TLR2 protein-protein interactions induced in response to P. gingivalis, and identified an interaction between TLR2 and the cytoskeletal protein vinculin (VCL), confirmed using a split-ubiquitin system. Computational modeling predicted critical TLR2 residues governing the physical association with VCL, and mutagenesis of interface residues W684 and F719, abrogated the TLR2-VCL interaction. In macrophages, VCL knock-down led to increased cytokine production, and enhanced PI3K signaling in response to P. gingivalis infection, effects that correlated with increased intracellular bacterial survival. Mechanistically, VCL suppressed TLR2 activation of PI3K by associating with its substrate PIP2. P. gingivalis induction of TLR2-VCL led to PIP2 release from VCL, enabling PI3K activation via TLR2. These results highlight the complexity of TLR signaling, and the importance of discovering protein-protein interactions that contribute to the outcome of infection.


Assuntos
Porphyromonas gingivalis , Receptor 2 Toll-Like , Porphyromonas gingivalis/genética , Receptor 2 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Evasão da Resposta Imune , Vinculina/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
14.
Am J Pathol ; 194(9): 1664-1683, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885924

RESUMO

Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.


Assuntos
Bifidobacterium bifidum , Mucosa Intestinal , Quinase de Cadeia Leve de Miosina , PPAR gama , Permeabilidade , Junções Íntimas , Receptor 2 Toll-Like , Fator de Transcrição RelA , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Bifidobacterium bifidum/metabolismo , Bifidobacterium bifidum/fisiologia , Células CACO-2 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Quinase de Cadeia Leve de Miosina/metabolismo , Permeabilidade/efeitos dos fármacos , PPAR gama/metabolismo , Probióticos/farmacologia , Junções Íntimas/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor 6 Toll-Like
15.
J Immunol ; 210(9): 1386-1395, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897262

RESUMO

LPS interacts with TLR4, which play important roles in host-against-pathogen immune responses, by binding to MD-2 and inducing an inflammatory response. In this study, to our knowledge, we found a novel function of lipoteichoic acid (LTA), a TLR2 ligand, that involves suppression of TLR4-mediated signaling independently of TLR2 under serum-free conditions. LTA inhibited NF-κB activation induced by LPS or a synthetic lipid A in a noncompetitive manner in human embryonic kidney 293 cells expressing CD14, TLR4, and MD-2. This inhibition was abrogated by addition of serum or albumin. LTAs from different bacterial sources also inhibited NF-κB activation, although LTA from Enterococcus hirae had essentially no TLR2-mediated NF-κB activation. The TLR2 ligands tripalmitoyl-Cys-Ser-Lys-Lys-Lys-Lys (Pam3CSK4) and macrophage-activating lipopeptide-2 (MALP-2) did not affect the TLR4-mediated NF-κB activation. In bone marrow-derived macrophages from TLR2-/- mice, LTA inhibited LPS-induced IκB-α phosphorylation and production of TNF, CXCL1/KC, RANTES, and IFN-ß without affecting cell surface expression of TLR4. LTA did not suppress IL-1ß-induced NF-κB activation mediated through signaling pathways shared with TLRs. LTAs including E. hirae LTA, but not LPS, induced association of TLR4/MD-2 complexes, which was suppressed by serum. LTA also increased association of MD-2, but not TLR4 molecules. These results demonstrate that, under serum-free conditions, LTA induces association of MD-2 molecules to promote formation of an inactive TLR4/MD-2 complex dimer that in turn prevents TLR4-mediated signaling. The presence of LTA that poorly induces TLR2-mediated activation but inhibits TLR4 signaling provides insight into the role of Gram-positive bacteria in suppressing inflammation induced by Gram-negative bacteria in organs such as the intestines where serum is absent.


Assuntos
Lipopolissacarídeos , Receptor 2 Toll-Like , Animais , Camundongos , Humanos , Receptor 2 Toll-Like/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Ácidos Teicoicos/farmacologia
16.
Mol Ther ; 32(10): 3597-3617, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39066478

RESUMO

Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.


Assuntos
Células Apresentadoras de Antígenos , Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Receptor 2 Toll-Like , Vacinas Anticâncer/imunologia , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Humanos , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linhagem Celular Tumoral , Ligantes , Feminino , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias/imunologia , Modelos Animais de Doenças
17.
J Infect Dis ; 230(1): 188-197, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052722

RESUMO

The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.


Assuntos
Citocinas , Endossomos , Interferon Tipo I , Transdução de Sinais , Streptococcus suis , Receptor 2 Toll-Like , Streptococcus suis/imunologia , Streptococcus suis/patogenicidade , Streptococcus suis/metabolismo , Interferon Tipo I/metabolismo , Receptor 2 Toll-Like/metabolismo , Citocinas/metabolismo , Animais , Endossomos/metabolismo , Camundongos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos Endogâmicos C57BL
18.
J Infect Dis ; 229(6): 1637-1647, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38147361

RESUMO

BACKGROUND: The pathogenesis of Chlamydia trachomatis is associated with the induction of the host inflammatory response; however, the precise underlying molecular mechanisms remain poorly understood. METHODS: CT622, a T3SS effector protein, has an important role in the pathogenesis of C trachomatis; however, whether CT622 can induce a host inflammatory response is not understood. Our findings demonstrate that CT622 induces the expression of interleukins 6 and 8 (IL-6 and IL-8). Mechanistically, these effects involve the activation of the MAPK/NF-κB signaling pathways (mitogen-activated protein kinase/nuclear factor κB). RESULTS: Interestingly, we demonstrated that the suppression of toll-like receptor 4 using small interfering RNA markedly reduced the phosphorylation of ERK, p38, JNK, and IκBα, concomitant with a significant decrease in IL-6 and IL-8 secretion. Conversely, disruption of toll-like receptor 2 abrogated the CT622-induced upregulation of IL-8 and activation of ERK, whereas IL-6 expression and p38, JNK, and IκBα phosphorylation were unaffected. CONCLUSIONS: Taken together, these results indicate that CT622 contributes to the inflammatory response through the toll-like receptor 2/4-mediated MAPK/NF-κB pathways, which provides insight into the molecular pathology of C trachomatis infection.


Assuntos
Chlamydia trachomatis , Citocinas , NF-kappa B , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Humanos , Chlamydia trachomatis/imunologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Células THP-1 , Citocinas/metabolismo , Transdução de Sinais , Interleucina-6/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/metabolismo , Interleucina-8/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação
19.
Traffic ; 23(12): 558-567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224049

RESUMO

Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Borrelia burgdorferi/metabolismo , Ligantes , Doença de Lyme/genética , Doença de Lyme/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fagossomos/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas rab de Ligação ao GTP , Animais , Camundongos
20.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629841

RESUMO

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Assuntos
Células Epiteliais , Lipoproteínas , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Nasofaringe/microbiologia , Mutação , Aderência Bacteriana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa