Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.372
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606976

RESUMO

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Assuntos
Antidepressivos/farmacologia , Receptor trkB/metabolismo , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Colesterol/metabolismo , Embrião de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Modelos Animais , Simulação de Dinâmica Molecular , Domínios Proteicos , Ratos , Receptor trkB/química , Córtex Visual/metabolismo
2.
Cell ; 177(1): 8, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901551

RESUMO

Larotrectinib is a small-molecule kinase inhibitor that targets NTRK fusions that occur in multiple types of cancer. Its FDA approval represents the first instance of a treatment indication being designated "tumor-agnostic" from the outset, being based on actionable genomic insights. To view this Bench to Bedside, open or download the PDF.


Assuntos
Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Humanos , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/agonistas , Receptor trkB/metabolismo
3.
Cell ; 159(7): 1640-51, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525881

RESUMO

The perception of touch, including the direction of stimulus movement across the skin, begins with activation of low-threshold mechanosensory neurons (LTMRs) that innervate the skin. Here, we show that murine Aδ-LTMRs are preferentially tuned to deflection of body hairs in the caudal-to-rostral direction. This tuning property is explained by the finding that Aδ-LTMR lanceolate endings around hair follicles are polarized; they are concentrated on the caudal (downward) side of each hair follicle. The neurotrophic factor BDNF is synthesized in epithelial cells on the caudal, but not rostral, side of hair follicles, in close proximity to Aδ-LTMR lanceolate endings, which express TrkB. Moreover, ablation of BDNF in hair follicle epithelial cells disrupts polarization of Aδ-LTMR lanceolate endings and results in randomization of Aδ-LTMR responses to hair deflection. Thus, BDNF-TrkB signaling directs polarization of Aδ-LTMR lanceolate endings, which underlies direction-selective responsiveness of Aδ-LTMRs to hair deflection.


Assuntos
Gânglios Espinais/fisiologia , Folículo Piloso/fisiologia , Mecanorreceptores/fisiologia , Tato , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Embrião de Mamíferos , Células Epiteliais/fisiologia , Folículo Piloso/citologia , Técnicas In Vitro , Mecanorreceptores/classificação , Camundongos , Receptor trkB/metabolismo
4.
Nature ; 623(7986): 366-374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914930

RESUMO

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.


Assuntos
Adaptação Fisiológica , Glioma , Plasticidade Neuronal , Sinapses , Animais , Criança , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Progressão da Doença , Glioma/metabolismo , Glioma/patologia , Ácido Glutâmico/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Microambiente Tumoral , Optogenética
5.
Trends Biochem Sci ; 49(5): 445-456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433044

RESUMO

TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.


Assuntos
Glicoproteínas de Membrana , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/química , Animais , Domínios Proteicos , Transdução de Sinais , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/química , Antidepressivos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/química
6.
EMBO J ; 43(16): 3358-3387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977849

RESUMO

Tetanus neurotoxin (TeNT) causes spastic paralysis by inhibiting neurotransmission in spinal inhibitory interneurons. TeNT binds to the neuromuscular junction, leading to its internalisation into motor neurons and subsequent transcytosis into interneurons. While the extracellular matrix proteins nidogens are essential for TeNT binding, the molecular composition of its receptor complex remains unclear. Here, we show that the receptor-type protein tyrosine phosphatases LAR and PTPRδ interact with the nidogen-TeNT complex, enabling its neuronal uptake. Binding of LAR and PTPRδ to the toxin complex is mediated by their immunoglobulin and fibronectin III domains, which we harnessed to inhibit TeNT entry into motor neurons and protect mice from TeNT-induced paralysis. This function of LAR is independent of its role in regulating TrkB receptor activity, which augments axonal transport of TeNT. These findings reveal a multi-subunit receptor complex for TeNT and demonstrate a novel trafficking route for extracellular matrix proteins. Our study offers potential new avenues for developing therapeutics to prevent tetanus and dissecting the mechanisms controlling the targeting of physiological ligands to long-distance axonal transport in the nervous system.


Assuntos
Glicoproteínas de Membrana , Neurônios Motores , Toxina Tetânica , Animais , Camundongos , Toxina Tetânica/metabolismo , Neurônios Motores/metabolismo , Glicoproteínas de Membrana/metabolismo , Humanos , Moléculas de Adesão Celular/metabolismo , Ligação Proteica , Receptor trkB/metabolismo , Transporte Axonal , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores
7.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621124

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cálcio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio da Dieta , Receptor trkB/genética , Receptor trkB/metabolismo , Glutamatos/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(3): e2214833120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634145

RESUMO

We have previously shown that recovery of visual responses to a deprived eye during the critical period in mouse primary visual cortex requires phosphorylation of the TrkB receptor for BDNF [M. Kaneko, J. L. Hanover, P. M. England, M. P. Stryker, Nat. Neurosci. 11, 497-504 (2008)]. We have now studied the temporal relationship between the production of mature BDNF and the recovery of visual responses under several different conditions. Visual cortical responses to an eye whose vision has been occluded for several days during the critical period and is then re-opened recover rapidly during binocular vision or much more slowly following reverse occlusion, when the previously intact fellow eye is occluded in a model of "patch therapy" for amblyopia. The time to recovery of visual responses differed by more than 18 h between these two procedures, but in each, the production of mature BDNF preceded the physiological recovery. These findings suggest that a spurt of BDNF production is permissive for the growth of connections serving the deprived eye to restore visual responses. Attenuation of recovery of deprived-eye responses by interference with TrkB receptor activation or reduction of BDNF production by interference with homeostatic synaptic scaling had effects consistent with this suggestion.


Assuntos
Ambliopia , Córtex Visual , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Córtex Visual/fisiologia , Visão Ocular , Privação Sensorial/fisiologia , Plasticidade Neuronal/fisiologia
9.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38719446

RESUMO

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Assuntos
Comportamento de Procura de Droga , Extinção Psicológica , Plasticidade Neuronal , Córtex Pré-Frontal , Ratos Sprague-Dawley , Receptor trkB , Estimulação do Nervo Vago , Animais , Masculino , Ratos , Estimulação do Nervo Vago/métodos , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Extinção Psicológica/fisiologia , Extinção Psicológica/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Autoadministração , Cocaína/farmacologia , Cocaína/administração & dosagem
10.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
11.
Mol Ther ; 32(10): 3372-3401, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39205389

RESUMO

In Alzheimer's disease (AD), amyloid ß (Aß)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aß in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Peptídeos , Receptor trkB , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptor trkB/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Peptídeos/farmacologia
12.
Cell Mol Life Sci ; 81(1): 416, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367928

RESUMO

Neurons are dependent on efficient quality control mechanisms to maintain cellular homeostasis and function due to their polarization and long-life span. Autophagy is a lysosomal degradative pathway that provides nutrients during starvation and recycles damaged and/or aged proteins and organelles. In neurons, autophagosomes constitutively form in distal axons and at synapses and are trafficked retrogradely to the cell soma to fuse with lysosomes for cargo degradation. How the neuronal autophagy pathway is organized and controlled remains poorly understood. Several presynaptic endocytic proteins have been shown to regulate both synaptic vesicle recycling and autophagy. Here, by combining electron, fluorescence, and live imaging microscopy with biochemical analysis, we show that the neuron-specific protein APache, a presynaptic AP-2 interactor, functions in neurons as an important player in the autophagy process, regulating the retrograde transport of autophagosomes. We found that APache colocalizes and co-traffics with autophagosomes in primary cortical neurons and that induction of autophagy by mTOR inhibition increases LC3 and APache protein levels at synaptic boutons. APache silencing causes a blockade of autophagic flux preventing the clearance of p62/SQSTM1, leading to a severe accumulation of autophagosomes and amphisomes at synaptic terminals and along neurites due to defective retrograde transport of TrkB-containing signaling amphisomes along the axons. Together, our data identify APache as a regulator of the autophagic cycle, potentially in cooperation with AP-2, and hypothesize that its dysfunctions contribute to the early synaptic impairments in neurodegenerative conditions associated with impaired autophagy.


Assuntos
Autofagossomos , Autofagia , Transporte Axonal , Neurônios , Autofagossomos/metabolismo , Autofagia/fisiologia , Animais , Neurônios/metabolismo , Transporte Axonal/fisiologia , Camundongos , Células Cultivadas , Serina-Treonina Quinases TOR/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteína Sequestossoma-1/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Terminações Pré-Sinápticas/metabolismo
13.
Cell Mol Life Sci ; 81(1): 333, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112663

RESUMO

Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Hipocampo , Doença de Huntington , Potenciação de Longa Duração , Proteínas de Membrana , Receptor trkB , Transdução de Sinais , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Hipocampo/metabolismo , Hipocampo/patologia , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Potenciação de Longa Duração/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Caderinas/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Neuroproteção , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Camundongos Knockout
14.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165147

RESUMO

Dravet syndrome (DS) is one of the most severe childhood epilepsies, characterized by intractable seizures and comorbidities including cognitive and social dysfunction and high premature mortality. DS is mainly caused by loss-of-function mutations in the Scn1a gene encoding Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, contributing to DS phenotypes. Effective pharmacological therapy that targets defective PV interneurons is not available. The known role of brain-derived neurotrophic factor (BDNF) in the development and maintenance of interneurons, together with our previous results showing improved PV interneuronal function and antiepileptogenic effects of a TrkB receptor agonist in a posttraumatic epilepsy model, led to the hypothesis that early treatment with a TrkB receptor agonist might prevent or reduce seizure activity in DS mice. To test this hypothesis, we treated DS mice with LM22A-4 (LM), a partial agonist at the BDNF TrkB receptor, for 7 d starting at postnatal day 13 (P13), before the onset of spontaneous seizures. Results from immunohistochemistry, Western blot, whole-cell patch-clamp recording, and in vivo seizure monitoring showed that LM treatment increased the number of perisomatic PV interneuronal synapses around cortical pyramidal cells in layer V, upregulated Nav1.1 in PV neurons, increased inhibitory synaptic transmission, and decreased seizures and the mortality rate in DS mice. The results suggest that early treatment with a partial TrkB receptor agonist may be a promising therapeutic approach to enhance PV interneuron function and reduce epileptogenesis and premature death in DS.


Assuntos
Benzamidas/uso terapêutico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/mortalidade , Receptor trkB/agonistas , Receptor trkB/metabolismo , Convulsões/etiologia , Convulsões/genética , Animais , Epilepsias Mioclônicas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Neocórtex/citologia , Células Piramidais/metabolismo , Receptor trkB/genética
15.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752280

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Receptor trkB/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
16.
J Biol Chem ; 299(9): 105102, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507021

RESUMO

The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.


Assuntos
Processamento Alternativo , Sistema Nervoso Central , Receptores de Superfície Celular , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Receptor trkB/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Transporte Proteico/genética
17.
J Neurophysiol ; 132(3): 979-990, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110517

RESUMO

5-Hydroxytryptamine (5-HT) plays a substantial role in mitigating depression and anxiety. However, the potential effects of 5-HT against posttraumatic stress disorder (PTSD) and its underlying mechanisms remain unclear. Elevated plus maze test evaluates anxiety-related behaviors, and the open field test is used to assess overall activity levels and anxiety. Inflammatory cytokine levels were determined using ELISA. The levels of 5-HT and dopamine were measured using HPLC. mRNA and protein levels were examined by PCR and Western blot, respectively. Rats exposed to single prolonged stress (SPS) exhibited typical PTSD-like phenotypes, with decreased levels of 5-HT in the hippocampus and significant reductions in its downstream targets, brain-derived neurotrophic factor (BDNF) and TrkB. In addition, it was discovered that the autophagy signaling pathway might be involved in regulating hippocampal BDNF in rats exposed to SPS. Subsequent treatment with an intracerebral injection of sh-SERT significantly inhibited anxiety and cognitive dysfunction in rats. Moreover, sh-SERT treatment was observed to substantially reverse the increase in autophagy signaling protein expression and consequently improve the expression of BDNF and TrkB proteins, which had been reduced. The current study demonstrates that sh-SERT exhibits significant anti-PTSD effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.NEW & NOTEWORTHY The study demonstrated that sh-SERT exhibits significant anti-posttraumatic stress disorder (PTSD) effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.


Assuntos
Autofagia , Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Plasticidade Neuronal , Ratos Sprague-Dawley , Serotonina , Transtornos de Estresse Pós-Traumáticos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Masculino , Serotonina/metabolismo , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ansiedade/tratamento farmacológico , Receptor trkB/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças
18.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583640

RESUMO

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Assuntos
Transporte Axonal , Fator Neurotrófico Derivado do Encéfalo , Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Humanos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutação
19.
Neurobiol Dis ; 201: 106670, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39303814

RESUMO

Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion. Neuropathological studies evidenced that edema directly correlated with astrogliosis and was limited in transgenic mice. Importantly, adaptive levels of the water channel AQP4 was astrocyte TrkB-dependent as AQP4 upregulation after stroke did not occur in mice lacking astrocyte TrkB. In vitro experiments with wild-type and/or TrkB-deficient astrocytes highlighted TrkB-dependent upregulation of AQP4 via activation of HIF1-alpha under hypoxia. Collectively, our observations indicate that TrkB signaling in astrocytes contributes to the development of edema and worsens cerebral ischemia.


Assuntos
Astrócitos , Edema Encefálico , AVC Isquêmico , Camundongos Transgênicos , Receptor trkB , Animais , Astrócitos/metabolismo , Astrócitos/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Edema Encefálico/etiologia , Receptor trkB/metabolismo , Humanos , Camundongos , Masculino , Aquaporina 4/metabolismo , Aquaporina 4/genética , Camundongos Endogâmicos C57BL , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
20.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804836

RESUMO

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Assuntos
Prostatite , Receptor trkA , Bexiga Urinária Hiperativa , Animais , Masculino , Camundongos , Ratos , Administração Oral , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Crescimento Neural/antagonistas & inibidores , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Próstata/efeitos dos fármacos , Próstata/patologia , Próstata/metabolismo , Prostatite/tratamento farmacológico , Prostatite/patologia , Prostatite/metabolismo , Ratos Sprague-Dawley , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa