Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.738
Filtrar
1.
Mol Cell ; 84(20): 3967-3978.e8, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39317199

RESUMO

While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors. Mutations that altered the ratio of NPR proteoforms reduced AMPA receptors in parvalbumin-positive interneurons and affected learning behaviors in mice. In addition to NPR, upstream AUU-initiated N-terminal extension of C1q-like synaptic organizers anchored these otherwise secreted factors to the membrane. Together, these results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a potentially widespread mechanism in diversifying protein localization and functions.


Assuntos
Proteínas do Tecido Nervoso , Receptores de AMPA , Sinapses , Animais , Camundongos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Sinapses/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Humanos , Iniciação Traducional da Cadeia Peptídica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interneurônios/metabolismo , Células HEK293 , Códon de Iniciação/genética , Camundongos Endogâmicos C57BL , Masculino , Plasticidade Neuronal/genética , Mutação , Neurônios/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/genética , Proteína C-Reativa , Proteínas de Ligação ao Cálcio , Moléculas de Adesão de Célula Nervosa
2.
Cell ; 158(4): 778-792, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25109876

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs to neurotransmission, little is known about the structures and dynamics of intact receptors in distinct functional states. Here, we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with partial agonists and a positive allosteric modulator, and in a desensitized/closed state in complex with fluorowilliardiine. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryoelectron microscopy studies. We show how agonist binding modulates the conformation of the ligand-binding domain "layer" of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of the amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation, and desensitization in AMPA iGluRs.


Assuntos
Receptores de AMPA/química , Receptores de AMPA/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Fluoruracila/análogos & derivados , Fluoruracila/metabolismo , Técnicas de Inativação de Genes , Ácido Caínico/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Ratos , Receptores de AMPA/agonistas , Receptores de AMPA/genética
3.
Proc Natl Acad Sci U S A ; 121(6): e2313853121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285949

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.


Assuntos
Receptores Ionotrópicos de Glutamato , Vertebrados , Animais , Receptores Ionotrópicos de Glutamato/metabolismo , Vertebrados/metabolismo , Receptores de AMPA/genética , Invertebrados , Mamíferos/metabolismo , N-Metilaspartato , Neurotransmissores , Ácido gama-Aminobutírico
4.
Proc Natl Acad Sci U S A ; 121(28): e2317833121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968112

RESUMO

Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs in dorsomedial striatum to favor the incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D1R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD.


Assuntos
Corpo Estriado , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Transporte Proteico , Receptores de AMPA , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação de Sentido Incorreto , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Sinapses/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
6.
Proc Natl Acad Sci U S A ; 121(26): e2322978121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900791

RESUMO

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.


Assuntos
Hipocampo , Sinapses , Transmissão Sináptica , Animais , Sinapses/metabolismo , Camundongos , Hipocampo/metabolismo , Hipocampo/citologia , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Camundongos Knockout , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Cultivadas
7.
Hum Mol Genet ; 33(17): 1524-1539, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776957

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.


Assuntos
Modelos Animais de Doenças , Ácido Glutâmico , Doença de Huntington , Neurônios , Receptores de N-Metil-D-Aspartato , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Ovinos , Neurônios/metabolismo , Neurônios/patologia , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA-Seq , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Morte Celular/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Animais Geneticamente Modificados , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Transcriptoma/genética , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Neurônios Espinhosos Médios
8.
EMBO J ; 41(20): e109012, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35875872

RESUMO

Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse-specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine-apparatus protein synaptopodin under the regulation of miR-124. Using genetic manipulations to alter synaptopodin expression or regulation by miR-124, we show that synaptopodin behaves as a "postsynaptic tag" whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input-specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.


Assuntos
MicroRNAs , Receptores de AMPA , Homeostase/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Plasticidade Neuronal/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
9.
EMBO J ; 41(18): e10242, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993331

RESUMO

Microtubule-associated protein tau is a central factor in Alzheimer's disease and other tauopathies. However, the physiological functions of tau are unclear. Here, we used proximity-labelling proteomics to chart tau interactomes in primary neurons and mouse brains in vivo. Tau interactors map onto pathways of cytoskeletal, synaptic vesicle and postsynaptic receptor regulation and show significant enrichment for Parkinson's, Alzheimer's and prion disease. We find that tau interacts with and dose-dependently reduces the activity of N-ethylmaleimide sensitive fusion protein (NSF), a vesicular ATPase essential for AMPA-type glutamate receptor (AMPAR) trafficking. Tau-deficient (tau-/- ) neurons showed mislocalised expression of NSF and enhanced synaptic AMPAR surface levels, reversible through the expression of human tau or inhibition of NSF. Consequently, enhanced AMPAR-mediated associative and object recognition memory in tau-/- mice is suppressed by both hippocampal tau and infusion with an NSF-inhibiting peptide. Pathologic mutant tau from mouse models or Alzheimer's disease significantly enhances NSF inhibition. Our results map neuronal tau interactomes and delineate a functional link of tau with NSF in plasticity-associated AMPAR-trafficking and memory.


Assuntos
Doença de Alzheimer , Receptores de AMPA , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Memória , Camundongos , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Neurônios/metabolismo , Transporte Proteico , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
10.
Cell ; 147(6): 1369-83, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22153079

RESUMO

The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation.


Assuntos
Memória , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Proteínas de Ligação a RNA/metabolismo , Sinapses , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Hipocampo/metabolismo , Camundongos , Dados de Sequência Molecular , Poli A/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
11.
J Biol Chem ; 300(3): 105717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311178

RESUMO

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.


Assuntos
Receptores de AMPA , Humanos , Células HEK293 , Ligantes , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Regulação Alostérica
12.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354781

RESUMO

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Assuntos
DNA Mitocondrial , Hipocampo , Depressão Sináptica de Longo Prazo , Receptor Toll-Like 9 , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipocampo/metabolismo , Imunidade Inata , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células HEK293
13.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675825

RESUMO

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Assuntos
Transtornos do Neurodesenvolvimento , Receptores de AMPA , Estudos de Coortes , Heterozigoto , Humanos , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética
14.
EMBO Rep ; 24(10): e56098, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522391

RESUMO

A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.


Assuntos
Receptores da Bombesina , Medula Espinal , Humanos , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Medula Espinal/metabolismo , Ácido Glutâmico/metabolismo , Dopamina/metabolismo , Prurido/genética , Prurido/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
15.
Cell ; 143(2): 225-37, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20946981

RESUMO

Sequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution structure of the ADAR2 double-stranded RNA-binding motifs (dsRBMs) bound to a stem-loop pre-mRNA encoding the R/G editing site of GluR-2. The structure provides a molecular basis for how dsRBMs recognize the shape, and also more surprisingly, the sequence of the dsRNA. The unexpected direct readout of the RNA primary sequence by dsRBMs is achieved via the minor groove of the dsRNA and this recognition is critical for both editing and binding affinity at the R/G site of GluR-2. More generally, our findings suggest a solution to the sequence-specific paradox faced by many dsRBM-containing proteins that are involved in post-transcriptional regulation of gene expression.


Assuntos
Adenosina Desaminase/química , RNA de Cadeia Dupla/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA , Ratos , Receptores de AMPA/genética , Alinhamento de Sequência
16.
Nature ; 573(7775): 532-538, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534219

RESUMO

A network of communicating tumour cells that is connected by tumour microtubes mediates the progression of incurable gliomas. Moreover, neuronal activity can foster malignant behaviour of glioma cells by non-synaptic paracrine and autocrine mechanisms. Here we report a direct communication channel between neurons and glioma cells in different disease models and human tumours: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells. These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumour microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype. Neuronal activity including epileptic conditions generates synchronised calcium transients in tumour-microtube-connected glioma networks. Glioma-cell-specific genetic perturbation of AMPA receptors reduces calcium-related invasiveness of tumour-microtube-positive tumour cells and glioma growth. Invasion and growth are also reduced by anaesthesia and the AMPA receptor antagonist perampanel, respectively. These findings reveal a biologically relevant direct synaptic communication between neurons and glioma cells with potential clinical implications.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Progressão da Doença , Glioma/fisiopatologia , Sinapses/patologia , Animais , Neoplasias Encefálicas/ultraestrutura , Modelos Animais de Doenças , Glioma/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
17.
Mol Ther ; 32(6): 1721-1738, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38566414

RESUMO

Recombinant adeno-associated viruses (AAVs) allow rapid and efficient gene delivery to the nervous system, are widely used in neuroscience research, and are the basis of FDA-approved neuron-targeting gene therapies. Here we find that an innate immune response to the AAV genome reduces dendritic length and complexity and disrupts synaptic transmission in mouse somatosensory cortex. Dendritic loss is apparent 3 weeks after injection of experimentally relevant viral titers, is not restricted to a particular capsid serotype, transgene, promoter, or production facility, and cannot be explained by responses to surgery or transgene expression. AAV-associated dendritic loss is accompanied by a decrease in the frequency and amplitude of miniature excitatory postsynaptic currents and an increase in the proportion of GluA2-lacking, calcium-permeable AMPA receptors. The AAV genome is rich in unmethylated CpG DNA, which is recognized by the innate immunoreceptor Toll-like receptor 9 (TLR9), and acutely blocking TLR9 preserves dendritic complexity and AMPA receptor subunit composition in AAV-injected mice. These results reveal unexpected impacts of an immune response to the AAV genome on neuronal structure and function and identify approaches to improve the safety and efficacy of AAV-mediated gene delivery in the nervous system.


Assuntos
Dendritos , Dependovirus , Vetores Genéticos , Imunidade Inata , Transmissão Sináptica , Receptor Toll-Like 9 , Animais , Dependovirus/genética , Camundongos , Dendritos/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/imunologia , Genoma Viral
18.
J Biol Chem ; 299(10): 105227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673338

RESUMO

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.


Assuntos
Ácido Glutâmico , Multimerização Proteica , Receptores de AMPA , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Domínios Proteicos , Receptores de AMPA/química , Receptores de AMPA/genética , Transdução de Sinais , Subunidades Proteicas/química , Subunidades Proteicas/genética , Células HEK293 , Humanos
19.
J Neurochem ; 168(9): 2155-2169, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38898681

RESUMO

Kelch-like family member 17 (KLHL17), an actin-associated adaptor protein, is linked to neurological disorders, including infantile spasms and autism spectrum disorders. The key morphological feature of Klhl17-deficient neurons is impaired dendritic spine enlargement, resulting in the amplitude of calcium events being increased. Our previous studies have indicated an involvement of F-actin and the spine apparatus in KLHL17-mediated dendritic spine enlargement. Here, we show that KLHL17 further employs different mechanisms to control the expression of two types of glutamate receptors, that is, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptors (KARs), to regulate dendritic spine enlargement and calcium influx. We deployed proteomics to reveal that KLHL17 interacts with N-ethylmaleimide-sensitive fusion protein (NSF) in neurons, with this interaction of KLHL17 and NSF enhancing NSF protein levels. Consistent with the function of NSF in regulating the surface expression of AMPAR, Klhl17 deficiency limits the surface expression of AMPAR, but not its total protein levels. The NSF pathway also contributes to synaptic F-actin distribution and the dendritic spine enlargement mediated by KLHL17. KLHL17 is known to act as an adaptor mediating degradation of the KAR subunit GluK2 by the CUL3 ubiquitin ligase complex, and Klhl17 deficiency impairs activity-dependent degradation of GluK2. Herein, we further demonstrate that GluK2 is critical to the increased amplitude of calcium influx in Klhl17-deficient neurons. Moreover, GluK2 is also involved in KLHL17-regulated dendritic spine enlargement. Thus, our study reveals that KLHL17 controls AMPAR and KAR expression via at least two mechanisms, consequently regulating dendritic spine enlargement. The regulatory effects of KLHL17 on these two glutamate receptors likely contribute to neuronal features in patients suffering from certain neurological disorders.


Assuntos
Espinhas Dendríticas , Receptores de AMPA , Animais , Espinhas Dendríticas/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Camundongos , Receptores de Ácido Caínico/metabolismo , Receptores de Ácido Caínico/genética , Proteínas dos Microfilamentos/metabolismo , Camundongos Knockout , Células Cultivadas , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Masculino
20.
Biochem Biophys Res Commun ; 722: 150074, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805785

RESUMO

Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.


Assuntos
Medo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de AMPA , Animais , Masculino , Camundongos , Medo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Receptores de AMPA/metabolismo , Receptores de AMPA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa