Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Immunity ; 52(3): 499-512.e5, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187518

RESUMO

Interleukin-17A (IL-17A), IL-17F, and IL-17A/F heterodimers are key cytokines of the innate and adaptive immune response. Dysregulation of the IL-17 pathway contributes to immune pathology, and it is therefore important to elucidate the molecular mechanisms that govern IL-17 recognition and signaling. The receptor IL-17RC is thought to act in concert with IL-17RA to transduce IL-17A-, IL-17F-, and IL-17A/F-mediated signals. We report the crystal structure of the extracellular domain of human IL-17RC in complex with IL-17F. In contrast to the expected model, we found that IL-17RC formed a symmetrical 2:1 complex with IL-17F, thus competing with IL-17RA for cytokine binding. Using biophysical techniques, we showed that IL-17A and IL-17A/F also form 2:1 complexes with IL-17RC, suggesting the possibility of IL-17RA-independent IL-17 signaling pathways. The crystal structure of the IL-17RC:IL-17F complex provides a structural basis for IL-17F signaling through IL-17RC, with potential therapeutic applications for respiratory allergy and inflammatory bowel diseases.


Assuntos
Interleucina-17/imunologia , Multimerização Proteica/imunologia , Receptores de Interleucina-17/imunologia , Transdução de Sinais/imunologia , Ligação Competitiva , Cristalografia por Raios X , Células HEK293 , Humanos , Interleucina-17/química , Interleucina-17/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo
2.
Nature ; 609(7927): 622-629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863378

RESUMO

The IL-17 family of cytokines and receptors have central roles in host defence against infection and development of inflammatory diseases1. The compositions and structures of functional IL-17 family ligand-receptor signalling assemblies remain unclear. IL-17E (also known as IL-25) is a key regulator of type 2 immune responses and driver of inflammatory diseases, such as allergic asthma, and requires both IL-17 receptor A (IL-17RA) and IL-17RB to elicit functional responses2. Here we studied IL-25-IL-17RB binary and IL-25-IL-17RB-IL-17RA ternary complexes using a combination of cryo-electron microscopy, single-molecule imaging and cell-based signalling approaches. The IL-25-IL-17RB-IL-17RA ternary signalling assembly is a C2-symmetric complex in which the IL-25-IL-17RB homodimer is flanked by two 'wing-like' IL-17RA co-receptors through a 'tip-to-tip' geometry that is the key receptor-receptor interaction required for initiation of signal transduction. IL-25 interacts solely with IL-17RB to allosterically promote the formation of the IL-17RB-IL-17RA tip-to-tip interface. The resulting large separation between the receptors at the membrane-proximal level may reflect proximity constraints imposed by the intracellular domains for signalling. Cryo-electron microscopy structures of IL-17A-IL-17RA and IL-17A-IL-17RA-IL-17RC complexes reveal that this tip-to-tip architecture is a key organizing principle of the IL-17 receptor family. Furthermore, these studies reveal dual actions for IL-17RA sharing among IL-17 cytokine complexes, by either directly engaging IL-17 cytokines or alternatively functioning as a co-receptor.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Microscopia Crioeletrônica , Interleucina-17/química , Interleucina-17/metabolismo , Ligantes , Domínios Proteicos , Multimerização Proteica , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/ultraestrutura , Transdução de Sinais , Imagem Individual de Molécula
3.
Biosci Biotechnol Biochem ; 88(2): 147-153, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38031342

RESUMO

This research is based on a Systematic Evolution of Ligands by EXponential enrichment, also referred to as in vitro selection against the extracellular domain of human interleukin-17 receptor A (IL-17RA). Pull-down assay via quantitative polymerase chain reaction and chemiluminescence detection showed that the cloned RNA with the enriched sequence bound to human IL-17RA and inhibited the interaction between IL-17RA and human interleukin-17A (IL-17A). We also revealed that the newly discovered IL-17RA-binding RNA aptamer bound to cellular IL-17RA, inhibited the cellular IL-17RA/IL-17A interaction, and antagonized cellular IL-17A signaling.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/química , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Ligação Proteica
4.
J Mol Recognit ; 36(8): e3045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415317

RESUMO

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine implicated in diverse autoimmune and inflammatory disorders such as psoriasis and Kawasaki disease. Mature IL-17A is a homodimer that binds to the extracellular type-III fibronectin D1:D2-dual domain of its cognate IL-17 receptor A (IL-17RA). In this study, we systematically examined the structural basis, thermodynamics property, and dynamics behavior of IL-17RA/IL-17A interaction and computationally identified two continuous hotspot regions separately from different monomers of IL-17A homodimer that contribute significantly to the interaction, namely I-shaped and U-shaped segments, thus rendered as a peptide-mediated protein-protein interaction (PmPPI). Self-inhibitory peptides (SIPs) are derived from the two segments to disrupt IL-17RA/IL-17A interaction by competitively rebinding to the IL-17A-binding pocket on IL-17RA surface, which, however, only have a weak affinity and low specificity for IL-17RA due to lack of the context support of intact IL-17A protein, thus exhibiting a large flexibility and intrinsic disorder when splitting from the protein context and incurring a considerable entropy penalty when rebinding to IL-17RA. The U-shaped segment is further extended, mutated and stapled by a disulfide bridge across its two strands to obtain a number of double-stranded cyclic SIPs, which are partially ordered and conformationally similar to their native status at IL-17RA/IL-17A complex interface. Experimental fluorescence polarization assays substantiate that the stapling can moderately or considerably improve the binding affinity of U-shaped segment-derived peptides by 2-5-fold. In addition, computational structural modeling also reveals that the stapled peptides can bind in a similar mode with the native crystal conformation of U-shaped segment in IL-17RA pocket, where the disulfide bridge is out of the pocket for avoiding intervene of the peptide binding.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Interleucina-17/química , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Peptídeos/química , Modelos Moleculares , Ligação Proteica
5.
Mol Cell ; 60(6): 941-52, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26698662

RESUMO

In insects, brain-derived Prothoracicotropic hormone (PTTH) activates the receptor tyrosine kinase (RTK) Torso to initiate metamorphosis through the release of ecdysone. We have determined the crystal structure of silkworm PTTH in complex with the ligand-binding region of Torso. Here we show that ligand-induced Torso dimerization results from the sequential and negatively cooperative formation of asymmetric heterotetramers. Mathematical modeling of receptor activation based upon our biophysical studies shows that ligand pulses are "buffered" at low receptor levels, leading to a sustained signal. By contrast, high levels of Torso develop the signal intensity and duration of a noncooperative system. We propose that this may allow Torso to coordinate widely different functions from a single ligand by tuning receptor levels. Phylogenic analysis indicates that Torso is found outside arthropods, including human parasitic roundworms. Together, our findings provide mechanistic insight into how this receptor system, with roles in embryonic and adult development, is regulated.


Assuntos
Bombyx/metabolismo , Hormônios de Inseto/química , Hormônios de Inseto/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Sítios de Ligação , Bombyx/química , Cristalografia por Raios X , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Modelos Moleculares , Filogenia , Multimerização Proteica , Receptores de Interleucina-17/química , Transdução de Sinais
6.
Nat Immunol ; 10(12): 1245-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19838198

RESUMO

Interleukin 17 (IL-17)-producing helper T cells (T(H)-17 cells), together with their effector cytokines, including members of the IL-17 family, are emerging as key mediators of chronic inflammatory and autoimmune disorders. Here we present the crystal structure of a complex of IL-17 receptor A (IL-17RA) bound to IL-17F in a 1:2 stoichiometry. The mechanism of complex formation was unique for cytokines and involved the engagement of IL-17 by two fibronectin-type domains of IL-17RA in a groove between the IL-17 homodimer interface. Binding of the first receptor to the IL-17 cytokines modulated the affinity and specificity of the second receptor-binding event, thereby promoting heterodimeric versus homodimeric complex formation. IL-17RA used a common recognition strategy to bind to several members of the IL-17 family, which allows it to potentially act as a shared receptor in multiple different signaling complexes.


Assuntos
Interleucina-17/química , Interleucina-17/metabolismo , Multimerização Proteica , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Cristalografia por Raios X , Humanos , Interleucina-17/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Interleucina-17/imunologia , Alinhamento de Sequência
7.
Cell Commun Signal ; 19(1): 6, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436016

RESUMO

Interleukin-17 receptor D (IL17RD or IL-17RD) also known as Sef (similar expression to fibroblast growth factor), is a single pass transmembrane protein that is reported to regulate several signaling pathways . IL17RD was initially described as a feedback inhibitor of fibroblast growth factor (FGF) signaling during zebrafish and frog development. It was subsequently determined to regulate other receptor tyrosine kinase signaling cascades as well as several proinflammatory signaling pathways including Interleukin-17A (IL17A), Toll-like receptors (TLR) and Interleukin-1α (IL1α) in several vertebrate species including humans. This review will provide an overview of IL17RD regulation of signaling pathways and functions with emphasis on regulation of development and pathobiological conditions. We will also discuss gaps in our knowledge about IL17RD function to provide insight into opportunities for future investigation. Video Abstract.


Assuntos
Receptores de Interleucina-17/imunologia , Animais , Humanos , Receptores de Interleucina-17/química , Transdução de Sinais
8.
Immunity ; 34(2): 149-62, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21349428

RESUMO

Interleukin-17A (IL-17A) is the signature cytokine of the recently identified T helper 17 (Th17) cell subset. IL-17 has six family members (IL-17A to IL-17F). Although IL-17A and IL-17F share the highest amino acid sequence homology, they perform distinct functions; IL-17A is involved in the development of autoimmunity, inflammation, and tumors, and also plays important roles in the host defenses against bacterial and fungal infections, whereas IL-17F is mainly involved in mucosal host defense mechanisms. IL-17E (IL-25) is an amplifier of Th2 immune responses. The functions of IL-17B, IL-17C, and IL-17D remain largely elusive. In this review, we describe the identified functions of each IL-17 family member and discuss the potential of these molecules as therapeutic targets.


Assuntos
Interleucina-17/fisiologia , Células Th17/imunologia , Animais , Autoimunidade/imunologia , Infecções Bacterianas/imunologia , Humanos , Imunidade nas Mucosas/imunologia , Inflamação/imunologia , Interleucina-17/biossíntese , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Knockout , Família Multigênica , Micoses/imunologia , Neoplasias/imunologia , Receptores de Interleucina-17/química , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Células Th17/metabolismo , Células Th2/imunologia
9.
Adv Exp Med Biol ; 1172: 97-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31628653

RESUMO

The IL-17 family in humans consists of six distinct cytokines (IL-17A-F) that can interact with five IL-17 receptors (IL-17RA-E). The interaction between these cytokines and their receptors are critical in mediating host defenses while also making major contributions to inflammatory and autoimmune responses as demonstrated through both in vitro and in vivo experiments as well as human clinical trials. Inhibition of the IL-17A/IL-17RA interaction by monoclonal antibodies has also displayed remarkable efficacies in clinical trials against psoriasis and other autoimmune diseases. Recently, we and others reported the identification and characterization of both small-molecule and peptide IL-17A antagonists. These non-antibody IL-17A antagonists can effectively and selectively disrupt the IL-17A/IL-17RA complex and may provide alternative modalities to treat IL-17-related autoimmune and inflammatory diseases. This chapter summarizes the reported crystal structures of the IL-17 cytokines, their complexes with IL-17RA, and their complexes with both monoclonal antibodies as well as small-molecule and peptide antagonists.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Doenças Autoimunes/imunologia , Cristalização , Humanos , Interleucina-17/antagonistas & inibidores , Interleucina-17/química , Interleucina-17/imunologia , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/química , Receptores de Interleucina-17/imunologia
10.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304852

RESUMO

Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis. IL-17 is mainly produced by activated Th-17 helper cells upon stimulation by IL-23 and, via binding to its receptors, mediates IL-17-driven cell signaling in keratinocytes. Hyper-proliferation of keratinocytes belongs to major clinical manifestations in psoriasis. To modulate IL-17-mediated inflammatory cascade, we generated a unique collection of IL-17RA-targeting protein binders that prevent from binding of human IL-17A cytokine to its cell-surface receptor. To this goal, we used a highly complex combinatorial library derived from scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived high-affinity ligands of human IL-17RA, called ARS binders. From 67 analyzed ABD variants, 7 different sequence families were identified. Representatives of these groups competed with human IL-17A for binding to recombinant IL-17RA receptor as well as to IL-17RA-Immunoglobulin G chimera, as tested in enzyme-linked immunosorbent assay (ELISA). Five ARS variants bound to IL-17RA-expressing THP-1 cells and blocked binding of human IL-17 cytokine to the cell surface, as tested by flow cytometry. Three variants exhibited high-affinity binding with a nanomolar Kd value to human keratinocyte HaCaT cells, as measured using Ligand Tracer Green Line. Upon IL-17-stimulated activation, ARS variants inhibited secretion of Gro-α (CXCL1) by normal human skin fibroblasts in vitro. Thus, we identified a novel class of inhibitory ligands that might serve as immunosuppressive IL-17RA-targeted non-IgG protein antagonists.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Receptores de Interleucina-17/química , Proteínas Recombinantes/metabolismo
11.
J Biol Chem ; 290(2): 861-71, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25378394

RESUMO

TNF receptor 2 (TNFR2) exerts diverse roles in the pathogenesis of inflammatory and autoimmune diseases. Here, we report that TNFR2 but not TNFR1 forms a heteromer with interleukin-17 receptor D (IL-17RD), also named Sef, to activate NF-κB signaling. TNFR2 associates with IL-17RD, leading to mutual receptor aggregation and TRAF2 recruitment, which further activate the downstream cascade of NF-κB signaling. Depletion of IL-17RD impaired TNFR2-mediated activation of NF-κB signaling. Importantly, IL-17RD was markedly increased in renal tubular epithelial cells in nephritis rats, and a strong interaction of TNFR2 and IL-17RD was observed in the renal epithelia. The IL-17RD·TNFR2 complex in activation of NF-κB may explain the role of TNFR2 in inflammatory diseases including nephritis.


Assuntos
Inflamação/metabolismo , NF-kappa B/metabolismo , Nefrite/metabolismo , Receptores de Interleucina-17/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/etiologia , Inflamação/patologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , NF-kappa B/genética , Nefrite/etiologia , Nefrite/patologia , Multimerização Proteica , Ratos , Receptores de Interleucina-17/química , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/química , Transdução de Sinais/genética , Ativação Transcricional/genética
12.
J Immunol ; 190(5): 2320-6, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355738

RESUMO

IL-17 cytokines play a crucial role in a variety of inflammatory and autoimmune diseases. They signal through heterodimeric receptor complexes consisting of members of IL-17R family. A unique intracellular signaling domain was identified within all IL-17Rs, termed similar expression to fibroblast growth factor genes and IL-17R (SEFIR). SEFIR is also found in NF-κB activator 1 (Act1), an E3 ubiquitin ligase, and mediates its recruitment to IL-17Rs. In this study, to our knowledge, we report the structure of the first SEFIR domain from IL-17RB at 1.8Å resolution. SEFIR displays a five-stranded parallel ß-sheet that is wrapped by six helices. Site-directed mutagenesis on IL-17RB identified helix αC as being critical for its interaction with Act1 and IL-25 (IL-17E) signaling. Using the current SEFIR structure as a template, the key functional residues in Act1 are also mapped as part of helix αC, which is conserved in IL-17RA and RC, suggesting this helix as a common structural signature for heterotypic SEFIR-SEFIR association. In contrast, helix αB' is important for homodimerization of Act1, implicating a dual ligand-binding model for SEFIR domain, with distinct structural motifs participating in either homotypic or heterotypic interactions. Furthermore, although the IL-17RB-SEFIR structure resembles closest to the Toll/IL-1R domain of TLR10 with low sequence homology, substantial differences were observed at helices αC, αD, and DD' loop. To our knowledge, this study provides the first structural view of the IL-17R intracellular signaling, unraveling the mechanism for the specificity of SEFIR versus Toll/IL-1R domain in their respective signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Interleucina-17/química , Receptores de Interleucina-17/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Cristalografia por Raios X , Escherichia coli/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Células HeLa , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Retroviridae/genética , Transdução de Sinais , Transfecção
13.
Mediators Inflamm ; 2015: 436450, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146463

RESUMO

Emerging evidence reveals that various cytokines and tissue microenvironments contribute to liver inflammation and autoimmunity, and IL-17 family is one of highlights acknowledged. Although the implication of IL-17 family in most common autoimmune diseases (such as psoriasis, inflammatory bowel disease, and rheumatoid arthritis) has been extensively characterized, the role of this critical family in pathophysiology of autoimmune liver diseases (AILD) still needs to be clarified. In the review, we look into the intriguing biology of IL-17 family and further dissect on the intricate role of IL-17-mediated pathway in AILD. Considering encouraging data from preclinical and clinical trials, IL-17 targeted therapy has shown promises in several certain autoimmune conditions. However, blocking IL-17-mediated pathway is just beginning, and more fully investigation and reflection are required. Taking together, targeting IL-17-mediated responses may open up new areas of potential clinical treatment for AILD.


Assuntos
Doenças Autoimunes/terapia , Interleucina-17/antagonistas & inibidores , Hepatopatias/terapia , Transdução de Sinais/fisiologia , Doenças Autoimunes/etiologia , Colangite Esclerosante/etiologia , Colangite Esclerosante/terapia , Hepatite Autoimune/etiologia , Hepatite Autoimune/terapia , Humanos , Interleucina-17/fisiologia , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/terapia , Hepatopatias/etiologia , Receptores de Interleucina-17/química , Receptores de Interleucina-17/fisiologia
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1476-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816115

RESUMO

Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein-protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand ßC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC'ins) and a flexible loop (CC'). The DD' loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Što accommodate the αCC'ins helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR-SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.


Assuntos
Interleucina-17/metabolismo , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Humanos , Ligantes , Mutação , Estrutura Terciária de Proteína , Receptores de Interleucina-17/genética , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo
15.
Cytokine ; 64(2): 477-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24011563

RESUMO

The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in host defense against microbial organisms and in the development of inflammatory diseases. Although IL-17A is the signature cytokine produced by T helper 17 (Th17) cells, IL-17A and other IL-17 family cytokines have multiple sources ranging from immune cells to non-immune cells. The IL-17 family signals via their correspondent receptors and activates downstream pathways that include NFκB, MAPKs and C/EBPs to induce the expression of anti-microbial peptides, cytokines and chemokines. The proximal adaptor Act1 is a common mediator during the signaling of all IL-17 cytokines so far and is thus involved in IL-17 mediated host defense and IL-17-driven autoimmune conditions. This review will give an overview and recent updates on the IL-17 family, the activation and regulation of IL-17 signaling as well as diseases associated with this cytokine family.


Assuntos
Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Animais , Humanos , Inflamação/patologia , Microbiota , Ligação Proteica , Receptores de Interleucina-17/química
16.
Chem Biol Drug Des ; 99(3): 382-390, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873834

RESUMO

Interleukin-17 (IL-17) is a family of pro-inflammatory cytokines and has been involved in the pathogenesis of chronic inflammatory and autoimmune diseases. The IL-17E, also known as IL-25, is a distinct member of this family that binds to its unique receptor IL-17Rb to induce the activation of nuclear factor kappa-light-chain enhancer of activated B cells. Here, we systematically examined the intermolecular recognition and association of IL-25 with IL-17Rb and demonstrated that the IL-25 primarily adopts two discrete linear and cyclic epitopes to interact with IL-17Rb. The two epitopes are separately located in the monomers 1 and 2 of IL-25 homodimer and cover sequences 125 DPRGNSELLYHN136 and 77 ELDRDLNRLPQDLY90 . They totally contribute 71.6% binding energy to the full-length IL-25. The linear epitope targets a site spanning over the extracellular fnIIID1 and fnIIID2 domains of IL-17Rb, while the cyclic epitope primarily binds at the fnIIID1 domain. In addition, we also found that the linear and cyclic epitopes are natively folded into ordered single-stranded and double-stranded conformations in IL-25 protein context, respectively, but would become largely disordered when splitting from the context to be free peptides, which, however, cannot bind effectively to IL-17Rb as them in the native state. In this respect, we extended the cyclic epitope to cover the whole IL-25 double-stranded region and added a disulfide bridge across its two strands at three selected anchor residue pairs. It is revealed that the disulfide-stapled peptides can be constrained into a native-like conformation and thus exhibit an improved binding potency to IL-17Rb as compared to their unstapled counterpart.


Assuntos
Interleucina-17/química , Peptídeos/metabolismo , Receptores de Interleucina-17/metabolismo , Sequência de Aminoácidos , Humanos , Interleucina-17/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Receptores de Interleucina-17/química , Termodinâmica
17.
Immunogenetics ; 63(12): 835-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21732179

RESUMO

The human interleukin 17 receptor (IL17R) family plays a critical role in inflammatory responses and contributes to the pathology of many autoimmune diseases. So far, five members, IL17RA to IL17RE, have been identified. Recently, some IL17R genes have been identified in non-mammalian species, such as zebrafish IL17RD; however, there are no reports on the evolutionary history of this complex gene family through comparative phylogenetic approaches. Here, we concentrated on the IL17R evolution in chordates. There are two IL17Rs in the genome of the basal chordate amphioxus: IL17RA and IL17RD. After two rounds of whole genome duplications, these two IL17R genes expanded into five early vertebrate IL17R genes, IL17RA to IL17RE. IL17RA and IL17RD are found in most vertebrates, whereas the other three, IL17RB, ILR17RC, and IL17RE, underwent some loss in vertebrates during evolution. Our sequence and structure analyses reveal functional similarities and distinctions between the different IL17Rs. Based on similarity searches for IL17R-like proteins within chordate sequences, a group of IL17RE-like (IL17REL) proteins were identified from mammalians to lower vertebrates. In silico and expression analyses on the novel IL17RELs showed that this group of receptors is highly conserved across species, indicating that IL17REL may represent a unique subfamily of IL17Rs.


Assuntos
Cordados/genética , Cordados/imunologia , Evolução Molecular , Receptores de Interleucina-17/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Humanos , Interleucina-17 , Receptores de Interleucina-17/química , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Bioengineered ; 12(1): 3029-3039, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34180764

RESUMO

Asthma is mentioned as a chronic airway inflammatory disease, whose pathogenesis is complicated. The promotion of inflammation in asthma by IL-17A and IL-17F has been confirmed. In addition to covalent homodimers, both cytokines are also able to form heterodimers, further inducing downstream pathways via binding to the IL-17RA and IL-17RC receptor complex. In recent years, IL-17RA and its signal transduction pathway have been extensively researched. IL-17RC, however, remains relatively unexplored. In the present study, we self-assembled chitosan (CS) nanoparticles for intranasal delivery of recombinant protein IL-17RC (rIL-17RC) and preliminarily investigated its effect on a murine model of allergic asthma induced by ovalbumin (OVA). rIL-17RC was produced by the prokaryotic expression system and encapsulated into the CS nanoparticles via ionic cross-linking technique. The results showed that CS-RC nanoparticles via intranasal intervention significantly caused inhibition of mucus secretion and airway inflammatory cell infiltration, and reduced IL-4, IL-17, IL-17F levels in BALF. Hence, delivering receptor proteins such as IL-17RC, through CS nanoparticles as a carrier, could be an attractive therapeutic intervention for asthma.


Assuntos
Asma/metabolismo , Quitosana/química , Nanopartículas , Receptores de Interleucina-17 , Proteínas Recombinantes , Administração Intranasal , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Receptores de Interleucina-17/administração & dosagem , Receptores de Interleucina-17/química , Receptores de Interleucina-17/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
19.
Trends Pharmacol Sci ; 30(2): 95-103, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19162337

RESUMO

Interleukin (IL)-17 (now synonymous with IL-17A) is an archetype molecule for an entire family of IL-17 cytokines. Currently believed to be produced mainly by a specific subset of CD4 cells, named Th-17 cells, IL-17 is functionally located at the interface of innate and acquired immunity. Specifically, it induces the release of chemokines and growth factors from mesenchymal cells and is now emerging as an important local orchestrator of neutrophil accumulation in several mammalian organs. Furthermore, there is growing evidence that targeting IL-17 signaling might prove useful in a variety of diseases including asthma, Crohn's disease, multiple sclerosis, psoriatric disease and rheumatoid arthritis. Here, we summarize the key aspects of the biology of IL-17 in mammals and scrutinize the potential pharmacological use of targeting IL-17 in humans.


Assuntos
Interleucina-17/imunologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Receptores de Interleucina-17/química , Receptores de Interleucina-17/fisiologia , Transdução de Sinais
20.
PLoS One ; 13(1): e0190850, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29329326

RESUMO

To date, IL-17A antibodies remain the only therapeutic approach to correct the abnormal activation of the IL-17A/IL-17R signaling complex. Why is it that despite the remarkable success of IL-17 antibodies, there is no small molecule antagonist of IL-17A in the clinic? Here we offer a unique approach to address this question. In order to understand the interaction of IL-17A with its receptor, we combined peptide discovery using phage display with HDX, crystallography, and functional assays to map and characterize hot regions that contribute to most of the energetics of the IL-17A/IL-17R interaction. These functional maps are proposed to serve as a guide to aid in the development of small molecules that bind to IL-17A and block its interaction with IL-17RA.


Assuntos
Colífagos/metabolismo , Interleucina-17/metabolismo , Peptídeos/metabolismo , Receptores de Interleucina-17/metabolismo , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Células HT29 , Humanos , Interleucina-17/química , Modelos Moleculares , Receptores de Interleucina-17/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa