Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.447
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 623(7987): 588-593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914928

RESUMO

How people recall the SARS-CoV-2 pandemic is likely to prove crucial in future societal debates on pandemic preparedness and appropriate political action. Beyond simple forgetting, previous research suggests that recall may be distorted by strong motivations and anchoring perceptions on the current situation1-6. Here, using 4 studies across 11 countries (total n = 10,776), we show that recall of perceived risk, trust in institutions and protective behaviours depended strongly on current evaluations. Although both vaccinated and unvaccinated individuals were affected by this bias, people who identified strongly with their vaccination status-whether vaccinated or unvaccinated-tended to exhibit greater and, notably, opposite distortions of recall. Biased recall was not reduced by providing information about common recall errors or small monetary incentives for accurate recall, but was partially reduced by high incentives. Thus, it seems that motivation and identity influence the direction in which the recall of the past is distorted. Biased recall was further related to the evaluation of past political action and future behavioural intent, including adhering to regulations during a future pandemic or punishing politicians and scientists. Together, the findings indicate that historical narratives about the COVID-19 pandemic are motivationally biased, sustain societal polarization and affect preparation for future pandemics. Consequently, future measures must look beyond immediate public-health implications to the longer-term consequences for societal cohesion and trust.


Assuntos
Atitude Frente a Saúde , COVID-19 , Rememoração Mental , Motivação , Pandemias , Preconceito , Saúde Pública , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Risco , Vacinas contra COVID-19 , Vacinação/estatística & dados numéricos , Saúde Pública/métodos , Saúde Pública/tendências , Política de Saúde , Confiança , Preconceito/psicologia , Política , Opinião Pública , Planejamento em Desastres/métodos , Planejamento em Desastres/tendências
2.
Nat Rev Neurosci ; 24(8): 502-517, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316588

RESUMO

There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.


Assuntos
Giro Denteado , Hipocampo , Animais , Humanos , Rememoração Mental , Aprendizagem , Mamíferos
3.
Nature ; 608(7921): 153-160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831504

RESUMO

Memory formation involves binding of contextual features into a unitary representation1-4, whereas memory recall can occur using partial combinations of these contextual features. The neural basis underlying the relationship between a contextual memory and its constituent features is not well understood; in particular, where features are represented in the brain and how they drive recall. Here, to gain insight into this question, we developed a behavioural task in which mice use features to recall an associated contextual memory. We performed longitudinal imaging in hippocampus as mice performed this task and identified robust representations of global context but not of individual features. To identify putative brain regions that provide feature inputs to hippocampus, we inhibited cortical afferents while imaging hippocampus during behaviour. We found that whereas inhibition of entorhinal cortex led to broad silencing of hippocampus, inhibition of prefrontal anterior cingulate led to a highly specific silencing of context neurons and deficits in feature-based recall. We next developed a preparation for simultaneous imaging of anterior cingulate and hippocampus during behaviour, which revealed robust population-level representation of features in anterior cingulate, that lag hippocampus context representations during training but dynamically reorganize to lead and target recruitment of context ensembles in hippocampus during recall. Together, we provide the first mechanistic insights into where contextual features are represented in the brain, how they emerge, and how they access long-range episodic representations to drive memory recall.


Assuntos
Giro do Cíngulo , Hipocampo , Rememoração Mental , Modelos Neurológicos , Animais , Mapeamento Encefálico , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Estudos Longitudinais , Rememoração Mental/fisiologia , Camundongos , Inibição Neural
4.
Nature ; 606(7912): 146-152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614219

RESUMO

Real-world memories are formed in a particular context and are often not acquired or recalled in isolation1-5. Time is a key variable in the organization of memories, as events that are experienced close in time are more likely to be meaningfully associated, whereas those that are experienced with a longer interval are not1-4. How the brain segregates events that are temporally distinct is unclear. Here we show that a delayed (12-24 h) increase in the expression of C-C chemokine receptor type 5 (CCR5)-an immune receptor that is well known as a co-receptor for HIV infection6,7-after the formation of a contextual memory determines the duration of the temporal window for associating or linking that memory with subsequent memories. This delayed expression of CCR5 in mouse dorsal CA1 neurons results in a decrease in neuronal excitability, which in turn negatively regulates neuronal memory allocation, thus reducing the overlap between dorsal CA1 memory ensembles. Lowering this overlap affects the ability of one memory to trigger the recall of the other, and therefore closes the temporal window for memory linking. Our findings also show that an age-related increase in the neuronal expression of CCR5 and its ligand CCL5 leads to impairments in memory linking in aged mice, which could be reversed with a Ccr5 knockout and a drug approved by the US Food and Drug Administration (FDA) that inhibits this receptor, a result with clinical implications. Altogether, the findings reported here provide insights into the molecular and cellular mechanisms that shape the temporal window for memory linking.


Assuntos
Região CA1 Hipocampal , Memória , Neurônios , Receptores CCR5 , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Camundongos , Neurônios/metabolismo , Receptores CCR5/deficiência , Receptores CCR5/genética , Receptores CCR5/metabolismo , Fatores de Tempo
5.
Nat Rev Neurosci ; 23(3): 173-186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027710

RESUMO

One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.


Assuntos
Plasticidade Celular , Rememoração Mental , Adaptação Fisiológica , Humanos , Rememoração Mental/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
6.
Nat Rev Neurosci ; 23(6): 376-388, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35410358

RESUMO

Although we are continuously bombarded with visual input, only a fraction of incoming visual events is perceived, remembered or acted on. The neural underpinnings of various forms of visual priority coding, including perceptual expertise, goal-directed attention, visual salience, image memorability and preferential looking, have been studied. Here, we synthesize information from these different examples to review recent developments in our understanding of visual priority coding and its neural correlates, with a focus on the role of behaviour to evaluate candidate correlates. We propose that the brain combines different types of priority into a unified priority signal while also retaining the ability to differentiate between them, and that this happens by leveraging partially overlapping low-dimensional neural subspaces for each type of priority that are shared with the downstream neural populations involved in decision-making. Finally, we describe the gulfs in understanding that have resulted from different research approaches, and we point towards future directions that will lead to fundamental insights about neural coding and how prioritization influences visually guided behaviours.


Assuntos
Atenção , Mapeamento Encefálico , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Rememoração Mental , Percepção Visual
7.
Nat Rev Neurosci ; 23(2): 104-114, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931068

RESUMO

Memory recollections and voluntary actions are often perceived as spontaneously generated irrespective of external stimuli. Although products of our neurons, they are only rarely accessible in humans at the neuronal level. Here I review insights gleaned from unique neurosurgical opportunities to record and stimulate single-neuron activity in people who can declare their thoughts, memories and wishes. I discuss evidence that the subjective experience of human recollection and that of voluntary action arise from the activity of two internal neuronal generators, the former from medial temporal lobe reactivation and the latter from frontoparietal preactivation. I characterize properties of these generators and their interaction, enabling flexible recruitment of memory-based choices for action as well as recruitment of action-based plans for the representation of conceptual knowledge in memories. Both internal generators operate on surprisingly explicit but different neuronal codes, which appear to arise with distinct single-neuron activity, often observed before participants' reports of conscious awareness. I discuss prediction of behaviour based on these codes, and the potential for their modulation. The prospects of editing human memories and volitions by enhancement, inception or deletion of specific, selected content raise therapeutic possibilities and ethical concerns.


Assuntos
Memória/fisiologia , Neurônios/fisiologia , Volição/fisiologia , Animais , Humanos , Memória Episódica , Rememoração Mental/fisiologia
8.
Nature ; 591(7850): 426-430, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33473212

RESUMO

Active forgetting is an essential component of the memory management system of the brain1. Forgetting can be permanent, in which prior memory is lost completely, or transient, in which memory exists in a temporary state of impaired retrieval. Temporary blocks on memory seem to be universal, and can disrupt an individual's plans, social interactions and ability to make rapid, flexible and appropriate choices. However, the neurobiological mechanisms that cause transient forgetting are unknown. Here we identify a single dopamine neuron in Drosophila that mediates the memory suppression that results in transient forgetting. Artificially activating this neuron did not abolish the expression of long-term memory. Instead, it briefly suppressed memory retrieval, with the memory becoming accessible again over time. The dopamine neuron modulates memory retrieval by stimulating a unique dopamine receptor that is expressed in a restricted physical compartment of the axons of mushroom body neurons. This mechanism for transient forgetting is triggered by the presentation of interfering stimuli immediately before retrieval.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster/fisiologia , Rememoração Mental/fisiologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Condicionamento Psicológico , Dendritos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Estimulação Elétrica , Feminino , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Odorantes , Receptores de Dopamina D1/metabolismo , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 121(12): e2311077121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470923

RESUMO

The memory benefit that arises from distributing learning over time rather than in consecutive sessions is one of the most robust effects in cognitive psychology. While prior work has mainly focused on repeated exposures to the same information, in the real world, mnemonic content is dynamic, with some pieces of information staying stable while others vary. Thus, open questions remain about the efficacy of the spacing effect in the face of variability in the mnemonic content. Here, in two experiments, we investigated the contributions of mnemonic variability and the timescale of spacing intervals, ranging from seconds to days, to long-term memory. For item memory, both mnemonic variability and spacing intervals were beneficial for memory; however, mnemonic variability was greater at shorter spacing intervals. In contrast, for associative memory, repetition rather than mnemonic variability was beneficial for memory, and spacing benefits only emerged in the absence of mnemonic variability. These results highlight a critical role for mnemonic variability and the timescale of spacing intervals in the spacing effect, bringing this classic memory paradigm into more ecologically valid contexts.


Assuntos
Memória , Rememoração Mental , Aprendizagem , Memória de Longo Prazo , Tempo
10.
Proc Natl Acad Sci U S A ; 121(22): e2310979121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781212

RESUMO

Humans have the highly adaptive ability to learn from others' memories. However, because memories are prone to errors, in order for others' memories to be a valuable source of information, we need to assess their veracity. Previous studies have shown that linguistic information conveyed in self-reported justifications can be used to train a machine-learner to distinguish true from false memories. But can humans also perform this task, and if so, do they do so in the same way the machine-learner does? Participants were presented with justifications corresponding to Hits and False Alarms and were asked to directly assess whether the witness's recognition was correct or incorrect. In addition, participants assessed justifications' recollective qualities: their vividness, specificity, and the degree of confidence they conveyed. Results show that human evaluators can discriminate Hits from False Alarms above chance levels, based on the justifications provided per item. Their performance was on par with the machine learner. Furthermore, through assessment of the perceived recollective qualities of justifications, participants were able to glean more information from the justifications than they used in their own direct decisions and than the machine learner did.


Assuntos
Rememoração Mental , Humanos , Rememoração Mental/fisiologia , Feminino , Masculino , Adulto , Reconhecimento Psicológico/fisiologia , Adulto Jovem , Memória/fisiologia , Aprendizado de Máquina
11.
Proc Natl Acad Sci U S A ; 121(9): e2314423121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377208

RESUMO

Sleep supports the consolidation of episodic memory. It is, however, a matter of ongoing debate how this effect is established, because, so far, it has been demonstrated almost exclusively for simple associations, which lack the complex associative structure of real-life events, typically comprising multiple elements with different association strengths. Because of this associative structure interlinking the individual elements, a partial cue (e.g., a single element) can recover an entire multielement event. This process, referred to as pattern completion, is a fundamental property of episodic memory. Yet, it is currently unknown how sleep affects the associative structure within multielement events and subsequent processes of pattern completion. Here, we investigated the effects of post-encoding sleep, compared with a period of nocturnal wakefulness (followed by a recovery night), on multielement associative structures in healthy humans using a verbal associative learning task including strongly, weakly, and not directly encoded associations. We demonstrate that sleep selectively benefits memory for weakly associated elements as well as for associations that were not directly encoded but not for strongly associated elements within a multielement event structure. Crucially, these effects were accompanied by a beneficial effect of sleep on the ability to recall multiple elements of an event based on a single common cue. In addition, retrieval performance was predicted by sleep spindle activity during post-encoding sleep. Together, these results indicate that sleep plays a fundamental role in shaping associative structures, thereby supporting pattern completion in complex multielement events.


Assuntos
Consolidação da Memória , Memória Episódica , Distúrbios do Início e da Manutenção do Sono , Humanos , Sono , Rememoração Mental , Vigília
12.
Proc Natl Acad Sci U S A ; 121(11): e2310766121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442171

RESUMO

The neural correlates of sentence production are typically studied using task paradigms that differ considerably from the experience of speaking outside of an experimental setting. In this fMRI study, we aimed to gain a better understanding of syntactic processing in spontaneous production versus naturalistic comprehension in three regions of interest (BA44, BA45, and left posterior middle temporal gyrus). A group of participants (n = 16) was asked to speak about the events of an episode of a TV series in the scanner. Another group of participants (n = 36) listened to the spoken recall of a participant from the first group. To model syntactic processing, we extracted word-by-word metrics of phrase-structure building with a top-down and a bottom-up parser that make different hypotheses about the timing of structure building. While the top-down parser anticipates syntactic structure, sometimes before it is obvious to the listener, the bottom-up parser builds syntactic structure in an integratory way after all of the evidence has been presented. In comprehension, neural activity was found to be better modeled by the bottom-up parser, while in production, it was better modeled by the top-down parser. We additionally modeled structure building in production with two strategies that were developed here to make different predictions about the incrementality of structure building during speaking. We found evidence for highly incremental and anticipatory structure building in production, which was confirmed by a converging analysis of the pausing patterns in speech. Overall, this study shows the feasibility of studying the neural dynamics of spontaneous language production.


Assuntos
Benchmarking , Rememoração Mental , Humanos , Idioma , Software , Fala
13.
PLoS Biol ; 21(4): e3001799, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104303

RESUMO

Memories are easier to relearn than learn from scratch. This advantage, known as savings, has been widely assumed to result from the reemergence of stable long-term memories. In fact, the presence of savings has often been used as a marker for whether a memory has been consolidated. However, recent findings have demonstrated that motor learning rates can be systematically controlled, providing a mechanistic alternative to the reemergence of a stable long-term memory. Moreover, recent work has reported conflicting results about whether implicit contributions to savings in motor learning are present, absent, or inverted, suggesting a limited understanding of the underlying mechanisms. To elucidate these mechanisms, we investigate the relationship between savings and long-term memory by experimentally dissecting the underlying memories based on short-term (60-s) temporal persistence. Components of motor memory that are temporally-persistent at 60 s might go on to contribute to stable, consolidated long-term memory, whereas temporally-volatile components that have already decayed away by 60 s cannot. Surprisingly, we find that temporally-volatile implicit learning leads to savings, whereas temporally-persistent learning does not, but that temporally-persistent learning leads to long-term memory at 24 h, whereas temporally-volatile learning does not. This double dissociation between the mechanisms for savings and long-term memory formation challenges widespread assumptions about the connection between savings and memory consolidation. Moreover, we find that temporally-persistent implicit learning not only fails to contribute to savings, but also that it produces an opposite, anti-savings effect, and that the interplay between this temporally-persistent anti-savings and temporally-volatile savings provides an explanation for several seemingly conflicting recent reports about whether implicit contributions to savings are present, absent, or inverted. Finally, the learning curves we observed for the acquisition of temporally-volatile and temporally-persistent implicit memories demonstrate the coexistence of implicit memories with distinct time courses, challenging the assertion that models of context-based learning and estimation should supplant models of adaptive processes with different learning rates. Together, these findings provide new insight into the mechanisms for savings and long-term memory formation.


Assuntos
Consolidação da Memória , Memória de Longo Prazo , Rememoração Mental
14.
PLoS Biol ; 21(11): e3002399, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983253

RESUMO

Understanding how individual memories are reactivated during sleep is essential in theorizing memory consolidation. Here, we employed the targeted memory reactivation (TMR) paradigm to unobtrusively replaying auditory memory cues during human participants' slow-wave sleep (SWS). Using representational similarity analysis (RSA) on cue-elicited electroencephalogram (EEG), we found temporally segregated and functionally distinct item-specific neural representations: the early post-cue EEG activity (within 0 to 2,000 ms) contained comparable item-specific representations for memory cues and control cues, signifying effective processing of auditory cues. Critically, the later EEG activity (2,500 to 2,960 ms) showed greater item-specific representations for post-sleep remembered items than for forgotten and control cues, indicating memory reprocessing. Moreover, these later item-specific neural representations were supported by concurrently increased spindles, particularly for items that had not been tested prior to sleep. These findings elucidated how external memory cues triggered item-specific neural representations during SWS and how such representations were linked to successful long-term memory. These results will benefit future research aiming to perturb specific memory episodes during sleep.


Assuntos
Consolidação da Memória , Memória , Humanos , Memória/fisiologia , Sono/fisiologia , Memória de Longo Prazo , Sinais (Psicologia) , Rememoração Mental/fisiologia , Consolidação da Memória/fisiologia
15.
PLoS Biol ; 21(6): e3002145, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289802

RESUMO

The standard consolidation theory suggests that the hippocampus (HPC) is critically involved in acquiring new memory, while storage and recall gradually become independent of it. Converging studies have shown separate involvements of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in item and spatial processes, whereas HPC relates the item to a spatial context. These 2 strands of literature raise the following question; which brain region is involved in the recall process of item-location associative memory? To solve this question, this study applied an item-location associative (ILA) paradigm in a single-unit study of nonhuman primates. We trained 2 macaques to associate 4 visual item pairs with 4 locations on a background map in an allocentric manner before the recording sessions. In each trial, 1 visual item and the map image at a tilt (-90° to 90°) were sequentially presented as the item-cue and the context-cue, respectively. The macaques chose the item-cue location relative to the context-cue by positioning their gaze. Neurons in the PRC, PHC, and HPC, but not area TE, exhibited item-cue responses which signaled retrieval of item-location associative memory. This retrieval signal first appeared in the PRC, followed by the HPC and PHC. We examined whether neural representations of the retrieved locations were related to the external space that the macaques viewed. A positive representation similarity was found in the HPC and PHC, but not in the PRC, thus suggesting a contribution of the HPC to relate the retrieved location from the PRC with a first-person perspective of the subjects and provide the self-referenced retrieved location to the PHC. These results imply distinct but complementary contributions of the PRC and HPC to recall of item-location associative memory that can be used across multiple spatial contexts.


Assuntos
Córtex Perirrinal , Imageamento por Ressonância Magnética/métodos , Rememoração Mental/fisiologia , Hipocampo/fisiologia , Encéfalo , Mapeamento Encefálico/métodos
16.
Nature ; 587(7833): 264-269, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32968277

RESUMO

The consolidation of spatial memory depends on the reactivation ('replay') of hippocampal place cells that were active during recent behaviour. Such reactivation is observed during sharp-wave ripples (SWRs)-synchronous oscillatory electrical events that occur during non-rapid-eye-movement (non-REM) sleep1-8 and whose disruption impairs spatial memory3,5,6,8. Although the hippocampus also encodes a wide range of non-spatial forms of declarative memory, it is not yet known whether SWRs are necessary for such memories. Moreover, although SWRs can arise from either the CA3 or the CA2 region of the hippocampus7,9, the relative importance of SWRs from these regions for memory consolidation is unknown. Here we examine the role of SWRs during the consolidation of social memory-the ability of an animal to recognize and remember a member of the same species-focusing on CA2 because of its essential role in social memory10-12. We find that ensembles of CA2 pyramidal neurons that are active during social exploration of previously unknown conspecifics are reactivated during SWRs. Notably, disruption or enhancement of CA2 SWRs suppresses or prolongs social memory, respectively. Thus, SWR-mediated reactivation of hippocampal firing related to recent experience appears to be a general mechanism for binding spatial, temporal and sensory information into high-order memory representations, including social memory.


Assuntos
Região CA2 Hipocampal/fisiologia , Memória/fisiologia , Sono/fisiologia , Interação Social , Animais , Região CA2 Hipocampal/anatomia & histologia , Região CA2 Hipocampal/citologia , Masculino , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Células Piramidais/fisiologia
17.
Proc Natl Acad Sci U S A ; 120(29): e2221919120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37432994

RESUMO

How do collective events shape how we remember our lives? We leveraged advances in natural language processing as well as a rich, longitudinal assessment of 1,000 Americans throughout 2020 to examine how memory is influenced by two prominent factors: surprise and emotion. Autobiographical memory for 2020 displayed a unique signature: There was a substantial bump in March, aligning with pandemic onset and lockdowns, consistent across three memory collections 1 y apart. We further investigated how emotion, using both immediate and retrieved measures, predicted the amount and content of autobiographical memory: Negative affect increased recall across all measures, whereas its more clinical indices, depression and posttraumatic stress disorder, selectively increased nonepisodic recall. Finally, in a separate cohort, we found pandemic news to be better remembered, surprising, and negative, while lockdowns compressed remembered time. Our work connects laboratory findings to the real world and delineates the effects of acute versus clinical signatures of negative emotion on memory.


Assuntos
Memória Episódica , Humanos , Emoções , Rememoração Mental , Processamento de Linguagem Natural , Pandemias
18.
Proc Natl Acad Sci U S A ; 120(41): e2301845120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782811

RESUMO

Accurate witness identification is a cornerstone of police inquiries and national security investigations. However, witnesses can make errors. We experimentally tested whether an interactive lineup, a recently introduced procedure that enables witnesses to dynamically view and explore faces from different angles, improves the rate at which witnesses identify guilty over innocent suspects compared to procedures traditionally used by law enforcement. Participants encoded 12 target faces, either from the front or in profile view, and then attempted to identify the targets from 12 lineups, half of which were target present and the other half target absent. Participants were randomly assigned to a lineup condition: simultaneous interactive, simultaneous photo, or sequential video. In the front-encoding and profile-encoding conditions, Receiver Operating Characteristics analysis indicated that discriminability was higher in interactive compared to both photo and video lineups, demonstrating the benefit of actively exploring the lineup members' faces. Signal-detection modeling suggested interactive lineups increase discriminability because they afford the witness the opportunity to view more diagnostic features such that the nondiagnostic features play a proportionally lesser role. These findings suggest that eyewitness errors can be reduced using interactive lineups because they create retrieval conditions that enable witnesses to actively explore faces and more effectively sample features.


Assuntos
Rememoração Mental , Reconhecimento Psicológico , Humanos , Aplicação da Lei , Polícia , Culpa
19.
Proc Natl Acad Sci U S A ; 120(31): e2304881120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490530

RESUMO

Motivation influences goals, decisions, and memory formation. Imperative motivation links urgent goals to actions, narrowing the focus of attention and memory. Conversely, interrogative motivation integrates goals over time and space, supporting rich memory encoding for flexible future use. We manipulated motivational states via cover stories for a reinforcement learning task: The imperative group imagined executing a museum heist, whereas the interrogative group imagined planning a future heist. Participants repeatedly chose among four doors, representing different museum rooms, to sample trial-unique paintings with variable rewards (later converted to bonus payments). The next day, participants performed a surprise memory test. Crucially, only the cover stories differed between the imperative and interrogative groups; the reinforcement learning task was identical, and all participants had the same expectations about how and when bonus payments would be awarded. In an initial sample and a preregistered replication, we demonstrated that imperative motivation increased exploitation during reinforcement learning. Conversely, interrogative motivation increased directed (but not random) exploration, despite the cost to participants' earnings. At test, the interrogative group was more accurate at recognizing paintings and recalling associated values. In the interrogative group, higher value paintings were more likely to be remembered; imperative motivation disrupted this effect of reward modulating memory. Overall, we demonstrate that a prelearning motivational manipulation can bias learning and memory, bearing implications for education, behavior change, clinical interventions, and communication.


Assuntos
Motivação , Reforço Psicológico , Humanos , Aprendizagem , Recompensa , Rememoração Mental
20.
Proc Natl Acad Sci U S A ; 120(40): e2305292120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751551

RESUMO

Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.


Assuntos
Memória Episódica , Rememoração Mental , Humanos , Eletricidade , Hipocampo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa