Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003259

RESUMO

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the ß-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.


Assuntos
NAD , Rhodobacter capsulatus , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Elétrons , Oxirredução , Oxidantes , Niacinamida , Cinética
2.
Appl Environ Microbiol ; 88(19): e0094422, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098534

RESUMO

Biofilms are widespread in the environment, where they allow bacterial species to survive adverse conditions. Cells in biofilms are densely packed, and this proximity is likely to increase the frequency of horizontal gene transfer. Gene transfer agents (GTAs) are domesticated viruses with the potential to spread any gene between bacteria. GTA production is normally restricted to a small subpopulation of bacteria, and regulation of GTA loci is highly coordinated, but the environmental conditions that favor GTA production are poorly understood. Here, we identified a serine acetyltransferase gene, cysE1, in Rhodobacter capsulatus that is required for optimal receipt of GTA DNA, accumulation of extracellular polysaccharide, and biofilm formation. The cysE1 gene is directly downstream of the core Rhodobacter-like GTA (RcGTA) structural gene cluster and upregulated in an RcGTA overproducer strain, although it is expressed on a separate transcript. The data we present suggest that GTA production and biofilm are coregulated, which could have important implications for the study of rapid bacterial evolution and understanding the full impact of GTAs in the environment. IMPORTANCE Direct exchange of genes between bacteria leads to rapid evolution and is the major factor underlying the spread of antibiotic resistance. Gene transfer agents (GTAs) are an unusual but understudied mechanism for genetic exchange that are capable of transferring any gene from one bacterium to another, and therefore, GTAs are likely to be important factors in genome plasticity in the environment. Despite the potential impact of GTAs, our knowledge of their regulation is incomplete. In this paper, we present evidence that elements of the cysteine biosynthesis pathway are involved in coregulation of various phenotypes required for optimal biofilm formation by Rhodobacter capsulatus and successful infection by the archetypal RcGTA. Establishing the regulatory mechanisms controlling GTA-mediated gene transfer is a key stepping stone to allow a full understanding of their role in the environment and wider impact.


Assuntos
Rhodobacter capsulatus , Biofilmes , Cisteína/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Fenótipo , Rhodobacter capsulatus/genética , Serina , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/metabolismo
3.
J Bacteriol ; 203(5)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288624

RESUMO

Protein phosphorylation is a universal mechanism for transducing cellular signals in prokaryotes and eukaryotes. The histidine kinase CckA, the histidine phosphotransferase ChpT, and the response regulator CtrA are conserved throughout the alphaproteobacteria. In Rhodobacter capsulatus, these proteins are key regulators of the gene transfer agent (RcGTA), which is present in several alphaproteobacteria. Using purified recombinant R. capsulatus proteins, we show in vitro autophosphorylation of CckA protein, and phosphotransfer to ChpT and thence to CtrA, to demonstrate biochemically that they form a phosphorelay. The secondary messenger cyclic di-GMP changed CckA from a kinase to a phosphatase, resulting in reversal of the phosphotransfer flow in the relay. The substitutions of two residues in CckA greatly affected the kinase or phosphatase activity of the protein in vitro, and production of mutant CckA proteins in vivo confirmed the importance of kinase but not phosphatase activity for the lytic release of RcGTA. However, phosphatase activity was needed to produce functional RcGTA particles. The binding of cyclic di-GMP to the wild-type and mutant CckA proteins was evaluated directly using a pulldown assay based on biotinylated cyclic di-GMP and streptavidin-linked beads.IMPORTANCE The CckA, ChpT, and CtrA phosphorelay proteins are widespread in the alphaproteobacteria, and there are two groups of organisms that differ in terms of whether this pathway is essential for cell viability. Little is known about the biochemical function of these proteins in organisms where the pathway is not essential, a group that includes Rhodobacter capsulatus This work demonstrates biochemically that CckA, ChpT, and CtrA also form a functional phosphorelay in the latter group and that the direction of phosphotransfer is reversed by cyclic di-GMP. It is important to improve understanding of more representatives of this pathway in order to obtain deeper insight into the function, composition, and evolutionary significance of a wider range of bacterial regulatory networks.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Transferência Genética Horizontal , Histidina Quinase/metabolismo , Fosfotransferases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , GMP Cíclico/metabolismo , Técnicas de Transferência de Genes , Histidina Quinase/genética , Histidina Quinase/isolamento & purificação , Fosforilação , Fosfotransferases/genética , Fosfotransferases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
4.
Plant Cell Physiol ; 62(1): 100-110, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33169162

RESUMO

Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Bacterianos , Proteínas Repressoras/metabolismo , Rhodobacter capsulatus/metabolismo , Sulfetos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/fisiologia
5.
Biochem J ; 477(23): 4635-4654, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211085

RESUMO

During bacteriochlorophyll a biosynthesis, the oxygen-independent conversion of Mg-protoporphyrin IX monomethyl ester (Mg-PME) to protochlorophyllide (Pchlide) is catalyzed by the anaerobic Mg-PME cyclase termed BchE. Bioinformatics analyses in combination with pigment studies of cobalamin-requiring Rhodobacter capsulatus mutants indicated an unusual radical S-adenosylmethionine (SAM) and cobalamin-dependent BchE catalysis. However, in vitro biosynthesis of the isocyclic ring moiety of bacteriochlorophyll using purified recombinant BchE has never been demonstrated. We established a spectroscopic in vitro activity assay which was subsequently validated by HPLC analyses and H218O isotope label transfer onto the carbonyl-group (C-131-oxo) of the isocyclic ring of Pchlide. The reaction product was further converted to chlorophyllide in the presence of light-dependent Pchlide reductase. BchE activity was stimulated by increasing concentrations of NADPH or SAM, and inhibited by S-adenosylhomocysteine. Subcellular fractionation experiments revealed that membrane-localized BchE requires an additional, heat-sensitive cytosolic component for activity. BchE catalysis was not sustained in chimeric experiments when a cytosolic extract from E. coli was used as a substitute. Size-fractionation of the soluble R. capsulatus fraction indicated that enzymatic activity relies on a specific component with an estimated molecular mass between 3 and 10 kDa. A structure guided site-directed mutagenesis approach was performed on the basis of a three-dimensional homology model of BchE. A newly established in vivo complementation assay was used to investigate 24 BchE mutant proteins. Potential ligands of the [4Fe-4S] cluster (Cys204, Cys208, Cys211), of SAM (Phe210, Glu308 and Lys320) and of the proposed cobalamin cofactor (Asp248, Glu249, Leu29, Thr71, Val97) were identified.


Assuntos
Proteínas de Bactérias , Bacterioclorofilas , Oxigenases , Protoporfirinas , Rhodobacter capsulatus , S-Adenosilmetionina , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Bacterioclorofilas/química , Bacterioclorofilas/genética , Oxigenases/química , Oxigenases/genética , Oxigenases/metabolismo , Protoporfirinas/biossíntese , Protoporfirinas/química , Protoporfirinas/genética , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
6.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534034

RESUMO

Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date.


Assuntos
Empacotamento do DNA , Endodesoxirribonucleases/genética , Transferência Genética Horizontal , Rhodobacter capsulatus/genética , Bacteriófagos/genética , Proteínas do Capsídeo/genética , DNA , Proteínas de Ligação a DNA , Farmacorresistência Bacteriana , Endodesoxirribonucleases/metabolismo , Evolução Molecular , Família Multigênica , Rhodobacter capsulatus/virologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução Genética , Montagem de Vírus
7.
Proc Natl Acad Sci U S A ; 114(9): 2355-2360, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196888

RESUMO

Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H2S) as a photosynthetic electron donor. Although enzymes involved in H2S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfide-stressed cells, and tetrasulfide-cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H2S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.


Assuntos
Elétrons , Regulação Bacteriana da Expressão Gênica , Sulfeto de Hidrogênio/metabolismo , Fotossíntese/genética , Proteínas Repressoras/genética , Rhodobacter capsulatus/genética , Sequência de Bases , Sítios de Ligação , Evolução Biológica , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Transporte de Elétrons , Glutationa/análogos & derivados , Glutationa/química , Oxirredução , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Rhodobacter capsulatus/metabolismo , Homologia Estrutural de Proteína , Enxofre/metabolismo
8.
J Bacteriol ; 201(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510145

RESUMO

Bacterial microcompartments (BMCs) are large (∼100-nm) protein shells that encapsulate enzymes, their substrates, and cofactors for the purposes of increasing metabolic reaction efficiency and protecting cells from toxic intermediates. The best-studied microcompartment is the carbon-fixing carboxysome that encapsulates ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase. Other well-known BMCs include the Pdu and Eut BMCs, which metabolize 1,2-propanediol and ethanolamine, respectively, with vitamin B12-dependent diol dehydratase enzymes. Recent bioinformatic analyses identified a new prevalent type of BMC, hypothesized to utilize vitamin B12-independent glycyl radical enzymes to metabolize substrates. Here we use genetic and metabolic analyses to undertake in vivo characterization of the newly identified glycyl radical enzyme microcompartment 3 (GRM3) class of microcompartment clusters. Transcriptome sequencing analyses showed that the microcompartment gene cluster in the genome of the purple photosynthetic bacterium Rhodobacter capsulatus was expressed under dark anaerobic respiratory conditions in the presence of 1,2-propanediol. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses showed that enzymes coded by this cluster metabolized 1,2-propanediol into propionaldehyde, propanol, and propionate. Surprisingly, the microcompartment pathway did not protect these cells from toxic propionaldehyde under the conditions used in this study, with buildup of this intermediate contributing to arrest of cell growth. We further show that expression of microcompartment genes is regulated by a two-component system located downstream of the microcompartment cluster.IMPORTANCE BMCs are protein shells that are designed to compartmentalize enzymatic reactions that require either sequestration of a substrate or the sequestration of toxic intermediates. Due to their ability to compartmentalize reactions, BMCs have also become attractive targets for bioengineering novel enzymatic reactions. Despite these useful features, little is known about the biochemistry of newly identified classes of BMCs. In this study, we have undertaken genetic and in vivo metabolic analyses of the newly identified GRM3 gene cluster.


Assuntos
Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas/genética , Propilenoglicol/metabolismo , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/metabolismo , 1-Propanol/metabolismo , Aldeídos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Biotransformação , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Escuridão , Espectrometria de Massas , Família Multigênica , Propionatos/metabolismo , Rhodobacter capsulatus/genética
9.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501287

RESUMO

Bacteriophage-like gene transfer agents (GTAs) have been discovered in both of the prokaryotic branches of the three-domain phylogenetic tree of life. The production of a GTA (RcGTA) by the phototrophic alphaproteobacterium Rhodobacter capsulatus is regulated by quorum sensing and a phosphorelay homologous to systems in other species that control essential functions such as the initiation of chromosome replication and cell division. In wild-type strains, RcGTA is produced in <3% of cells in laboratory cultures. Mutants of R. capsulatus that exhibit greatly elevated production of RcGTA were created decades ago by chemical mutagenesis, but the nature and molecular consequences of the mutation were unknown. We show that the number of cells in a population that go on to express RcGTA genes is controlled by a stochastic process, in contrast to a genetic process. We used transposon mutagenesis along with a fluorescent protein reporter system and genome sequence data to identify a gene, rcc00280, that encodes an RTX family calcium-binding protein homologue. The Rc280 protein acts as an extracellular repressor of RcGTA gene expression by decreasing the percentage of cells that induce the production of RcGTA.IMPORTANCE GTAs catalyze horizontal gene transfer (HGT), which is important for genomic evolution because the majority of genes found in bacterial genomes have undergone HGT at some point in their evolution. Therefore, it is important to determine how the production of GTAs is regulated to understand the factors that modulate the frequency of gene transfer and thereby specify the tempo of evolution. This work describes a new type of genetic regulation in which an extracellular calcium-binding protein homologue represses the induction of the Rhodobacter capsulatus GTA, RcGTA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Rhodobacter capsulatus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Divisão Celular , Elementos de DNA Transponíveis , Escherichia coli , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese , Mutação , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Percepção de Quorum/genética , Rhodobacter capsulatus/metabolismo , Processos Estocásticos , Sequenciamento Completo do Genoma , Proteína Vermelha Fluorescente
10.
Mol Microbiol ; 110(2): 239-261, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098062

RESUMO

Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coá´½-(á´½-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).


Assuntos
Cobamidas/metabolismo , Nucleotídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rhodobacter capsulatus/enzimologia , Rhodobacter sphaeroides/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Filogenia , Proteínas Serina-Treonina Quinases/genética , Rhodobacter capsulatus/genética , Rhodobacter sphaeroides/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Serina/metabolismo , Treonina/metabolismo
11.
Photosynth Res ; 141(3): 273-290, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30859455

RESUMO

In bacterial reaction centers (RCs), photon-induced initial charge separation uses an A-side bacteriochlorophyll (BChl, BA) and bacteriopheophytin (BPh, HA), while the near-mirror image B-side BB and HB cofactors are inactive. Two new sets of Rhodobacter capsulatus RC mutants were designed, both bearing substitution of all amino acids for the native histidine M180 (M-polypeptide residue 180) ligand to the core Mg ion of BB. Residues are identified that largely result in retention of a BChl in the BB site (Asp, Ser, Pro, Gln, Asn, Gly, Cys, Lys, and Thr), ones that largely harbor the Mg-free BPh in the BB site (Leu and Ile), and ones for which isolated RCs are comprised of a substantial mixture of these two RC types (Ala, Glu, Val, Met and, in one set, Arg). No protein was isolated when M180 is Trp, Tyr, Phe, or (in one set) Arg. These findings are corroborated by ground state spectra, pigment extractions, ultrafast transient absorption studies, and the yields of B-side transmembrane charge separation. The changes in coordination chemistries did not reveal an RC with sufficiently precise poising of the redox properties of the BB-site cofactor to result in a high yield of B-side electron transfer to HB. Insights are gleaned into the amino acid properties that support BChl in the BB site and into the widely observed multi-exponential decay of the excited state of the primary electron donor. The results also have direct implications for tuning free energies of the charge-separated intermediates in RCs and mimetic systems.


Assuntos
Bacterioclorofilas/genética , Mutagênese , Rhodobacter capsulatus/genética , Ligantes , Proteínas Mutantes/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Análise Espectral , Termodinâmica
12.
Arch Microbiol ; 201(5): 661-671, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30796473

RESUMO

This study investigated the effect of different nitrogen sources, namely, ammonium chloride and glutamate, on photoheterotrophic metabolism of Rhodobacter capsulatus grown on acetate as the carbon source. Genes that were significantly differentially expressed according to Affymetrix microarray data were categorized into Clusters of Orthologous Groups functional categories and those in acetate assimilation, hydrogen production, and photosynthetic electron transport pathways were analyzed in detail. Genes related to hydrogen production metabolism were significantly downregulated in cultures grown on ammonium chloride when compared to those grown on glutamate. In contrast, photosynthetic electron transport and acetate assimilation pathway genes were upregulated. In detail, aceA encoding isocitrate lyase, a unique enzyme of the glyoxylate cycle and ccrA encoding the rate limiting crotonyl-CoA carboxylase/reductase enzyme of ethylmalonyl-coA pathway were significantly upregulated. Our findings indicate for the first time that R. capsulatus can operate both glyoxylate and ethylmalonyl-coA cycles for acetate assimilation.


Assuntos
Ácido Acético/metabolismo , Acil Coenzima A/metabolismo , Cloreto de Amônio/metabolismo , Ácido Glutâmico/metabolismo , Glioxilatos/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Acil-CoA Desidrogenases/genética , Acil-CoA Desidrogenases/metabolismo , Carbono/metabolismo , Carboxiliases/metabolismo , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Perfilação da Expressão Gênica , Hidrogênio/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Nitrogênio/metabolismo , Rhodobacter capsulatus/crescimento & desenvolvimento
13.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625982

RESUMO

Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.


Assuntos
Proteínas de Bactérias/genética , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/genética , Endopeptidase Clp/metabolismo , Transferência Genética Horizontal , Fosforilação , Domínios Proteicos
14.
J Bacteriol ; 199(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28461447

RESUMO

Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens, Dinoroseobacter shibae, Rhodobacter sphaeroides, and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens, R. sphaeroides, and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides, to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family.IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Rhodobacter capsulatus/enzimologia , Sulfatos/metabolismo , Ânions/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/genética , Mutação , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
15.
Biochemistry ; 56(34): 4578-4583, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28752998

RESUMO

The mechanism of energy-coupling factor (ECF) transporters, a special type of ATP-binding-cassette importers for micronutrients in prokaryotes, is a matter of controversial discussion. Among subclass II ECF transporters, a single ECF interacts with several substrate-binding integral membrane proteins (S units) for individual solutes. Release and catch of the S unit, previously observed experimentally for a subclass II system, was proposed as the mechanism of all ECF transporters. The BioM2NY biotin transporter is a prototype of subclass I systems, among which the S unit is dedicated to a specific ECF. Here we simulated the transport cycle using purified BioM2NY in detergent solution. BioM2NY complexes were stable during all steps. ATP binding was a prerequisite for biotin capture and ATP hydrolysis for subsequent biotin release. The data demonstrate that S units of subclass I ECF transporters do not have to dissociate from holotransporter complexes for high-affinity substrate binding, indicating mechanistic differences between the two subclasses.


Assuntos
Proteínas de Bactérias/química , Rhodobacter capsulatus/química , Simportadores/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/fisiologia , Estabilidade Proteica , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Simportadores/genética , Simportadores/metabolismo
16.
J Biol Chem ; 291(13): 6872-81, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26858251

RESUMO

In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Elétrons , Escherichia coli/química , Heme/química , Potenciais da Membrana/fisiologia , Rhodobacter capsulatus/química , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Heme/metabolismo , Histidina/química , Histidina/genética , Ferro/química , Ferro/metabolismo , Cinética , Lisina/química , Lisina/genética , Mutação , Quinonas/química , Quinonas/metabolismo , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/genética , Termodinâmica
17.
Biochim Biophys Acta ; 1857(2): 150-159, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658355

RESUMO

Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P(+)QB(-) yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P(+)QB(-) are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 µs. The resulting ranking of mutants for their yield of P(+)QB(-) from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P(+)HB(-)→P(+)QB(-) electron transfer or initial P*→P(+)HB(-) conversion highlight unmet challenges of optimizing both processes simultaneously.


Assuntos
Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Feofitinas/química , Fotossíntese/fisiologia , Rhodobacter capsulatus/química , Ubiquinona/química , Motivos de Aminoácidos , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Expressão Gênica , Ligação de Hidrogênio , Cinética , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Feofitinas/metabolismo , Fotossíntese/efeitos da radiação , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Rhodobacter capsulatus/efeitos da radiação , Eletricidade Estática , Relação Estrutura-Atividade , Ubiquinona/metabolismo
18.
Biochim Biophys Acta ; 1857(8): 1102-1110, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27032290

RESUMO

One of the important elements of operation of cytochrome bc1 (mitochondrial respiratory complex III) is a large scale movement of the head domain of iron-sulfur protein (ISP-HD), which connects the quinol oxidation site (Qo) located within the cytochrome b, with the outermost heme c(1) of cytochrome c(1). Several mitochondrial disease-related mutations in cytochrome b are located at the cytochrome b-ISP-HD interface, thus their molecular effects can be associated with altered motion of ISP-HD. Using purple bacterial model, we recently showed that one of such mutations - G167P shifts the equilibrium position of ISP-HD towards positions remote from the Qo site as compared to the native enzyme [Borek et al., J. Biol. Chem. 290 (2015) 23781-23792]. This resulted in the enhanced propensity of the mutant to generate reactive oxygen species (ROS) which was explained on the basis of the model evoking "semireverse" electron transfer from heme bL to quinone. Here we examine another mutation from that group - G332D (G290D in human), finding that it also shifts the equilibrium position of ISP-HD in the same direction, however displays less of the enhancement in ROS production. We provide spectroscopic indication that G332D might affect the electrostatics of interaction between cytochrome b and ISP-HD. This effect, in light of the measured enzymatic activities and electron transfer rates, appears to be less severe than structural distortion caused by proline in G167P mutant. Comparative analysis of the effects of G332D and G167P confirms a general prediction that mutations located at the cytochrome b-ISP-HD interface influence the motion of ISP-HD and indicates that "pushing" ISP-HD away from the Qo site is the most likely outcome of this influence. It can also be predicted that an increase in ROS production associated with the "pushing" effect is quite sensitive to overall severity of this change with more active mutants being generally more protected against elevated ROS. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Proteínas Ferro-Enxofre/química , Mitocôndrias/metabolismo , Subunidades Proteicas/química , Rhodobacter capsulatus/metabolismo , Superóxidos/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Oxirredução , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Rhodobacter capsulatus/genética
19.
Mol Biol Evol ; 33(10): 2530-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27343288

RESUMO

Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell's genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures "repurposed" by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage. Utilizing transcriptomic, genetic and biochemical approaches, we report that the RcGTA "genome" consists of at least 24 genes distributed across five distinct loci. We demonstrate that, of these additional loci, two are involved in cell recognition and binding and one in the production and maturation of RcGTA particles. The five RcGTA "genome" loci are widespread within Rhodobacterales, but not all loci have the same evolutionary histories. Specifically, two of the loci have been subject to frequent, probably virus-mediated, gene transfer events. We argue that it is unlikely that RcGTA is a selfish genetic element. Instead, our findings are compatible with the scenario that RcGTA is a virus-derived element maintained by the producing organism due to a selective advantage of within-population gene exchange. The modularity of the RcGTA "genome" is presumably a result of selection on the host organism to retain GTA functionality.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Rhodobacter capsulatus/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal/genética , Prófagos/genética
20.
Biotechnol Bioeng ; 114(2): 291-297, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27531314

RESUMO

The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system (Ghirardi et al., 2009 Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52-61). Here, we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H2 . The resulting strain photoproduces H2 and self-reports its own H2 production through fluorescence. This model system represents a unique method of developing hydrogenase-based H2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H2 . Biotechnol. Bioeng. 2017;114: 291-297. © 2016 Wiley Periodicals, Inc.


Assuntos
Hidrogênio/metabolismo , Rhodobacter capsulatus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Ensaios de Triagem em Larga Escala , Hidrogênio/análise , Hidrogenase/genética , Hidrogenase/metabolismo , Luz , Engenharia Metabólica , Fotobiorreatores/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter capsulatus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa