Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Annu Rev Biochem ; 86: 515-539, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375743

RESUMO

Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Riboswitch , Aptâmeros de Nucleotídeos/síntese química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligantes , Imagem Molecular/métodos , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo
2.
Environ Microbiol ; 24(11): 4987-5004, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35768954

RESUMO

The alicyclic compound cyclohexane carboxylate (CHC) is anaerobically degraded through a peripheral pathway that converges with the central benzoyl-CoA degradation pathway of aromatic compounds in Rhodopseudomonas palustris (bad pathway) and some strictly anaerobic bacteria. Here we show that in denitrifying bacteria, e.g. Aromatoleum sp. CIB strain, CHC is degraded through a bad-ali pathway similar to that reported in R. palustris but that does not share common intermediates with the benzoyl-CoA degradation pathway (bzd pathway) of this bacterium. The bad-ali genes are also involved in the aerobic degradation of CHC in strain CIB, and orthologous bad-ali clusters have been identified in the genomes of a wide variety of bacteria. Expression of bad-ali genes in strain CIB is under control of the BadR transcriptional repressor, which was shown to recognize CHC-CoA, the first intermediate of the pathway, as effector, and whose operator region (CAAN4 TTG) was conserved in bad-ali clusters from Gram-negative bacteria. The bad-ali and bzd pathways generate pimelyl-CoA and 3-hydroxypimelyl-CoA, respectively, that are metabolized through a common aab pathway whose genetic determinants form a supraoperonic clustering with the bad-ali genes. A synthetic bad-ali-aab catabolic module was engineered and it was shown to confer CHC degradation abilities to different bacterial hosts.


Assuntos
Rhodocyclaceae , Fatores de Transcrição , Cicloexanos , Anaerobiose
3.
Environ Microbiol ; 24(7): 3195-3211, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35590445

RESUMO

Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil-rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. Aromatoleum aromaticum. pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 were studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C-H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different ß-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g. the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability.


Assuntos
Rhodocyclaceae , Tolueno , Anaerobiose , Biodegradação Ambiental , Rhodocyclaceae/metabolismo , Tolueno/metabolismo
4.
Environ Microbiol ; 24(12): 6411-6425, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306376

RESUMO

Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.


Assuntos
Bactérias , Thauera , Plasmídeos/genética , Sequência de Bases , Bactérias/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Rhodocyclaceae/genética
5.
Arch Microbiol ; 204(9): 595, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053377

RESUMO

Strains J5BT and M52T are facultatively autotrophic sulfur-oxidizing bacteria isolated from a microbial mat from a hot spring. They were isolated and partially characterized in previous studies, as facultative anaerobes which use nitrate as electron acceptor. In this study, additional characterizations were made to determine their taxonomic status. In both strains, major cellular fatty acids were C16:1 (C16:1ω7c and/or C16:1ω6c) and C16:0. Their chemolithoautotrophic growth was supported by thiosulfate and elemental sulfur. They used some organic acids as growth substrates. Their 16S rRNA gene sequences indicated the highest sequence identities to species in the family Sterolibacteriaceae, but the identities were 95% or lower. Phylogenetic analysis indicated that these strains do not belong to any existing genera. Values of average nucleotide identity and digital DNA-DNA hybridization between strains J5BT and M52T were 87.93% and 34.3%, respectively. On the basis of phenotypic and genomic characteristics, Sulfuricystis multivorans gen. nov. sp. nov., and Sulfuricystis thermophila sp. nov. are proposed, with type strains of J5BT and M52T, respectively. An emended description of the genus Rugosibacter is also proposed, for its reclassification to the family Sterolibacteriaceae.


Assuntos
Betaproteobacteria , Fontes Termais , Técnicas de Tipagem Bacteriana , Composição de Bases , Betaproteobacteria/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Fontes Termais/microbiologia , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Rhodocyclaceae , Análise de Sequência de DNA , Enxofre
6.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741621

RESUMO

The betaproteobacterial degradation specialist Aromatoleum aromaticum EbN1T utilizes several plant-derived 3-phenylpropanoids coupled to denitrification. In vivo responsiveness of A. aromaticum EbN1T was studied by exposing nonadapted cells to distinct pulses (spanning 100 µM to 0.1 nM) of 3-phenylpropanoate, cinnamate, 3-(4-hydroxyphenyl)propanoate, or p-coumarate. Time-resolved, targeted transcript analyses via quantitative reverse transcription-PCR of four selected 3-phenylpropanoid genes revealed a response threshold of 30 to 50 nM for p-coumarate and 1 to 10 nM for the other three tested 3-phenylpropanoids. At these concentrations, transmembrane effector equilibration is attained by passive diffusion rather than active uptake via the ABC transporter, presumably serving the studied 3-phenylpropanoids as well as benzoate. Highly substrate-specific enzyme formation (EbA5316 to EbA5321 [EbA5316-21]) for the shared peripheral degradation pathway putatively involves the predicted TetR-type transcriptional repressor PprR. Accordingly, relative transcript abundances of ebA5316-21 are lower in succinate- and benzoate-grown wild-type cells than in an unmarked in-frame ΔpprR mutant. In trans-complementation of pprR into the ΔpprR background restored wild-type-like transcript levels. When adapted to p-coumarate, the three genotypes had relative transcript abundances similar to those of ebA5316-21 despite a significantly longer lag phase of the pprR-complemented mutant (∼100-fold higher pprR transcript level than the wild type). Notably, transcript levels of ebA5316-21 were ∼10- to 100-fold higher in p-coumarate- than succinate- or benzoate-adapted cells across all three genotypes. This indicates the additional involvement of an unknown transcriptional regulator. Furthermore, physiological, transcriptional, and (aromatic) acyl-coenzyme A ester intermediate analyses of the wild type and ΔpprR mutant grown with binary substrate mixtures suggest a mode of catabolite repression of superior order to PprR.IMPORTANCE Lignin is a ubiquitous heterobiopolymer built from a suite of 3-phenylpropanoid subunits. It accounts for more than 30% of the global plant dry material, and lignin-related compounds are increasingly released into the environment from anthropogenic sources, i.e., by wastewater effluents from the paper and pulp industry. Hence, following biological or industrial decomplexation of lignin, vast amounts of structurally diverse 3-phenylpropanoids enter terrestrial and aquatic habitats, where they serve as substrates for microbial degradation. This raises the question of what signaling systems environmental bacteria employ to detect these nutritionally attractive compounds and to adjust their catabolism accordingly. Moreover, determining in vivo response thresholds of an anaerobic degradation specialist such as A. aromaticum EbN1T for these aromatic compounds provides insights into the environmental fate of the latter, i.e., when they could escape biodegradation due to too low ambient concentrations.


Assuntos
Cinamatos/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Fenilpropionatos/metabolismo , Rhodocyclaceae/metabolismo , Biodegradação Ambiental
7.
Biotechnol Bioeng ; 118(3): 1330-1341, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33305820

RESUMO

Nitrous oxide (N2 O), a potent greenhouse gas, is reduced to N2 gas by N2 O-reducing bacteria (N2 ORB), a process which represents an N2 O sink in natural and engineered ecosystems. The N2 O sink activity by N2 ORB depends on temperature and O2 exposure, yet the specifics are not yet understood. This study explores the effects of temperature and oxygen exposure on biokinetics of pure culture N2 ORB. Four N2 ORB, representing either clade I type nosZ (Pseudomonas stutzeri JCM5965 and Paracoccus denitrificans NBRC102528) or clade II type nosZ (Azospira sp. strains I09 and I13), were individually tested. The higher activation energy for N2 O by Azospira sp. strain I13 (114.0 ± 22.6 kJ mol-1 ) compared with the other tested N2 ORB (38.3-60.1 kJ mol-1 ) indicates that N2 ORB can adapt to different temperatures. The O2 inhibition constants (KI ) of Azospira sp. strain I09 and Ps. stutzeri JCM5965 increased from 0.06 ± 0.05 and 0.05 ± 0.02 µmol L-1 to 0.92 ± 0.24 and 0.84 ± 0.31 µmol L-1 , respectively, as the temperature increased from 15°C to 35°C, while that of Azospira sp. strain I13 was temperature-independent (p = 0.106). Within the range of temperatures examined, Azospira sp. strain I13 had a faster recovery after O2 exposure compared with Azospira sp. strain I09 and Ps. stutzeri JCM5965 (p < 0.05). These results suggest that temperature and O2 exposure result in the growth of ecophysiologically distinct N2 ORB as N2 O sinks. This knowledge can help develop a suitable N2 O mitigation strategy according to the physiologies of the predominant N2 ORB.


Assuntos
Óxido Nitroso/metabolismo , Paracoccus denitrificans/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodocyclaceae/metabolismo , Temperatura
8.
Arch Microbiol ; 203(7): 4149-4159, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34059946

RESUMO

A novel acyl-CoA dehydrogenase involved in degradation of the auxin indoleacetate by Aromatoleum aromaticum was identified as a decarboxylating benzylmalonyl-CoA dehydrogenase (IaaF). It is encoded within the iaa operon coding for enzymes of indoleacetate catabolism. Using enzymatically produced benzylmalonyl-CoA, the reaction was characterized as simultaneous oxidation and decarboxylation of benzylmalonyl-CoA to cinnamoyl-CoA and CO2. Oxygen served as electron acceptor and was reduced to H2O2, whereas electron transfer flavoprotein or artificial dyes serving as electron acceptors for other acyl-CoA dehydrogenases were not used. The enzyme is homotetrameric, contains an FAD cofactor and is enantiospecific in benzylmalonyl-CoA turnover. It shows high catalytic efficiency and strong substrate inhibition with benzylmalonyl-CoA, but otherwise accepts only a few medium-chain alkylmalonyl-CoA compounds as alternative substrates with low activities. Its reactivity of oxidizing 2-carboxyacyl-CoA with simultaneous decarboxylation is unprecedented and indicates a modified reaction mechanism for acyl-CoA dehydrogenases, where elimination of the 2-carboxy group replaces proton abstraction from C2.


Assuntos
Proteínas de Bactérias , Ácidos Indolacéticos , Oxirredutases , Rhodocyclaceae , Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Cinética , Oxirredutases/genética , Oxirredutases/metabolismo , Rhodocyclaceae/enzimologia
9.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34913863

RESUMO

Two novel Gram-stain-negative bacterial strains, Azo-3T and Azo-2, were isolated from a toluene-producing enrichment culture that originated from contaminated groundwater at a site in southeast Louisiana (USA). Cells are non-spore forming straight to curved rods with single polar flagella. Strains Azo-3T and Azo-2 are oxidase-positive, catalase-negative, use nitrate and nitrite as electron acceptors, and are able to fix nitrogen. Poly-ß-hydroxybutyrate storage granules are produced. Dominant fatty acids when grown in R2A medium at 37 °C are C16:0, summed feature 3 (C16:1 ω7c and/or C15:0 iso 2OH), C17:0 cyclo and C18:1 ω7c. 16S rRNA gene sequence based phylogenetic analysis indicated that the strains cluster within the family Rhodocyclaceae, class Betaproteobacteria, most closely related to but distinct from type strains of the species Azospira oryzae (96.94% similarity) and Azospira restricta (95.10% similarity). Complete genome sequences determined for strains Azo-3T and Azo-2 revealed DNA G+C content of 62.70 mol%. Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA-DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strains Azo-3T and Azo-2 represent a novel species within the genus Azospira for which the name Azospira inquinata sp. nov. is proposed. The type strain of Azospira inquinata is Azo-3T (=NRRL B-65590T=DSM 112046T).


Assuntos
Água Subterrânea , Nitratos , Filogenia , Rhodocyclaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Água Subterrânea/microbiologia , Louisiana , Nitratos/metabolismo , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Rhodocyclaceae/classificação , Rhodocyclaceae/isolamento & purificação , Análise de Sequência de DNA
10.
Artigo em Inglês | MEDLINE | ID: mdl-34232855

RESUMO

A novel bacterial strain, named HC41T, was isolated from a cyanobacterial bloom sample and was characterized as Gram-stain-negative, rod-shaped and non-motile. According to 16S rRNA phylogenetic analyses, this strain HC41T belongs to the family Rhodocyclaceae and is most closely related to Niveibacterium umoris KACC 17062T (=MIC 2059T; 98.63 %) and Uliginosibacterium gangwonense 5YN10-9 T (=KACC 11603T; 93.64 %). The genome size and DNA G+C content of strain HC41T were 4.8 Mbp and 64.17 mol%, respectively. Moreover, the average nucleotide identity, digital DNA-DNA hybridization and amino acid identity values between strain HC41T and N. umoris KACC 17062T were 81.8, 43.1 and 90.89 %, respectively. Additionally, strain HC41T exhibited weak catalase and oxidase activities and had no motility (swimming and swarming motilities). The cells grew at 11-40 °C (optimum, 30 °C), pH 5.5-8.0 (optimum, pH 7) and with 0-1.0 % (w/v) NaCl (optimum, 0 % NaCl) in Reasoner's 2A medium. Its major respiratory quinone was ubiquinone-8 and its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Furthermore, C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; C16 : 1 ω6c and/or C16 : 1 ω7c) were the predominant cellular fatty acids in strain HC41T according to fatty acid methyl ester analysis. Based on its genotypic and phenotypic characteristics, strain HC41T was identified as representing a novel Niveibacterium species, for which the name Niveibacterium microcysteis sp. nov. is proposed (=KACC 22091T=DSM 111425T).


Assuntos
Eutrofização , Filogenia , Rhodocyclaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Cianobactérias , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Rhodocyclaceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
11.
Rev Environ Contam Toxicol ; 256: 103-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611758

RESUMO

Perchlorate is a persistent pollutant, generated via natural and anthropogenic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physicochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlorate pollution is extensive. Perchlorate-reducing bacteria, isolated from harsh environments, for example saline soils, mine sediments, thermal waters, wastewater treatment plants, underground gas storage facilities, and remote areas, including the Antarctica, can provide removal yields from 20 to 100%. Perchlorate reduction, carried out by a series of enzymes, such as perchlorate reductase and superoxide chlorite, depends on pH, temperature, salt concentration, metabolic inhibitors, nutritional conditions, time of contact, and cellular concentration. Microbial degradation is cost-effective, simple to implement, and environmentally friendly, rendering it a viable method for alleviating perchlorate pollution in the environment.


Assuntos
Poluentes Ambientais , Percloratos , Ecossistema , Humanos , Percloratos/toxicidade , Rhodocyclaceae , Solo
12.
J Bacteriol ; 202(5)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31843798

RESUMO

Anaerobic degradation of p-cresol (4-methylphenol) by the denitrifying betaproteobacterium Aromatoleum aromaticum EbN1 is regulated with high substrate specificity, presumed to be mediated by the predicted σ54-dependent two-component system PcrSR. An unmarked, in-frame ΔpcrSR deletion mutant showed reduced expression of the genes cmh (21-fold) and hbd (8-fold) that encode the two enzymes for initial oxidation of p-cresol to p-hydroxybenzoate compared to their expression in the wild type. The expression of cmh and hbd was restored by in trans complementation with pcrSR in the ΔpcrSR background to even higher levels than in the wild type. This is likely due to ∼200-/∼30-fold more transcripts of pcrSR in the complemented mutant. The in vivo responsiveness of A. aromaticum EbN1 to p-cresol was studied in benzoate-limited anaerobic cultures by the addition of p-cresol at various concentrations (from 100 µM down to 0.1 nM). Time-resolved transcript profiling by quantitative reverse transcription-PCR (qRT-PCR) revealed that the lowest p-cresol concentrations just affording cmh and hbd expression (response threshold) ranged between 1 and 10 nM, which is even more sensitive than the respective odor receptors of insects. A similar response threshold was determined for another alkylphenol, p-ethylphenol, which strain EbN1 anaerobically degrades via a different route and senses by the σ54-dependent one-component system EtpR. Based on these data and theoretical considerations, p-cresol or p-ethylphenol added as a single pulse (10 nM) requires less than a fraction of a second to reach equilibrium between intra- and extracellular space (∼20 molecules per cell), with an estimated Kd (dissociation constant) of <100 nM alkylphenol (p-cresol or p-ethylphenol) for its respective sensory protein (PcrS or EtpR).IMPORTANCE Alkylphenols (like p-cresol and p-ethylphenol) represent bulk chemicals for industrial syntheses. Besides massive local damage events, large-scale micropollution is likewise of environmental and health concern. Next to understanding how such pollutants can be degraded by microorganisms, it is also relevant to determine the microorganisms' lower threshold of responsiveness. Aromatoleum aromaticum EbN1 is a specialist in anaerobic degradation of aromatic compounds, employing a complex and substrate-specifically regulated catabolic network. The present study aims at verifying the predicted role of the PcrSR system in sensing p-cresol and at determining the threshold of responsiveness for alkylphenols. The findings have implications for the enigmatic persistence of dissolved organic matter (escape from biodegradation) and for the lower limits of aromatic compounds required for bacterial growth.


Assuntos
Anaerobiose , Biodegradação Ambiental , Poluentes Ambientais/química , Fenóis/química , Algoritmos , Regulação Bacteriana da Expressão Gênica , Modelos Teóricos , Mutação , Proteoma , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Transcriptoma
13.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220846

RESUMO

The degradation of the xenobiotic phthalic acid esters by microorganisms is initiated by the hydrolysis to the respective alcohols and ortho-phthalate (hereafter, phthalate). In aerobic bacteria and fungi, oxygenases are involved in the conversion of phthalate to protocatechuate, the substrate for ring-cleaving dioxygenases. In contrast, anaerobic bacteria activate phthalate to the extremely unstable phthaloyl-coenzyme A (CoA), which is decarboxylated by oxygen-sensitive UbiD-like phthaloyl-CoA decarboxylase (PCD) to the central benzoyl-CoA intermediate. Here, we demonstrate that the facultatively anaerobic, denitrifying Thauera chlorobenzoica 3CB-1 and Aromatoleum evansii KB740 strains use phthalate as a growth substrate under aerobic and denitrifying conditions. In vitro assays with extracts from cells grown aerobically with phthalate demonstrated the succinyl-CoA-dependent activation of phthalate followed by decarboxylation to benzoyl-CoA. In T. chlorobenzoica 3CB-1, we identified PCD as a highly abundant enzyme in both aerobically and anaerobically grown cells, whereas genes for phthalate dioxygenases are missing in the genome. PCD was highly enriched from aerobically grown T. chlorobenzoica cells and was identified as an identical enzyme produced under denitrifying conditions. These results indicate that the initial steps of aerobic phthalate degradation in denitrifying bacteria are accomplished by the anaerobic enzyme inventory, whereas the benzoyl-CoA oxygenase-dependent pathway is used for further conversion to central intermediates. Such a hybrid pathway requires intracellular oxygen homeostasis at concentrations low enough to prevent PCD inactivation but sufficiently high to supply benzoyl-CoA oxygenase with its cosubstrate.IMPORTANCE Phthalic acid esters (PAEs) are industrially produced on a million-ton scale per year and are predominantly used as plasticizers. They are classified as environmentally relevant xenobiotics with a number of adverse health effects, including endocrine-disrupting activity. Biodegradation by microorganisms is considered the most effective process to eliminate PAEs from the environment. It is usually initiated by the hydrolysis of PAEs to alcohols and o-phthalic acid. Degradation of o-phthalic acid fundamentally differs in aerobic and anaerobic microorganisms; aerobic phthalate degradation heavily depends on dioxygenase-dependent reactions, whereas anaerobic degradation employs the oxygen-sensitive key enzyme phthaloyl-CoA decarboxylase. We demonstrate that aerobic phthalate degradation in facultatively anaerobic bacteria proceeds via a previously unknown hybrid degradation pathway involving oxygen-sensitive and oxygen-dependent key enzymes. Such a strategy is essential for facultatively anaerobic bacteria that frequently switch between oxic and anoxic environments.


Assuntos
Proteínas de Bactérias/metabolismo , Desnitrificação , Ácidos Ftálicos/metabolismo , Rhodocyclaceae/metabolismo , Aerobiose , Bactérias/metabolismo , Rhodocyclaceae/enzimologia , Thauera/enzimologia , Thauera/metabolismo
14.
J Biol Inorg Chem ; 25(8): 1129-1138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33113038

RESUMO

Chlorite dismutase is a heme enzyme that catalyzes the conversion of the toxic compound ClO2- (chlorite) to innocuous Cl- and O2. The reaction is a very rare case of enzymatic O-O bond formation, which has sparked the interest to elucidate the reaction mechanism using pre-steady-state kinetics. During stopped-flow experiments, spectroscopic and structural changes of the enzyme were observed in the absence of a substrate in the time range from milliseconds to minutes. These effects are a consequence of illumination with UV-visible light during the stopped-flow experiment. The changes in the UV-visible spectrum in the initial 200 s of the reaction indicate a possible involvement of a ferric superoxide/ferrous oxo or ferric hydroxide intermediate during the photochemical inactivation. Observed EPR spectral changes after 30 min reaction time indicate the loss of the heme and release of iron during the process. During prolonged illumination, the oligomeric state of the enzyme changes from homo-pentameric to monomeric with subsequent protein precipitation. Understanding the effects of UV-visible light illumination induced changes of chlorite dismutase will help us to understand the nature and mechanism of photosensitivity of heme enzymes in general. Furthermore, previously reported stopped-flow data of chlorite dismutase and potentially other heme enzymes will need to be re-evaluated in the context of the photosensitivity. Illumination of recombinantly expressed Azospira oryzae Chlorite dismutase (AoCld) with a high-intensity light source, common in stopped-flow equipment, results in disruption of the bond between FeIII and the axial histidine. This leads to the enzyme losing its heme cofactor and changing its oligomeric state as shown by spectroscopic changes and loss of activity.


Assuntos
Heme/metabolismo , Luz , Oxirredutases/metabolismo , Cinética , Oxirredutases/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Rhodocyclaceae/enzimologia
15.
J Biol Inorg Chem ; 25(4): 609-620, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246282

RESUMO

Chlorite dismutase is a unique heme enzyme that catalyzes the conversion of chlorite to chloride and molecular oxygen. The enzyme is highly specific for chlorite but has been known to bind several anionic and neutral ligands to the heme iron. In a pH study, the enzyme changed color from red to green in acetate buffer pH 5.0. The cause of this color change was uncovered using UV-visible and EPR spectroscopy. Chlorite dismutase in the presence of acetate showed a change of the UV-visible spectrum: a redshift and hyperchromicity of the Soret band from 391 to 404 nm and a blueshift of the charge transfer band CT1 from 647 to 626 nm. Equilibrium binding titrations with acetate resulted in a dissociation constant of circa 20 mM at pH 5.0 and 5.8. EPR spectroscopy showed that the acetate bound form of the enzyme remained high spin S = 5/2, however with an apparent change of the rhombicity and line broadening of the spectrum. Mutagenesis of the proximal arginine Arg183 to alanine resulted in the loss of the ability to bind acetate. Acetate was discovered as a novel ligand to chlorite dismutase, with evidence of direct binding to the heme iron. The green color is caused by a blueshift of the CT1 band that is characteristic of the high spin ferric state of the enzyme. Any weak field ligand that binds directly to the heme center may show the red to green color change, as was indeed the case for fluoride.


Assuntos
Acetatos/química , Cor , Hemeproteínas/química , Oxirredutases/química , Acetatos/metabolismo , Sítios de Ligação , Hemeproteínas/isolamento & purificação , Hemeproteínas/metabolismo , Oxirredutases/metabolismo , Rhodocyclaceae/enzimologia
16.
Appl Microbiol Biotechnol ; 104(22): 9535-9550, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33037916

RESUMO

Indole-3-acetic acid (IAA) is a molecule with the chemical formula C10H9NO2, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (iac) is responsible for the aerobic degradation of IAA into catechol, and another (iaa) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac/iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac/iaa-carrying model strains of Pseudomonas putida, Enterobacter soli, Acinetobacter baumannii, Paraburkholderia phytofirmans, Caballeronia glathei, Aromatoleum evansii, and Aromatoleum aromaticum, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac/iaa-inspired research that addresses current gaps in knowledge, biotechnological applications of iac/iaa-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. KEY POINTS: • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.


Assuntos
Burkholderiaceae , Enterobacter , Ácidos Indolacéticos , Humanos , Ácidos Indolacéticos/metabolismo , Rhodocyclaceae
17.
Antonie Van Leeuwenhoek ; 113(7): 933-946, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32222862

RESUMO

A polyphasic taxonomic approach was used to characterise two presumably novel bacteria, designated strains CC-YHH838T and CC-YHH848T isolated from termite nest and rhizosphere of Ficus religiosa, respectively. These two nitrogen-fixing strains were observed to be Gram-staining-negative, aerobic rod, and colonies were yellowish in color. Growth of strains was observed at 20-37 °C, pH 7-8, and in the presence of 1-2% NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-YHH838T and CC-YHH848T associated with Thauera hydrothermalis (97.1% sequence identity), and formed a separate branch with Azoarcus indigens (95.4%), Aromatoleum aromaticum (96.2%), and lower sequence similarity to other species. The calculation of OrthoANI values pointed out strains CC-YHH838T and CC-YHH848T gave 78.9% and 79.8% compared to Thauera hydrothermalis, respectively. The major fatty acids (> 5%) were C16:0, C17:0 cyclo, C10:0 3-OH, C16:1ω7c/C16:1ω6c and C18:1ω7c/C18:1ω6c. The polar lipid profile comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified aminophospholipid and phospholipids; the predominant polyamines were putrescine and spermidine. The predominant respiratory system was ubiquinone (Q-8) and the DNA G + C contents were 61.4 ± 0.1 mol% and 60.2 ± 1.3 mol%, respectively. Based on the phylogenetic and polyphasic comparisons, strains CC-YHH838T and CC-YHH848T are proposed to represent two novel species within the genus Azoarcus in the family Rhodocyclaceae, for which the name Azoarcus nasutitermitis sp. nov. (type strain CC-YHH838T = BCRC 81059T = JCM 32001T) and Azoarcus rhizosphaerae sp. nov. (type strain CC-YHH848T = BCRC 81060T = JCM 32002T) were proposed.


Assuntos
Azoarcus/classificação , Azoarcus/isolamento & purificação , Ficus/microbiologia , Isópteros/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Animais , Azoarcus/genética , Azoarcus/fisiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Nitrogênio , Fixação de Nitrogênio , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Rhodocyclaceae , Thauera , Sequenciamento Completo do Genoma
18.
Artigo em Inglês | MEDLINE | ID: mdl-32960129

RESUMO

A new nitrous oxide (N2O)-reducing bacterium was isolated from a consortium that was enriched using advanced wastewater treatment sludge as an inoculum and N2O as the sole nitrogen source. The isolated facultative anaerobe was identified as Azospira sp. HJ23. Azospira sp. HJ23 exhibited optimum N2O-reducing activity with a C/N ratio of 62 at pH 6 in the temperature range of 37 °C to 40 °C. The optimum carbon source for N2O reduction was a mixture of glucose and acetate. The maximum rate of N2O reduction by Azospira sp. HJ23 was 4.8 mmol·g-dry cell-1·h-1, and its N2O-reducing activity was higher than other known N2O reducers. Azospira sp. HJ23 possessed several functional genes for denitrification. These included narG (NO3- reductase), nirK (NO2- reductase), norB (NO reductase), and nosZ (N2O reductase) genes. These results suggest that Azospira sp. HJ23 can be applied in the denitrification process to minimalize N2O emission.


Assuntos
Óxido Nitroso/análise , Rhodocyclaceae/isolamento & purificação , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desnitrificação , Genes Bacterianos , Consórcios Microbianos/genética , Filogenia , Rhodocyclaceae/genética , Rhodocyclaceae/crescimento & desenvolvimento , Águas Residuárias/química
19.
J Bacteriol ; 201(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31138631

RESUMO

Aromatic amines like 2-phenylethylamine (2-PEA) and benzylamine (BAm) have been identified as novel growth substrates of the betaproteobacterium Aromatoleum aromaticum EbN1, which degrades a wide variety of aromatic compounds in the absence of oxygen under denitrifying growth conditions. The catabolic pathway of these amines was identified, starting with their oxidative deamination to the corresponding aldehydes, which are then further degraded via the enzymes of the phenylalanine or benzyl alcohol metabolic pathways. Two different periplasmic quinohemoprotein amine dehydrogenases involved in 2-PEA or BAm metabolism were identified and characterized. Both enzymes consist of three subunits, contain two heme c cofactors in their α-subunits, and exhibit extensive processing of their γ-subunits, generating four intramolecular thioether bonds and a cysteine tryptophylquinone (CTQ) cofactor. One of the enzymes was present in cells grown with 2-PEA or other substrates, showed an α2ß2γ2 composition, and had a rather broad substrate spectrum, which included 2-PEA, BAm, tyramine, and 1-butylamine. In contrast, the other enzyme was specifically induced in BAm-grown cells, showing an αßγ composition and activity only with BAm and 2-PEA. Since the former enzyme showed the highest catalytic efficiency with 2-PEA and the latter with BAm, they were designated 2-PEADH and benzylamine dehydrogenase (BAmDH). The catalytic properties and inhibition patterns of 2-PEADH and BAmDH showed considerable differences and were compared to previously characterized quinohemoproteins of the same enzyme family.IMPORTANCE The known substrate spectrum of A. aromaticum EbN1 is expanded toward aromatic amines, which are metabolized as sole substrates coupled to denitrification. The characterization of the two quinohemoprotein isoenzymes involved in degrading either 2-PEA or BAm expands the knowledge of this enzyme family and establishes for the first time that the necessary maturation of their quinoid CTQ cofactors does not require the presence of molecular oxygen. Moreover, the study revealed a highly interesting regulatory phenomenon, suggesting that growth with BAm leads to a complete replacement of 2-PEADH by BAmDH, which has considerably different catalytic and inhibition properties.


Assuntos
Proteínas de Bactérias/metabolismo , Benzilaminas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenetilaminas/metabolismo , Rhodocyclaceae/enzimologia , Anaerobiose , Proteínas de Bactérias/genética , Benzilaminas/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fenetilaminas/química , Rhodocyclaceae/genética , Rhodocyclaceae/crescimento & desenvolvimento , Rhodocyclaceae/metabolismo
20.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405915

RESUMO

(R)-Benzylsuccinate is the characteristic initial intermediate of anaerobic toluene metabolism, which is formed by a radical-type addition of toluene to fumarate. Its further degradation proceeds by activation to the coenzyme A (CoA)-thioester and ß-oxidation involving a specific (R)-2-benzylsuccinyl-CoA dehydrogenase (BbsG) affiliated with the family of acyl-CoA dehydrogenases. In this report, we present the biochemical properties of electron transfer flavoproteins (ETFs) from the strictly anaerobic toluene-degrading species Geobacter metallireducens and Desulfobacula toluolica and the facultatively anaerobic bacterium Aromatoleum aromaticum We determined the X-ray structure of the ETF paralogue involved in toluene metabolism of G. metallireducens, revealing strong overall similarities to previously characterized ETF variants but significantly different structural properties in the hinge regions mediating conformational changes. We also show that all strictly anaerobic toluene degraders utilize one of multiple genome-encoded related ETF paralogues, which constitute a distinct clade of similar sequences in the ETF family, for ß-oxidation of benzylsuccinate. In contrast, facultatively anaerobic toluene degraders contain only one ETF species, which is utilized in all ß-oxidation pathways. Our phylogenetic analysis of the known sequences of the ETF family suggests that at least 36 different clades can be differentiated, which are defined either by the taxonomic group of the respective host species (e.g., clade P for Proteobacteria) or by functional specialization (e.g., clade T for anaerobic toluene degradation).IMPORTANCE This study documents the involvement of ETF in anaerobic toluene metabolism as the physiological electron acceptor for benzylsuccinyl-CoA dehydrogenase. While toluene-degrading denitrifying proteobacteria use a common ETF species, which is also used for other ß-oxidation pathways, obligately anaerobic sulfate- or ferric-iron-reducing bacteria use specialized ETF paralogues for toluene degradation. Based on the structure and sequence conservation of these ETFs, they form a new clade that is only remotely related to the previously characterized members of the ETF family. An exhaustive analysis of the available sequences indicated that the protein family consists of several closely related clades of proven or potential electron-bifurcating ETF species and many deeply branching nonbifurcating clades, which either follow the host phylogeny or are affiliated according to functional criteria.


Assuntos
Bactérias Anaeróbias/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Tolueno/metabolismo , Acil-CoA Desidrogenases/metabolismo , Anaerobiose/fisiologia , Deltaproteobacteria/metabolismo , Geobacter/metabolismo , Oxirredução , Filogenia , Rhodocyclaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa