Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.574
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 173(1): 130-139.e10, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526461

RESUMO

Endogenous circadian rhythms are thought to modulate responses to external factors, but mechanisms that confer time-of-day differences in organismal responses to environmental insults/therapeutic treatments are poorly understood. Using a xenobiotic, we find that permeability of the Drosophila "blood"-brain barrier (BBB) is higher at night. The permeability rhythm is driven by circadian regulation of efflux and depends on a molecular clock in the perineurial glia of the BBB, although efflux transporters are restricted to subperineurial glia (SPG). We show that transmission of circadian signals across the layers requires cyclically expressed gap junctions. Specifically, during nighttime, gap junctions reduce intracellular magnesium ([Mg2+]i), a positive regulator of efflux, in SPG. Consistent with lower nighttime efflux, nighttime administration of the anti-epileptic phenytoin is more effective at treating a Drosophila seizure model. These findings identify a novel mechanism of circadian regulation and have therapeutic implications for drugs targeted to the central nervous system.


Assuntos
Barreira Hematoencefálica/metabolismo , Relógios Circadianos , Drosophila/metabolismo , Rodaminas/metabolismo , Xenobióticos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Relógios Circadianos/efeitos dos fármacos , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Junções Comunicantes/metabolismo , Magnésio/metabolismo , Neuroglia/metabolismo , Fenitoína/farmacologia , Fenitoína/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/patologia , Convulsões/veterinária
2.
Annu Rev Biochem ; 86: 825-843, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28399656

RESUMO

Small-molecule fluorophores, such as fluorescein and rhodamine derivatives, are critical tools in modern biochemical and biological research. The field of chemical dyes is old; colored molecules were first discovered in the 1800s, and the fluorescein and rhodamine scaffolds have been known for over a century. Nevertheless, there has been a renaissance in using these dyes to create tools for biochemistry and biology. The application of modern chemistry, biochemistry, molecular genetics, and optical physics to these old structures enables and drives the development of novel, sophisticated fluorescent dyes. This critical review focuses on an important example of chemical biology-the melding of old and new chemical knowledge-leading to useful molecules for advanced biochemical and biological experiments.


Assuntos
Fluoresceínas/síntese química , Corantes Fluorescentes/síntese química , Sondas Moleculares/síntese química , Marcadores de Fotoafinidade/síntese química , Rodaminas/síntese química , Animais , Bactérias/metabolismo , Técnicas de Química Sintética , Fluoresceínas/história , Fluoresceínas/metabolismo , Corantes Fluorescentes/história , Corantes Fluorescentes/metabolismo , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Microscopia de Fluorescência , Sondas Moleculares/história , Sondas Moleculares/metabolismo , Marcadores de Fotoafinidade/história , Marcadores de Fotoafinidade/metabolismo , Rodaminas/história , Rodaminas/metabolismo
3.
Cell ; 164(1-2): 246-257, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771494

RESUMO

Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia.


Assuntos
Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei rhodesiense/citologia , Trypanosoma brucei rhodesiense/imunologia , Tripanossomíase Africana/patologia , Tripanossomíase Africana/parasitologia , Fatores de Virulência/metabolismo , Anemia/patologia , Animais , Eritrócitos/parasitologia , Flagelos/metabolismo , Humanos , Evasão da Resposta Imune , Camundongos , Proteoma/metabolismo , Rodaminas/análise , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidade
4.
Proc Natl Acad Sci U S A ; 121(32): e2322500121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074281

RESUMO

Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy. Notably, we found that TMR-HaloTag conjugates were mainly degraded by the proteasome (~95%) under basal conditions, while lysosomal degradation (~10% upon pharmacological autophagy activation) was slow and incomplete, forming a degraded product that remained fluorescent within a SDS-PAGE gel, in agreement with previous reports that HaloTag is resistant to lysosomal degradation when fused to proteins of interest. Autophagy activation is distinguished from autophagy inhibition by the increased production of the degraded TMR-HaloTag band relative to the full-length TMR-HaloTag band as assessed by SDS-PAGE and by a faster rate of TMR-HaloTag conjugate lysosomal puncta accumulation as observed by fluorescence microscopy. Pharmacological proteasome inhibition leads to accumulation of TMR-HaloTag in lysosomes, indicating possible cross talk between autophagy and proteasomal degradation.


Assuntos
Lisossomos , Macroautofagia , Humanos , Lisossomos/metabolismo , Autofagia/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Rodaminas/química , Microscopia de Fluorescência/métodos , Autofagossomos/metabolismo , Células HeLa , Proteólise
5.
Nat Methods ; 19(1): 65-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916672

RESUMO

Self-labeling protein tags such as HaloTag are powerful tools that can label fusion proteins with synthetic fluorophores for use in fluorescence microscopy. Here we introduce HaloTag variants with either increased or decreased brightness and fluorescence lifetime compared with HaloTag7 when labeled with rhodamines. Combining these HaloTag variants enabled live-cell fluorescence lifetime multiplexing of three cellular targets in one spectral channel using a single fluorophore and the generation of a fluorescence lifetime-based biosensor. Additionally, the brightest HaloTag variant showed up to 40% higher brightness in live-cell imaging applications.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Hidrolases/química , Linhagem Celular , Cristalografia por Raios X , Fluorescência , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Microscopia Confocal , Microscopia de Fluorescência/métodos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/química
6.
Proc Natl Acad Sci U S A ; 119(43): e2202822119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256814

RESUMO

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are multidomain transmembrane proteins, which facilitate the transport of various substances across cell membranes using energy derived from ATP hydrolysis. They are important drug targets since they mediate decreased drug susceptibility during pharmacological treatments. For the methylotrophic yeast Pichia pastoris, a model organism that is a widely used host for protein expression, the role and function of its ABC transporters is unexplored. In this work, we investigated the Pichia ABC-B transporter STE6-2p. Functional investigations revealed that STE6-2p is capable of transporting rhodamines in vivo and is active in the presence of verapamil and triazoles in vitro. A phylogenetic analysis displays homology among multidrug resistance (MDR) transporters from pathogenic fungi to human ABC-B transporters. Further, we present high-resolution single-particle electron cryomicroscopy structures of an ABC transporter from P. pastoris in the apo conformation (3.1 Å) and in complex with verapamil and adenylyl imidodiphosphate (AMP-PNP) (3.2 Å). An unknown density between transmembrane helices 4, 5, and 6 in both structures suggests the presence of a sterol-binding site of unknown function.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Esteróis , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenilil Imidodifosfato/metabolismo , Esteróis/metabolismo , Filogenia , Trifosfato de Adenosina/metabolismo , Saccharomyces cerevisiae/metabolismo , Verapamil/farmacologia , Verapamil/metabolismo , Triazóis/metabolismo , Rodaminas/metabolismo
7.
J Am Chem Soc ; 146(10): 6566-6579, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422385

RESUMO

Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.


Assuntos
Corantes Fluorescentes , Humanos , Rodaminas , Microscopia de Fluorescência/métodos , Células HeLa , Ionóforos
8.
J Am Chem Soc ; 146(30): 20569-20576, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037873

RESUMO

Ratiometric biosensors employing Förster Resonance Energy Transfer (FRET) enable the real-time tracking of metabolite dynamics. Here, we introduce an approach for generating a FRET-based biosensor in which changes in apparent FRET efficiency rely on the analyte-controlled fluorogenicity of a rhodamine rather than the commonly used distance change between donor-acceptor fluorophores. Our fluorogenic, rhodamine-based, chemigenetic biosensor (FOCS) relies on a synthetic, protein-tethered FRET probe, in which the rhodamine acting as the FRET acceptor switches in an analyte-dependent manner from a dark to a fluorescent state. This allows ratiometric sensing of the analyte concentration. We use this approach to generate a chemigenetic biosensor for nicotinamide adenine dinucleotide phosphate (NADPH). FOCS-NADPH exhibits a rapid and reversible response toward NAPDH with a good dynamic range, selectivity, and pH insensitivity. FOCS-NADPH allows real-time monitoring of cytosolic NADPH fluctuations in live cells during oxidative stress or after drug exposure. We furthermore used FOCS-NADPH to investigate NADPH homeostasis regulation through the pentose phosphate pathway of glucose metabolism. FOCS-NADPH is a powerful tool for studying NADPH metabolism and serves as a blueprint for the development of future fluorescent biosensors.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , NADP , Rodaminas , Técnicas Biossensoriais/métodos , Rodaminas/química , NADP/metabolismo , NADP/análise , Corantes Fluorescentes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
9.
Anal Chem ; 96(27): 11052-11060, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924514

RESUMO

Mitochondrial cristae, invaginations of the inner mitochondrial membrane (IMM) into the matrix, are the main site for the generation of ATP via oxidative phosphorylation, and mitochondrial membrane potential (MMP). Synchronous study of the dynamic relationship between cristae and MMP is very important for further understanding of mitochondrial function. Due to the lack of suitable IMM probes and imaging techniques, the dynamic relationship between MMP and cristae structure alterations remains poorly understood. We designed a pair of FRET-based molecular probes, with the donor (OR-LA) being rhodamine modified with mitochondrial coenzyme lipoic acid and the acceptor (SiR-BA) being silicon-rhodamine modified with a butyl chain, for simultaneous dynamic monitoring of mitochondrial cristae structure and MMP. The FRET process of the molecular pair in mitochondria is regulated by MMP, enabling more precise visualization of MMP through fluorescence intensity ratio and fluorescence lifetime. By combining FRET with FLIM super-resolution imaging technology, we achieved simultaneous dynamic monitoring of mitochondrial cristae structure and MMP, revealing that during the decline of MMP, there is a progression involving cristae dilation, fragmentation, mitochondrial vacuolization, and eventual rupture. Significantly, we successfully observed that the rapid decrease in MMP at the site of mitochondrial membrane rupture may be a critical factor in mitochondrial fragmentation. These data collectively reveal the dynamic relationship between cristae structural alterations and MMP decline, laying a foundation for further investigation into cellular energy regulation mechanisms and therapeutic strategies for mitochondria-related diseases.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Potencial da Membrana Mitocondrial , Rodaminas , Humanos , Rodaminas/química , Corantes Fluorescentes/química , Imagem Óptica , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/química , Células HeLa
10.
Anal Chem ; 96(18): 7257-7264, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38664861

RESUMO

Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.


Assuntos
Membrana Celular , Corantes Fluorescentes , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Humanos , Membrana Celular/química , Imagem Óptica , Microscopia Confocal/métodos , Tensoativos/química
11.
Anal Chem ; 96(35): 14230-14238, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39172624

RESUMO

Activatable photosensitizers (PSs) generating 1O2 only under specific conditions can minimize concomitant injury to normal tissues. Heavy-atom-free PSs hold the merits of low dark toxicity, long triplet-state lifetimes, good photostability, and relatively low cost. PSs with emission in the second near-infrared (NIR-II) window are highly valuable for deep-tissue, high-contrast imaging. Herein, we have designed and synthesized a series of heavy-atom-free PSs by a one-step reaction between an easily accessible rhodamine derivative and commercially available thiophene aldehydes. One of the as-prepared PSs, 2b-3T, exhibits emission maxima at 810 nm and tails to the NIR-II region at 1140 nm, together with large Stokes shift (178 nm). Importantly, the newly developed PSs, featuring functional carboxylic acid groups, present promising opportunities as versatile platforms for creating activatable PSs. To validate our concept, we developed Cu2+/pH-activatable PSs using the spirocyclization mechanism of rhodamine. Ultimately, we showcased the effectiveness of these innovative PSs in photodynamic therapy through in vitro experiments.


Assuntos
Raios Infravermelhos , Fármacos Fotossensibilizantes , Rodaminas , Fármacos Fotossensibilizantes/química , Rodaminas/química , Humanos , Fotoquimioterapia , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Cobre/química
12.
Anal Chem ; 96(22): 9141-9150, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38779970

RESUMO

Droplet assay platforms have emerged as a significant methodology, providing distinct advantages such as sample compartmentalization, high throughput, and minimal analyte consumption. However, inherent complexities, especially in multiplexed detection, remain a challenge. We demonstrate a novel strategy to fabricate a plasmonic droplet assay platform (PDAP) for multiplexed analyte detection, enabling surface-enhanced Raman spectroscopy (SERS). PDAP efficiently splits a microliter droplet into submicroliter to nanoliter droplets under gravity-driven flow by wettability contrast between two distinct regions. The desired hydrophobicity and adhesive contrast between the silicone oil-grafted nonadhesive hydrophilic zone with gold nanoparticles is attained through (3-aminopropyl) triethoxysilane (APTES) functionalization of gold nanoparticles (AuNPs) using a scotch-tape mask. The wettability contrast surface facilitates the splitting of aqueous droplets with various surface tensions (ranging from 39.08 to 72 mN/m) into ultralow volumes of nanoliters. The developed PDAP was used for the multiplexed detection of Rhodamine 6G (Rh6G) and Crystal Violet (CV) dyes. The limit of detection for 120 nL droplet using PDAP was found to be 134 pM and 10.1 nM for Rh6G and CV, respectively. These results align with those from previously reported platforms, highlighting the comparable sensitivity of the developed PDAP. We have also demonstrated the competence of PDAP by testing adulterant spiked milk and obtained very good sensitivity. Thus, PDAP has the potential to be used for the multiplexed screening of food adulterants.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Molhabilidade , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Rodaminas/química , Silanos/química , Limite de Detecção , Animais , Leite/química , Propriedades de Superfície , Tamanho da Partícula
13.
Anal Chem ; 96(22): 9034-9042, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38773734

RESUMO

Allysine, a pivotal biomarker in fibrogenesis, has prompted the development of various radioactive imaging probes. However, fluorogenic probes targeting allysine remain largely unexplored. Herein, by leveraging the equilibrium between the nonfluorescent spirocyclic and the fluorescent zwitterionic forms of rhodamine-cyanine hybrid fluorophores, we systematically fine-tuned the environmental sensitivity of this equilibrium toward the development of fluorogenic probes for fibrosis. The trick lies in modulating the nucleophilicity of the ortho-carboxyl group, which is terminated with a hydrazide group for allysine conjugation. Probe B2 was developed with this strategy, which featured an N-sulfonyl amide group and exhibited superior fibrosis-to-control imaging contrast. Initially presenting as nonfluorescent spirocyclic aggregates in aqueous solutions, B2 displayed a notable fluorogenic response upon conjugation with protein allysine through its hydrazide group, inducing deaggregation and switching to the fluorescent zwitterionic form. Probe B2 outperformed the traditional Masson stain in imaging contrast, achieving an about 260-2600-fold ratio for fibrosis-to-control detection depending on fibrosis severity. Furthermore, it demonstrated efficacy in evaluating antifibrosis drugs. Our results emphasize the potential of this fluorogenic probe as an alternative to conventional fibrosis detection methods. It emerges as a valuable tool for antifibrosis drug evaluation.


Assuntos
Fibrose , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Imagem Óptica , Camundongos , Humanos , Rodaminas/química
14.
Anal Chem ; 96(28): 11588-11594, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967368

RESUMO

Fluorescence sensing and imaging techniques are being widely studied for detecting carbon monoxide (CO) in living organisms due to their speed, sensitivity, and ease of use to biological systems. Most fluorescent probes used for this purpose are based on heavy metal ions like Pd, with a few using elements like Ru, Rh, Ir, Os, Tb, and Eu. However, these metals can be expensive and toxic to cells. There is a need for more affordable and biologically safe fluorescent probes for CO detection. Drawing inspiration from the robust affinity exhibited by heme iron toward CO, in this work, a rhodamine derivative called RBF was developed for imaging CO in living cells by binding to Fe(III) and could be used for CO sensing. A Fe(III)-based fluorescent probe for CO imaging in living cells offers advantages of cost effectiveness, low toxicity, and ease of use. The fluorescence detection using the RBF-Fe system showed a direct correlation with increasing levels of CORM-3 (LOD = 146 nM) or the exposure time of CO gas, displaying reduced fluorescence. A CO test paper based on RBF-Fe was created for simple on-site CO detection, where fluorescence would diminish in response to CO exposure, allowing rapid (2 min) visual identification. Imaging of CO in living cells was successfully conducted using the probe system, showing a decrease in fluorescence intensity as CORM-3 concentrations increased, indicating its effectiveness in monitoring CO levels accurately within living cells.


Assuntos
Monóxido de Carbono , Compostos Férricos , Corantes Fluorescentes , Monóxido de Carbono/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Compostos Férricos/química , Compostos Férricos/análise , Imagem Óptica , Rodaminas/química , Células HeLa
15.
Anal Chem ; 96(35): 14160-14167, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39169631

RESUMO

Aggrephagy describes lysosomal transport and degradation of protein aggregates via cellular macroautophagy, a key mechanism to prevent neurodegenerative diseases. Here, we develop a dual-probe method to visualize the aggrephagy process and resolve its viscosity heterogeneity using fluorescence lifetime imaging (FLIM). The dual-probe system consists of (1) a near-infrared lysosomal targeting FLIM probe (Lyso-P1) that is derived from a rhodamine scaffold with a tailored pKa value to accommodate an acidic lysosomal environment and (2) a green BODIPY-based FLIM probe (Agg-P2) that reports on degradation of cellular aggregates via HaloTag. Both probes exhibit acid-resistant, viscosity-dependent fluorescence intensity and lifetime (τ) responses, which are ready for intensity- and FLIM-based imaging. Photochemical, theoretical, and biochemical characterizations reveal the probes' mechanism-of-actions. In cells, we exploit Lyso-P1 and Agg-P2 to simultaneously quantify both lysosomal and protein aggegates' viscosity changes upon the aggrephagy process via FLIM. We reveal orthogonal changes in microenvironmental viscosities and morphological heterogeneity upon various cellular stresses. Overall, we provide an imaging toolset to quantitatively study aggrephay, which may benefit screening of aggrephay modulators for disease intervention.


Assuntos
Corantes Fluorescentes , Lisossomos , Imagem Óptica , Viscosidade , Corantes Fluorescentes/química , Humanos , Lisossomos/química , Lisossomos/metabolismo , Agregados Proteicos , Células HeLa , Compostos de Boro/química , Rodaminas/química
16.
Anal Chem ; 96(26): 10860-10869, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889184

RESUMO

Single-molecule localization microscopy (SMLM) requires high-intensity laser irradiation, typically exceeding kW/cm2, to yield a sufficient photon count. However, this intense visible light exposure incurs substantial cellular toxicity, hindering its use in living cells. Here, we developed a class of near-infrared (NIR) spontaneously blinking fluorophores for SMLM. These NIR fluorophores are a combination of rhodamine spirolactams and merocyanine derivatives, where the rhodamine spirolactam component converts between a bright and dark state based on pH-dependent spirocyclization and merocyanine derivatives shift the excitation wavelength into the infrared. Single-molecule characterizations demonstrated their potential for SMLM. At a moderate power density of 3.93 kW/cm2, these probes exhibit duty cycle as low as 0.18% and an emission rate as high as 26,700 photons/s. Phototoxicity assessment under single-molecule imaging conditions reveals that NIR illumination (721 nm) minimizes harm to living cells. Employing these NIR fluorophores, we successfully captured time-lapse super-resolution tracking of mitochondria at a Fourier ring correlation (FRC) resolution of 69.4 nm and reconstructed the ultrastructures of endoplasmic reticulum (ER) in living cells.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Corantes Fluorescentes/química , Humanos , Células HeLa , Indóis/química , Rodaminas/química , Microscopia de Fluorescência , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias , Benzopiranos
17.
Anal Chem ; 96(39): 15631-15639, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39287125

RESUMO

In this study, we present an innovative "click-to-release" strategy for the design of highly specific H2Sn bioorthogonal probes that undergo a specific click reaction with H2Sn and release fluorophores by a following rearrangement. A library of cyclooctyne derivatives was established and successfully demonstrated the availability of the release strategy. Then, a model probe CM-CT was synthesized, which can achieve effective fluorophore release (>80%) in the presence of a H2Sn donor. To further validate the application of this class of probes, a new probe QN-RHO-CT based on Rhodamine 110 was developed. This probe showed good water solubility (>160 µM) and fast release kinetics and can achieve selective H2Sn detection in living cells. We used this probe to study the process of H2S-mediated protein S-persulfidation and demonstrated that excess H2S would directly react with protein persulfides to generate H2S2 and reduce the persulfides to thiols. Additionally, we elucidated the click-to-release mechanism in our design through a detailed mechanistic study, confirming the generation of the key intermediate α, ß-unsaturated cyclooctanethione. This bioorthogonal click-to-release reaction provides a useful tool for investigating the function of H2Sn and paves the way for biological studies on H2Sn.


Assuntos
Química Click , Corantes Fluorescentes , Sulfetos , Sulfetos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Células HeLa , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Rodaminas/química
18.
J Mol Recognit ; 37(4): e3088, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760976

RESUMO

Despite the necessity of the study of therapeutic drug monitoring of clonazepam (CLZ), there are only a few fast detection methods available for determining CLZ in biological media. This study aims to develop a cost-effective and ratiometric probe for the quantification of CLZ in plasma samples. Fluorescent polydopamine nanoparticles were produced through a self-polymerization process at a pH of 8.5. Rhodamine B molecules were employed as a fluorescent reference material, emitting stable fluorescence in the visible range. The fabricated probe exhibited a specific detection capability for CLZ. The fluorescence emission of the probe was enhanced in two concentration ranges: from 50 ng/mL to 1.0 µg/mL and from 1.0 to 15.0 µg/mL with a lower limit of quantification of 50 ng/mL, indicating the sensitivity of the probe for detecting CLZ plasma levels. The accuracy of the probe is favorable which could be recommended for CLZ monitoring in the biological media. Furthermore, this probe is highly specific towards CLZ in the presence of various interfering agents which is mainly caused by its ratiometric nature. The developed platform showed high reliability in quantifying CLZ concentrations in patients' plasma samples. Hence, the fabricated probe could be recommended as a reliable method for the routine detection of CLZ in clinical settings.


Assuntos
Clonazepam , Corantes Fluorescentes , Nanopartículas , Espectrometria de Fluorescência , Clonazepam/sangue , Clonazepam/química , Humanos , Nanopartículas/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Polímeros/química , Rodaminas/química , Indóis/química , Indóis/sangue , Limite de Detecção , Monitoramento de Medicamentos/métodos
19.
Chemistry ; 30(1): e202303038, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852935

RESUMO

Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.


Assuntos
Corantes Fluorescentes , Técnicas Fotoacústicas , Animais , Camundongos , Rodaminas , Ésteres , Técnicas Fotoacústicas/métodos , Xantenos , Imagem Óptica/métodos
20.
Chemistry ; 30(55): e202402244, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048509

RESUMO

The synthesis and characterization of a novel trinuclear rhodamine-Gd(III) complex, along with two analogous mononuclear rhodamine-Gd(III) complexes, are reported. All complexes displayed good selectivity in a human glioma cell line (T98G) when compared to a glial cell line (SVG p12), with low cytotoxicities. Superior tumor cell uptake for these Gd(III) complexes was observed at lower incubation concentrations compared to previously-reported delocalized lipophilic cations such as a rhodamine-lanthanoid(III) probe and Gd(III)-arylphosphonium complexes, with ca. 150 % and 250 % increases in Gd uptake, respectively.


Assuntos
Gadolínio , Rodaminas , Humanos , Rodaminas/química , Linhagem Celular Tumoral , Gadolínio/química , Glioma/metabolismo , Glioma/patologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa