Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.152
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(7): 1867-1883.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33248023

RESUMO

Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.


Assuntos
Atresia Biliar/imunologia , Atresia Biliar/terapia , Fígado/imunologia , Animais , Antígenos CD20/metabolismo , Linfócitos B/imunologia , Atresia Biliar/sangue , Atresia Biliar/tratamento farmacológico , Biópsia , Receptor 1 de Quimiocina CX3C/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Transdiferenciação Celular , Criança , Pré-Escolar , Estudos de Coortes , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/metabolismo , Lactente , Inflamação/patologia , Células Matadoras Naturais/imunologia , Células de Kupffer/patologia , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Depleção Linfocítica , Linfopoese , Masculino , Camundongos Endogâmicos BALB C , Fagocitose , RNA/metabolismo , Rituximab/administração & dosagem , Rituximab/farmacologia , Rituximab/uso terapêutico , Rotavirus/fisiologia , Análise de Célula Única , Células Th1/imunologia , Células Th17/imunologia
2.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607511

RESUMO

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Assuntos
Imunidade Adaptativa/genética , Diarreia/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Anti-Infecciosos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Diarreia/prevenção & controle , Diarreia/virologia , Fezes/microbiologia , Regulação da Expressão Gênica/genética , Humanos , Íleo/microbiologia , Íleo/patologia , Íleo/virologia , Interferons/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Microbiota/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Interleucina 22
3.
Nat Immunol ; 22(3): 381-390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589816

RESUMO

The integrin α4ß7 selectively regulates lymphocyte trafficking and adhesion in the gut and gut-associated lymphoid tissue (GALT). Here, we describe unexpected involvement of the tyrosine phosphatase Shp1 and the B cell lectin CD22 (Siglec-2) in the regulation of α4ß7 surface expression and gut immunity. Shp1 selectively inhibited ß7 endocytosis, enhancing surface α4ß7 display and lymphocyte homing to GALT. In B cells, CD22 associated in a sialic acid-dependent manner with integrin ß7 on the cell surface to target intracellular Shp1 to ß7. Shp1 restrained plasma membrane ß7 phosphorylation and inhibited ß7 endocytosis without affecting ß1 integrin. B cells with reduced Shp1 activity, lacking CD22 or expressing CD22 with mutated Shp1-binding or carbohydrate-binding domains displayed parallel reductions in surface α4ß7 and in homing to GALT. Consistent with the specialized role of α4ß7 in intestinal immunity, CD22 deficiency selectively inhibited intestinal antibody and pathogen responses.


Assuntos
Linfócitos B/enzimologia , Imunidade nas Mucosas , Cadeias beta de Integrinas/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Endocitose , Feminino , Cadeias beta de Integrinas/imunologia , Integrinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Rotavirus/imunologia , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/deficiência , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos
4.
Nature ; 607(7918): 345-350, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768512

RESUMO

Enteric viruses like norovirus, rotavirus and astrovirus have long been accepted as spreading in the population through fecal-oral transmission: viruses are shed into feces from one host and enter the oral cavity of another, bypassing salivary glands (SGs) and reaching the intestines to replicate, be shed in feces and repeat the transmission cycle1. Yet there are viruses (for example, rabies) that infect the SGs2,3, making the oral cavity one site of replication and saliva one conduit of transmission. Here we report that enteric viruses productively and persistently infect SGs, reaching titres comparable to those in the intestines. We demonstrate that enteric viruses get released into the saliva, identifying a second route of viral transmission. This is particularly significant for infected infants, whose saliva directly transmits enteric viruses to their mothers' mammary glands through backflow during suckling. This sidesteps the conventional gut-mammary axis route4 and leads to a rapid surge in maternal milk secretory IgA antibodies5,6. Lastly, we show that SG-derived spheroids7 and cell lines8 can replicate and propagate enteric viruses, generating a scalable and manageable system of production. Collectively, our research uncovers a new transmission route for enteric viruses with implications for therapeutics, diagnostics and importantly sanitation measures to prevent spread through saliva.


Assuntos
Saliva , Glândulas Salivares , Viroses , Vírus , Astroviridae , Aleitamento Materno , Células Cultivadas , Fezes/virologia , Feminino , Humanos , Imunoglobulina A/imunologia , Lactente , Norovirus , Rotavirus , Saliva/virologia , Glândulas Salivares/virologia , Esferoides Celulares/virologia , Viroses/transmissão , Viroses/virologia , Vírus/crescimento & desenvolvimento
5.
Nature ; 590(7847): 666-670, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33442061

RESUMO

A non-enveloped virus requires a membrane lesion to deliver its genome into a target cell1. For rotaviruses, membrane perforation is a principal function of the viral outer-layer protein, VP42,3. Here we describe the use of electron cryomicroscopy to determine how VP4 performs this function and show that when activated by cleavage to VP8* and VP5*, VP4 can rearrange on the virion surface from an 'upright' to a 'reversed' conformation. The reversed structure projects a previously buried 'foot' domain outwards into the membrane of the host cell to which the virion has attached. Electron cryotomograms of virus particles entering cells are consistent with this picture. Using a disulfide mutant of VP4, we have also stabilized a probable intermediate in the transition between the two conformations. Our results define molecular mechanisms for the first steps of the penetration of rotaviruses into the membranes of target cells and suggest similarities with mechanisms postulated for other viruses.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Redobramento de Proteína , Rotavirus/metabolismo , Rotavirus/ultraestrutura , Internalização do Vírus , Animais , Antígenos Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dissulfetos/química , Dissulfetos/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Rotavirus/química , Rotavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 121(5): e2312691121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38277437

RESUMO

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.


Assuntos
Dietilestilbestrol/análogos & derivados , Endorribonucleases , Coronavírus da Síndrome Respiratória do Oriente Médio , Diester Fosfórico Hidrolases , Rotavirus , Animais , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Filogenia , Mamíferos/metabolismo
7.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574119

RESUMO

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Assuntos
Rotavirus , Rotavirus/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Cálcio/metabolismo , Lipossomos/análise , Lipossomos/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(9): e2214421120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821582

RESUMO

Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a newly available opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued replication-competent recombinant RRVs harboring bicistronic gene segment 7 that encodes the native RV nonstructural protein 3 (NSP3) protein and a human norovirus (HuNoV) VP1 protein or P domain from the predominant genotype GII.4. The rescued viruses expressed HuNoV VP1 or P protein in infected cells in vitro and elicited systemic and local antibody responses to HuNoV and RRV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RRV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens.


Assuntos
Norovirus , Infecções por Rotavirus , Rotavirus , Criança , Lactente , Humanos , Animais , Camundongos , Pré-Escolar , Rotavirus/genética , Anticorpos Neutralizantes , Mucosa , Anticorpos Antivirais
9.
Proc Natl Acad Sci U S A ; 120(51): e2302161120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079544

RESUMO

Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Lactente , Humanos , Pré-Escolar , Rotavirus/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Replicação Viral , Diarreia , Infecções por Rotavirus/genética
10.
EMBO J ; 40(21): e109558, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569635

RESUMO

Replication of rotavirus, an important cause of gastroenteritis in children, proceeds in large, easily discernible cytoplasmic structures, called viroplasms or viral factories, but mechanisms underlying their formation and function in infected cells have remained mysterious. In this issue, Geiger et al (2021) used a combination of in silico, in vitro, and cell-based approaches to define how two essential rotavirus nonstructural proteins, NSP2 and NSP5, form liquid-liquid phase-separated condensates as the structural foundation of rotavirus factories.


Assuntos
Infecções por Rotavirus , Rotavirus , Humanos , Fosforilação , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
11.
EMBO J ; 40(21): e107711, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34524703

RESUMO

RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.


Assuntos
Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Grânulos de Ribonucleoproteínas Citoplasmáticas/efeitos dos fármacos , Grânulos de Ribonucleoproteínas Citoplasmáticas/ultraestrutura , Grânulos de Ribonucleoproteínas Citoplasmáticas/virologia , Regulação Viral da Expressão Gênica , Genes Reporter , Glicóis/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Haplorrinos , Interações Hospedeiro-Patógeno/genética , Humanos , Concentração Osmolar , Fosforilação , Propilenoglicol/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/ultraestrutura , Transdução de Sinais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
12.
J Virol ; 98(2): e0167723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240590

RESUMO

Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.


Assuntos
Nucleolina , RNA Viral , Infecções por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , RNA Viral/genética , Rotavirus/fisiologia , Infecções por Rotavirus/virologia , Replicação Viral
13.
J Virol ; 98(4): e0006424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38488360

RESUMO

As one of the most important causative agents of severe gastroenteritis in children, piglets, and other young animals, species A rotaviruses have adversely impacted both human health and the global swine industry. Vaccines against rotaviruses (RVs) are insufficiently effective, and no specific treatment is available. To understand the relationships between porcine RV (PoRV) infection and enterocytes in terms of the cellular lipid metabolism, we performed an untargeted liquid chromatography mass spectrometry (LC-MS) lipidomics analysis of PoRV-infected IPEC-J2 cells. Herein, a total of 451 lipids (263 upregulated lipids and 188 downregulated lipids), spanning sphingolipid, glycerolipid, and glycerophospholipids, were significantly altered compared with the mock-infected group. Interestingly, almost all the ceramides among these lipids were upregulated during PoRV infection. LC-MS analysis was used to validated the lipidomics data and demonstrated that PoRV replication increased the levels of long-chain ceramides (C16-ceramide, C18-ceramide, and C24-ceramide) in cells. Furthermore, we found that these long-chain ceramides markedly inhibited PoRV infection and that their antiviral actions were exerted in the replication stage of PoRV infection. Moreover, downregulation of endogenous ceramides with the ceramide metabolic inhibitors enhanced PoRV propagation. Increasing the levels of ceramides by the addition of C6-ceramide strikingly suppressed the replication of diverse RV strains. We further found that the treatment with an apoptotic inhibitor could reverse the antiviral activity of ceramide against PoRV replication, demonstrating that ceramide restricted RV infection by inducing apoptosis. Altogether, this study revealed that ceramides played an antiviral role against RV infection, providing potential approaches for the development of antiviral therapies.IMPORTANCERotaviruses (RVs) are among the most important zoonosis viruses, which mainly infected enterocytes of the intestinal epithelium causing diarrhea in children and the young of many mammalian and avian species. Lipids play an essential role in viral infection. A comprehensive understanding of the interaction between RV and lipid metabolism in the enterocytes will be helpful to control RV infection. Here, we mapped changes in enterocyte lipids following porcine RV (PoRV) infection using an untargeted lipidomics approach. We found that PoRV infection altered the metabolism of various lipid species, especially ceramides (derivatives of the sphingosine). We further demonstrated that PoRV infection increased the accumulation of ceramides and that ceramides exerted antiviral effects on RV replication by inducing apoptosis. Our findings fill a gap in understanding the alterations of lipid metabolism in RV-infected enterocytes and highlight the antiviral effects of ceramides on RV infection, suggesting potential approaches to control RV infection.


Assuntos
Ceramidas , Infecções por Rotavirus , Rotavirus , Animais , Ceramidas/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Rotavirus/fisiologia , Suínos , Enterócitos/metabolismo , Enterócitos/virologia , Infecções por Rotavirus/metabolismo , Linhagem Celular
14.
J Virol ; 98(3): e0166023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421167

RESUMO

Rotavirus (RV) NSP2 is a multifunctional RNA chaperone that exhibits numerous activities that are essential for replication and viral genome packaging. We performed an in silico analysis that highlighted a distant relationship of NSP2 from rotavirus B (RVB) to proteins from other human RVs. We solved a cryo-electron microscopy structure of RVB NSP2 that shows structural differences with corresponding proteins from other human RVs. Based on the structure, we identified amino acid residues that are involved in RNA interactions. Anisotropy titration experiments showed that these residues are important for nucleic acid binding. We also identified structural motifs that are conserved in all RV species. Collectively, our data complete the structural characterization of rotaviral NSP2 protein and demonstrate its structural diversity among RV species.IMPORTANCERotavirus B (RVB), also known as adult diarrhea rotavirus, has caused epidemics of severe diarrhea in China, India, and Bangladesh. Thousands of people are infected in a single RVB epidemic. However, information on this group of rotaviruses remains limited. As NSP2 is an essential protein in the viral life cycle, including its role in the formation of replication factories, it may be a target for future antiviral strategy against viruses with similar mechanisms.


Assuntos
Proteínas de Ligação a RNA , Rotavirus , Proteínas não Estruturais Virais , Adulto , Humanos , Microscopia Crioeletrônica , Diarreia/virologia , RNA/metabolismo , Rotavirus/metabolismo , Infecções por Rotavirus/virologia , Proteínas não Estruturais Virais/química , Proteínas de Ligação a RNA/química
15.
J Virol ; 98(7): e0076224, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38837379

RESUMO

Rotavirus causes severe diarrhea in infants. Although live attenuated rotavirus vaccines are available, vaccine-derived infections have been reported, which warrants development of next-generation rotavirus vaccines. A single-round infectious virus is a promising vaccine platform; however, this platform has not been studied extensively in the context of rotavirus. Here, we aimed to develop a single-round infectious rotavirus by impairing the function of the viral intermediate capsid protein VP6. Recombinant rotaviruses harboring mutations in VP6 were rescued using a reverse genetics system. Mutations were targeted at VP6 residues involved in virion assembly. Although the VP6-mutated rotavirus expressed viral proteins, it did not produce progeny virions in wild-type cells; however, the virus did produce progeny virions in VP6-expressing cells. This indicates that the VP6-mutated rotavirus is a single-round infectious rotavirus. Insertion of a foreign gene, and replacement of the VP7 gene segment with that of human rotavirus clinical isolates, was successful. No infectious virions were detected in mice infected with the single-round infectious rotavirus. Immunizing mice with the single-round infectious rotavirus induced neutralizing antibody titers as high as those induced by wild-type rotavirus. Taken together, the data suggest that this single-round infectious rotavirus has potential as a safe and effective rotavirus vaccine. This system is also applicable for generation of safe and orally administrable viral vectors.IMPORTANCERotavirus, a leading cause of acute gastroenteritis in infants, causes an annual estimated 128,500 infant deaths worldwide. Although live attenuated rotavirus vaccines are available, they are replicable and may cause vaccine-derived infections. Thus, development of safe and effective rotavirus vaccine is important. In this study, we report the development of a single-round infectious rotavirus that can replicate only in cells expressing viral VP6 protein. We demonstrated that (1) the single-round infectious rotavirus did not replicate in wild-type cells or in mice; (2) insertion of foreign genes and replacement of the outer capsid gene were possible; and (3) it was as immunogenic as the wild-type virus. Thus, the mutated virus shows promise as a next-generation rotavirus vaccine. The system is also applicable to orally administrable viral vectors, facilitating development of vaccines against other enteric pathogens.


Assuntos
Antígenos Virais , Proteínas do Capsídeo , Mutação , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Rotavirus/genética , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Camundongos , Infecções por Rotavirus/virologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Camundongos Endogâmicos BALB C , Linhagem Celular , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vírion/genética , Feminino
16.
J Virol ; 98(5): e0021224, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591886

RESUMO

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Assuntos
Vacinas contra Rotavirus , Vacinas de Subunidades Antigênicas , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Diarreia/prevenção & controle , Diarreia/virologia , Diarreia/veterinária , Diarreia/imunologia , Genótipo , Imunidade Celular , Camundongos Endogâmicos BALB C , Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem
17.
Immunity ; 44(4): 889-900, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27084119

RESUMO

Metagenomic studies show that diverse resident viruses inhabit the healthy gut; however, little is known about the role of these viruses in the maintenance of gut homeostasis. We found that mice treated with antiviral cocktail displayed more severe dextran sulfate sodium (DSS)-induced colitis compared with untreated mice. DSS-induced colitis was associated with altered enteric viral abundance and composition. When wild-type mice were reconstituted with Toll-like receptor 3 (TLR3) or TLR7 agonists or inactivated rotavirus, colitis symptoms were significantly ameliorated. Mice deficient in both TLR3 and TLR7 were more susceptible to DSS-induced experimental colitis. In humans, combined TLR3 and TLR7 genetic variations significantly influenced the severity of ulcerative colitis. Plasmacytoid dendritic cells isolated from inflamed mouse colon produced interferon-ß in a TLR3 and TLR7-dependent manner. These results imply that recognition of resident viruses by TLR3 and TLR7 is required for protective immunity during gut inflammation.


Assuntos
Colite/imunologia , Trato Gastrointestinal/virologia , Interferon beta/imunologia , Glicoproteínas de Membrana/imunologia , Rotavirus/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Antivirais/farmacologia , Colite/induzido quimicamente , Células Dendríticas/imunologia , Sulfato de Dextrana , Microbioma Gastrointestinal , Trato Gastrointestinal/imunologia , Humanos , Inflamação/imunologia , Interferon beta/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , RNA Ribossômico 16S/genética , Receptor 3 Toll-Like/genética , Receptor 7 Toll-Like/genética
18.
J Infect Dis ; 229(2): 457-461, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37572368

RESUMO

To examine the potential for respiratory transmission of rotavirus, we systematically assessed if rotavirus RNA is detectable by real-time quantitative reverse transcription-polymerase chain reaction from nasal and oropharyngeal swab specimens of Bangladeshi children with acute rotavirus gastroenteritis. Forehead swabs were collected to assess skin contamination. Among 399 children aged <2 years hospitalized for gastroenteritis during peak rotavirus season, rotavirus RNA was detected in stool, oral, nasal and forehead swab specimens of 354 (89%). A subset was genotyped; genotype was concordant within a child's specimen set and several different genotypes were detected across children. These findings support possible respiratory transmission of rotavirus and warrant further investigation.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Humanos , Lactente , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Fezes , Genótipo , RNA
19.
J Infect Dis ; 229(4): 1010-1018, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37592804

RESUMO

BACKGROUND: Histo-blood group antigen (HBGA) status may affect vaccine efficacy due to rotavirus strains binding to HBGAs in a P genotype-dependent manner. This study aimed to determine if HBGA status affected vaccine take of the G3P[6] neonatal vaccine RV3-BB. METHODS: DNA was extracted from stool samples collected in a subset (n = 164) of the RV3-BB phase IIb trial in Indonesian infants. FUT2 and FUT3 genes were amplified and sequenced, with any single-nucleotide polymorphisms analyzed to infer Lewis and secretor status. Measures of positive cumulative vaccine take were defined as serum immune response (immunoglobulin A or serum-neutralizing antibody) and/or stool excretion of RV3-BB virus. Participants were stratified by HBGA status and measures of vaccine take. RESULTS: In 147 of 164 participants, Lewis and secretor phenotype were determined. Positive vaccine take was recorded for 144 (97.9%) of 147 participants with the combined phenotype determined. Cumulative vaccine take was not significantly associated with secretor status (relative risk, 1.00 [95% CI, .94-1.06]; P = .97) or Lewis phenotype (relative risk, 1.03 [95% CI, .94-1.14]; P = .33), nor was a difference observed when analyzed by each component of vaccine take. CONCLUSIONS: The RV3-BB vaccine produced positive cumulative vaccine take, irrespective of HBGA status in Indonesian infants.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Lactente , Recém-Nascido , Humanos , Vacinas contra Rotavirus/genética , Indonésia , Genótipo
20.
J Infect Dis ; 230(1): e75-e79, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052701

RESUMO

To evaluate how breakthrough rotavirus disease contributes to transmission, we examined the impact of rotavirus vaccination on fecal shedding and duration of illness. We used multivariable linear regression to analyze rotavirus quantity by RT-qPCR and duration among 184 episodes of rotavirus diarrhea positive by ELISA in the PROVIDE study. Vaccinated children had less fecal viral shedding compared to unvaccinated children (mean difference = -0.59 log copies per gram of stool; 95% confidence interval [CI], -.99 to -.19). Duration of illness was on average 0.47 days (95% CI, -.23 to 1.17 days) shorter among vaccinated children. Rotarix vaccination reduces shedding burden among breakthrough cases of rotavirus gastroenteritis. Clinical Trials Registration . NCT01375647.


Assuntos
Fezes , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Vacinas Atenuadas , Eliminação de Partículas Virais , Humanos , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Lactente , Bangladesh/epidemiologia , Rotavirus/imunologia , Fezes/virologia , Feminino , Masculino , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Gastroenterite/virologia , Gastroenterite/prevenção & controle , Gastroenterite/epidemiologia , Vacinação , Diarreia/virologia , Diarreia/prevenção & controle , Diarreia/epidemiologia , Administração Oral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa