RESUMO
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismoRESUMO
Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single CâT mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.
Assuntos
Síndromes de Usher , Camundongos , Animais , Síndromes de Usher/genética , Síndromes de Usher/terapia , Edição de Genes , Mutação , Audição/genética , Caderinas/genéticaRESUMO
Usher syndrome 1B (USH1B) is a devastating genetic disorder with congenital deafness, loss of balance, and blindness caused by mutations in the myosin-VIIa (MYO7A) gene, for which there is currently no cure. We developed a gene therapy approach addressing the vestibulo-cochlear deficits of USH1B using a third-generation, high-capacity lentiviral vector system capable of delivering the large 6,645-bp MYO7A cDNA. Lentivirally delivered MYO7A and co-encoded dTomato were successfully expressed in the cochlear cell line HEI-OC1. In normal-hearing mice, both cochlea and the vestibular organ were efficiently transduced, and ectopic MYO7A overexpression did not show any adverse effects. In Shaker-1 mice, an USH1B disease model based on Myo7a mutation, cochlear and vestibular hair cells, the main inner ear cell types affected in USH1B, were successfully transduced. In homozygous mutant mice, delivery of MYO7A at postnatal day 16 resulted in a trend for partial recovery of auditory function and in strongly reduced balance deficits. Heterozygous mutant mice were found to develop severe hearing loss at 6 months of age without balance deficits, and lentiviral MYO7A gene therapy completely rescued hearing to wild-type hearing thresholds. In summary, this study demonstrates improved hearing and balance function through lentiviral gene therapy in the inner ear.
Assuntos
Miosinas , Síndromes de Usher , Camundongos , Animais , Miosinas/genética , Miosinas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Miosina VIIa/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Modelos Animais de Doenças , Mutação , Terapia GenéticaRESUMO
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.
Assuntos
Síndromes de Usher , Animais , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Peixe-Zebra/genética , Células HEK293 , Mutação , DNA , Plasmídeos/genética , Proteínas da Matriz Extracelular/genéticaRESUMO
Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a â¼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.
Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Camundongos , Animais , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Mutação , Caderinas/genética , Caderinas/metabolismoRESUMO
Myosin VIIA (MYO7A)-associated Usher syndrome type 1B (USH1B) is a severe disorder that impacts the auditory, vestibular, and visual systems of affected patients. Due to the large size (~7.5 kb) of the MYO7A coding sequence, we have designed a dual adeno-associated virus (AAV) vector-based approach for the treatment of USH1B-related vision loss. Due to the added complexity of dual-AAV gene therapy, careful attention must be paid to the protein products expressed following vector recombination. In order to improve the sensitivity and quantifiability of our immunoassays, we adapted our traditional western blot protocol for use with the Jess™ Simple Western System. Following several rounds of testing, we optimized our protocol for the detection of MYO7A in two of our most frequently used sample types, mouse eyes, and infected HEK293 cell lysates.
Assuntos
Miosinas , Síndromes de Usher , Camundongos , Animais , Humanos , Miosinas/genética , Miosinas/metabolismo , Células HEK293 , Síndromes de Usher/genética , Síndromes de Usher/terapia , Miosina VIIa/genética , MutaçãoRESUMO
This review considers research into the treatment of Usher syndrome, a deaf-blindness syndrome inherited in an autosomal recessive manner. Usher syndrome mutations are markedly heterogeneous, involving many different genes, and research grants are limited due to minimal patient populations. Furthermore, gene augmentation therapies are impossible in all but three Usher syndromes as the cDNA sequence exceeds the 4.7 kb AAV packaging limit. It is, therefore, vital to focus research efforts on alternative tools with the broadest applicability. The CRISPR field took off in recent years following the discovery of the DNA editing activity of Cas9 in 2012. New generations of CRISPR tools have succeeded the original CRISPR/Cas9 model to enable more sophisticated genomic amendments such as epigenetic modification and precise sequence alterations. This review will evaluate the most popular CRISPR tools to date: CRISPR/Cas9, base editing, and prime editing. It will consider these tools in terms of applicability (in relation to the ten most prevalent USH2A mutations), safety, efficiency, and in vivo delivery potential with the intention of guiding future research investment.
Assuntos
Edição de Genes , Síndromes de Usher , Humanos , Sistemas CRISPR-Cas/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Terapia Genética , Epigênese GenéticaRESUMO
Biallelic pathogenic variants in the USH2A gene result in Usher syndrome type â ¡ and non-syndromic retinitis pigmentosa, both of which entail the progressive loss of photoreceptors leading to blindness. The cDNA of the USH2A gene is extensive, consisting of 15 606 base pairs, rendering it impractical for delivery via adeno-associated virus vectors for gene replacement therapy. Notably, exon 13 has emerged as a focal point for therapeutic intervention, given its predilection for harboring the most pathogenic variants within USH2A. Recent intervention studies targeting USH2A exon 13 through the utilization of antisense oligonucleotides, genome editing, and RNA editing approaches have exhibited promising therapeutic potential. This paper provides a comprehensive overview of the molecular mechanisms, outcome data, and the challenges associated with the application of these interventions in this domain.
Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Éxons , Terapia Genética , Proteínas da Matriz Extracelular/genética , MutaçãoRESUMO
Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive pigmentary retinopathy, and vestibular dysfunction. The degree and onset of hearing loss vary among subtypes I, II, and III, while blindness often occurs in the second to fourth decades of life. Usher type III (USH3), characterized by postlingual progressive sensorineural hearing loss, varying levels of vestibular dysfunction, and varying degrees of visual impairment, typically manifests in the first to second decades of life. While USH3 is rare, it is highly prevalent in certain populations. RP61, USH3, and USH3A symbolize the same disorder, with the latter symbol used more frequently in recent literature. This review focuses on the clinical features, epidemiology, molecular genetics, treatment, and research advances for sensory deficits in USH3A.
Assuntos
Perda Auditiva Neurossensorial , Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/epidemiologia , Síndromes de Usher/genética , Síndromes de Usher/terapiaRESUMO
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Assuntos
Retinose Pigmentar , Síndromes de Usher , Animais , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Masculino , Camundongos , Mutação , Retinose Pigmentar/genética , Motilidade dos Espermatozoides , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/terapia , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Inherited retinal degenerations are a leading cause of blindness in the UK. Significant advances have been made to tackle this issue in recent years, with a pioneering FDA approved gene therapy treatment (Luxturna®), which targets a loss of function mutation in the RPE65 gene. However, there remain notable shortcomings to this form of gene replacement therapy. In particular, the lack of viability for gene sequences exceeding the 4.7 kb adeno-associated virus (AAV) packaging limit or for toxic gain of function mutations. The USH2A gene at ~15.7 kb for instance is too large for AAV delivery: a safe and effective vehicle capable of transducing photoreceptor cells for gene replacement therapy. Usher Syndrome is a clinically and genetically heterogenous deaf-blindness syndrome with autosomal recessive inheritance. The USH2A gene encodes the protein usherin, which localises to the photoreceptor cilium and cochlear hair cells. Mutations in the USH2A gene cause Usher Syndrome type II (USH2), which is the most common subtype of Usher Syndrome and the focus of this review. To date, researchers have been unable to create an efficient, safe editing tool that is small enough to fit inside a single AAV vector for delivery into human cells. This article reviews the potential of CRISPR technology, derived from bacterial defence mechanisms, to overcome these challenges; delivering tools to precisely edit and correct small insertions, deletions and base transitions in USH2A without the need to deliver the full-length gene. Such an ultra-compact therapy could make strides in combating a significant cause of blindness in young people.
Assuntos
Degeneração Retiniana , Síndromes de Usher , Adolescente , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mutação , Degeneração Retiniana/genética , Síndromes de Usher/genética , Síndromes de Usher/terapiaRESUMO
Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Orelha Média/efeitos dos fármacos , Terapia Genética/métodos , Células Ciliadas Auditivas/efeitos dos fármacos , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Síndromes de Usher/genética , Síndromes de Usher/terapia , Vestíbulo do Labirinto/efeitos dos fármacos , Administração Tópica , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Células Ciliadas Auditivas/metabolismo , Audição/efeitos dos fármacos , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membrana Timpânica/efeitos dos fármacos , Vestíbulo do Labirinto/metabolismoRESUMO
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Assuntos
Orelha Interna/patologia , Terapia Genética , Perda Auditiva/terapia , Retinose Pigmentar/terapia , Síndromes de Usher/terapia , Orelha Interna/crescimento & desenvolvimento , Perda Auditiva/etiologia , Perda Auditiva/genética , Perda Auditiva/patologia , Humanos , Mutação/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Síndromes de Usher/etiologia , Síndromes de Usher/genética , Síndromes de Usher/patologiaRESUMO
Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.
Assuntos
Síndromes de Usher/genética , Síndromes de Usher/terapia , Animais , Animais Recém-Nascidos , DNA Complementar/administração & dosagem , DNA Complementar/genética , Dependovirus/genética , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Terapia Genética/métodos , Vetores Genéticos , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Síndromes de Usher/fisiopatologia , Vestíbulo do Labirinto/patologia , Vestíbulo do Labirinto/fisiopatologiaRESUMO
Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction.
Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Síndromes de Usher/terapia , Animais , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Potenciais Evocados Auditivos , Audição/genética , Camundongos , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Retina/metabolismo , Degeneração Retiniana/genética , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Potenciais Evocados Miogênicos Vestibulares/genética , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/fisiologiaRESUMO
Mutations in USH2A gene account for most cases of Usher syndrome type II (USH2), characterized by a combination of congenital hearing loss and progressive vision loss. In particular, approximately 30% of USH2A patients harbor a single base pair deletion, c.2299delG, in exon 13 that creates a frameshift and premature stop codon, leading to a nonfunctional USH2A protein. The USH2A protein, also known as usherin, is an extremely large transmembrane protein (5202 aa), which limits the use of conventional AAV-mediated gene therapy; thus development of alternative approaches is required for the treatment of USH2A patients. As usherin contains multiple repetitive domains, we hypothesize that removal of one or more of those domains encoded by mutant exon(s) in the USH2A gene may reconstitute the reading frame and restore the production of a shortened yet adequately functional protein. In this study, we deleted the exon 12 of mouse Ush2a gene (corresponding to exon 13 of human USH2A) using CRISPR/Cas9-based exon-skipping approach and revealed that a shortened form of Ush2a that lacks exon 12 (Ush2a-∆Ex12) is produced and localized correctly in the cochlea. When the Ush2a-∆Ex12 allele is expressed on an Ush2a null background, the Ush2a-∆Ex12 protein can successfully restore the impaired hair cell structure and the auditory function in the Ush2a-/- mice. These results demonstrate that CRISPR/Cas9-based exon-skipping strategy holds a great therapeutic potential for the treatment of USH2A patients.
Assuntos
Proteínas da Matriz Extracelular/genética , Síndromes de Usher/terapia , Animais , Sistemas CRISPR-Cas , Éxons , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Síndromes de Usher/genéticaRESUMO
Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing.
Assuntos
Terapia Genética , Audição/genética , Equilíbrio Postural/genética , Síndromes de Usher/genética , Síndromes de Usher/fisiopatologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Expressão Gênica , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestrutura , Testes Auditivos , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fenótipo , Estereocílios/metabolismo , Estereocílios/ultraestrutura , Síndromes de Usher/terapiaRESUMO
The human Usher syndrome (USH) is a complex, rare disease manifesting in its most common form of inherited deaf-blindness. Due to the heterogeneous manifestation of the clinical symptoms, three clinical types (USH1-3) are distinguished according to the severity of the disease pattern. For a correct diagnosis, in addition to the auditory tests in early newborn screening, ophthalmological examinations and molecular genetic analysis are important. Ten known USH genes encode proteins, which are from heterogeneous protein families, interact in functional protein networks. In the eye and in the ear, USH proteins are expressed primarily in the mechano-sensitive hair cells and the rod and cone photoreceptor cells, respectively. In the hair cells, the USH protein networks are essential for the correct differentiation of the hair bundles as well as for the function of the mechano-electrical transduction complex in the matured cell. In the photoreceptor cells, USH proteins are located in the ciliary region and participate in intracellular transport processes. In addition, a USH protein network is present in the so-called calyceal processes. The lack of calyceal processes and the absence of a prominent visual phenotype in the mouse disqualifies mice as models for studies on the ophthalmic component of USH. While hearing impairments can be compensated with hearing aids and cochlear implants, there is no practical therapy for USH in the eye. Currently, gene-based therapy concepts, such as gene addition, applications of antisense oligonucleotides and TRIDs ("translational readthrough inducing drugs") for the readthrough of nonsense mutations are preclinically evaluated. For USH1B/MYO7A the UshStat gene therapy clinical trial is ongoing.
Assuntos
Ciliopatias/diagnóstico , Doenças Raras , Síndromes de Usher/diagnóstico , Animais , Ciliopatias/classificação , Ciliopatias/genética , Ciliopatias/terapia , Análise Mutacional de DNA , Surdocegueira/classificação , Surdocegueira/diagnóstico , Surdocegueira/genética , Surdocegueira/terapia , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Camundongos , Triagem Neonatal , Células Fotorreceptoras de Vertebrados/fisiologia , Gravidez , Síndromes de Usher/classificação , Síndromes de Usher/genética , Síndromes de Usher/terapiaRESUMO
OBJECTIVES: Usher syndrome is the leading cause of hereditary deaf-blindness. Most patients with Usher syndrome type IIa start using hearing aids from a young age. A serious complaint refers to interference between sound localisation abilities and adaptive sound processing (compression), as present in today's hearing aids. The aim of this study was to investigate the effect of advanced signal processing on binaural hearing, including sound localisation. DESIGN AND PARTICIPANTS: In this prospective study, patients were fitted with hearing aids with a nonlinear (compression) and linear amplification programs. Data logging was used to objectively evaluate the use of either program. Performance was evaluated with a speech-in-noise test, a sound localisation test and two questionnaires focussing on self-reported benefit. RESULTS: Data logging confirmed that the reported use of hearing aids was high. The linear program was used significantly more often (average use: 77%) than the nonlinear program (average use: 17%). The results for speech intelligibility in noise and sound localisation did not show a significant difference between type of amplification. However, the self-reported outcomes showed higher scores on 'ease of communication' and overall benefit, and significant lower scores on disability for the new hearing aids when compared to their previous hearing aids with compression amplification. CONCLUSIONS: Patients with Usher syndrome type IIa prefer a linear amplification over nonlinear amplification when fitted with novel hearing aids. Apart from a significantly higher logged use, no difference in speech in noise and sound localisation was observed between linear and nonlinear amplification with the currently used tests. Further research is needed to evaluate the reasons behind the preference for the linear settings.
Assuntos
Auxiliares de Audição , Síndromes de Usher/terapia , Adulto , Audiometria , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Localização de Som , Inteligibilidade da Fala , Inquéritos e Questionários , Resultado do Tratamento , Síndromes de Usher/fisiopatologia , Adulto JovemRESUMO
Gene therapy with adeno-associated viral (AAV) vectors is limited by AAV cargo capacity that prevents their application to the inherited retinal diseases (IRDs), such as Stargardt disease (STGD) or Usher syndrome type IB (USH1B), which are due to mutations in genes larger than 5 kb. Trans-splicing or hybrid dual AAV vectors have been successfully exploited to reconstitute large gene expression in the mouse retina. Here, we tested them in the large cone-enriched pig retina that closely mimics the human retina. We found that dual AAV trans-splicing and hybrid vectors transduce pig photoreceptors, the major cell targets for treatment of IRDs, to levels that were about two- to threefold lower than those obtained with a single AAV vector of normal size. This efficiency is significantly higher than that in mice, and is potentially due to the high levels of dual AAV co-transduction we observe in pigs. We also show that subretinal delivery in pigs of dual AAV trans-splicing and hybrid vectors successfully reconstitute, albeit at variable levels, the expression of the large genes ABCA4 and MYO7A mutated in STGD and USH1B, respectively. Our data support the potential of dual AAV vectors for large gene reconstitution in the cone-enriched pig retina that is a relevant preclinical model.