Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.900
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(2): 400-412.e16, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299202

RESUMO

Root system architecture (RSA), the distribution of roots in soil, plays a major role in plant survival. RSA is shaped by multiple developmental processes that are largely governed by the phytohormone auxin, suggesting that auxin regulates responses of roots that are important for local adaptation. However, auxin has a central role in numerous processes, and it is unclear which molecular mechanisms contribute to the variation in RSA for environmental adaptation. Using natural variation in Arabidopsis, we identify EXOCYST70A3 as a modulator of the auxin system that causes variation in RSA by acting on PIN4 protein distribution. Allelic variation and genetic perturbation of EXOCYST70A3 lead to alteration of root gravitropic responses, resulting in a different RSA depth profile and drought resistance. Overall our findings suggest that the local modulation of the pleiotropic auxin pathway can gives rise to distinct RSAs that can be adaptive in specific environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Alelos , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Exocitose , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
2.
Annu Rev Cell Dev Biol ; 35: 239-257, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31382759

RESUMO

Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Secas , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas , Salinidade , Solo , Água
3.
Cell ; 167(2): 313-324, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716505

RESUMO

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Produtos Agrícolas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Cloroplastos/enzimologia , Resposta ao Choque Frio , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Secas , Estresse do Retículo Endoplasmático , Metabolismo Energético , Abastecimento de Alimentos , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Mitocôndrias/enzimologia , Pressão Osmótica , Peroxissomos/enzimologia , Proteínas Serina-Treonina Quinases/genética , Salinidade , Transdução de Sinais , Estresse Fisiológico/genética
4.
Nature ; 627(8003): 321-327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480963

RESUMO

Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the 'active day, quiet night' model of the diurnal fire cycle1-3 and current fire management practices4,5. Here we demonstrate that drought conditions promote overnight burning, which is a key mechanism fostering large active fires. We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017-2020 using geostationary satellite data and terrestrial fire records. A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recent decades, suggesting an accelerated disruption of the diurnal fire cycle.


Assuntos
Escuridão , Secas , Incêndios Florestais , Secas/estatística & dados numéricos , Ecossistema , América do Norte , Incêndios Florestais/estatística & dados numéricos
5.
Nature ; 631(8019): 111-117, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898277

RESUMO

Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.


Assuntos
Resistência à Seca , Secas , Florestas , Água Subterrânea , Fotossíntese , Solo , Luz Solar , Árvores , Brasil , Sequestro de Carbono , Secas/estatística & dados numéricos , Água Subterrânea/análise , Solo/química , Árvores/classificação , Árvores/metabolismo , Árvores/fisiologia , Clima Tropical , Resistência à Seca/fisiologia , Filogeografia , Conservação dos Recursos Naturais
6.
Nature ; 628(8007): 365-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509364

RESUMO

Although modern humans left Africa multiple times over 100,000 years ago, those broadly ancestral to non-Africans dispersed less than 100,000 years ago1. Most models hold that these events occurred through green corridors created during humid periods because arid intervals constrained population movements2. Here we report an archaeological site-Shinfa-Metema 1, in the lowlands of northwest Ethiopia, with Youngest Toba Tuff cryptotephra dated to around 74,000 years ago-that provides early and rare evidence of intensive riverine-based foraging aided by the likely adoption of the bow and arrow. The diet included a wide range of terrestrial and aquatic animals. Stable oxygen isotopes from fossil mammal teeth and ostrich eggshell show that the site was occupied during a period of high seasonal aridity. The unusual abundance of fish suggests that capture occurred in the ever smaller and shallower waterholes of a seasonal river during a long dry season, revealing flexible adaptations to challenging climatic conditions during the Middle Stone Age. Adaptive foraging along dry-season waterholes would have transformed seasonal rivers into 'blue highway' corridors, potentially facilitating an out-of-Africa dispersal and suggesting that the event was not restricted to times of humid climates. The behavioural flexibility required to survive seasonally arid conditions in general, and the apparent short-term effects of the Toba supereruption in particular were probably key to the most recent dispersal and subsequent worldwide expansion of modern humans.


Assuntos
Clima , Migração Humana , Animais , Humanos , Arqueologia , Etiópia , Mamíferos , Estações do Ano , Dieta/história , História Antiga , Migração Humana/história , Fósseis , Struthioniformes , Secas , Peixes
7.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
8.
Nature ; 614(7949): 719-724, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755095

RESUMO

The potential of climate change to substantially alter human history is a pressing concern, but the specific effects of different types of climate change remain unknown. This question can be addressed using palaeoclimatic and archaeological data. For instance, a 300-year, low-frequency shift to drier, cooler climate conditions around 1200 BC is frequently associated with the collapse of several ancient civilizations in the Eastern Mediterranean and Near East1-4. However, the precise details of synchronized climate and human-history-scale associations are lacking. The archaeological-historical record contains multiple instances of human societies successfully adapting to low-frequency climate change5-7. It is likely that consecutive multi-year occurrences of rare, unexpected extreme climatic events may push a population beyond adaptation and centuries-old resilience practices5,7-10. Here we examine the collapse of the Hittite Empire around 1200 BC. The Hittites were one of the great powers in the ancient world across five centuries11-14, with an empire centred in a semi-arid region in Anatolia with political and socioeconomic interconnections throughout the ancient Near East and Eastern Mediterranean, which for a long time proved resilient despite facing regular and intersecting sociopolitical, economic and environmental challenges. Examination of ring width and stable isotope records obtained from contemporary juniper trees in central Anatolia provides a high-resolution dryness record. This analysis identifies an unusually severe continuous dry period from around 1198 to 1196 (±3) BC, potentially indicating a tipping point, and signals the type of episode that can overwhelm contemporary risk-buffering practices.


Assuntos
Mudança Climática , Secas , Humanos , Arqueologia , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Secas/história , Secas/estatística & dados numéricos , Árvores , História Antiga , Juniperus , Terras Antigas , Turquia
9.
Nature ; 620(7973): 336-343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558848

RESUMO

Anthropogenic climate change is predicted to severely impact the global hydrological cycle1, particularly in tropical regions where agriculture-based economies depend on monsoon rainfall2. In the Horn of Africa, more frequent drought conditions in recent decades3,4 contrast with climate models projecting precipitation to increase with rising temperature5. Here we use organic geochemical climate-proxy data from the sediment record of Lake Chala (Kenya and Tanzania) to probe the stability of the link between hydroclimate and temperature over approximately the past 75,000 years, hence encompassing a sufficiently wide range of temperatures to test the 'dry gets drier, wet gets wetter' paradigm6 of anthropogenic climate change in the time domain. We show that the positive relationship between effective moisture and temperature in easternmost Africa during the cooler last glacial period shifted to negative around the onset of the Holocene 11,700 years ago, when the atmospheric carbon dioxide concentration exceeded 250 parts per million and mean annual temperature approached modern-day values. Thus, at that time, the budget between monsoonal precipitation and continental evaporation7 crossed a tipping point such that the positive influence of temperature on evaporation became greater than its positive influence on precipitation. Our results imply that under continued anthropogenic warming, the Horn of Africa will probably experience further drying, and they highlight the need for improved simulation of both dynamic and thermodynamic processes in the tropical hydrological cycle.


Assuntos
Mudança Climática , Modelos Climáticos , Secas , Chuva , Temperatura , Ciclo Hidrológico , Água , Atmosfera/química , Dióxido de Carbono/análise , Mudança Climática/história , Secas/estatística & dados numéricos , Sedimentos Geológicos/química , História Antiga , Umidade , Quênia , Lagos/química , Tanzânia , Termodinâmica , Clima Tropical , Volatilização , Água/análise
10.
Nature ; 621(7980): 760-766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648863

RESUMO

California has experienced enhanced extreme wildfire behaviour in recent years1-3, leading to substantial loss of life and property4,5. Some portion of the change in wildfire behaviour is attributable to anthropogenic climate warming, but formally quantifying this contribution is difficult because of numerous confounding factors6,7 and because wildfires are below the grid scale of global climate models. Here we use machine learning to quantify empirical relationships between temperature (as well as the influence of temperature on aridity) and the risk of extreme daily wildfire growth (>10,000 acres) in California and find that the influence of temperature on the risk is primarily mediated through its influence on fuel moisture. We use the uncovered relationships to estimate the changes in extreme daily wildfire growth risk under anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing background climatological temperatures and aridity conditions. We find that the influence of anthropogenic warming on the risk of extreme daily wildfire growth varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming has enhanced the aggregate expected frequency of extreme daily wildfire growth by 25% (5-95 range of 14-36%), on average, relative to preindustrial conditions. But for some fires, there was approximately no change, and for other fires, the enhancement has been as much as 461%. When historical fires are subjected to a range of projected end-of-century conditions, the aggregate expected frequency of extreme daily wildfire growth events increases by 59% (5-95 range of 47-71%) under a low SSP1-2.6 emissions scenario compared with an increase of 172% (5-95 range of 156-188%) under a very high SSP5-8.5 emissions scenario, relative to preindustrial conditions.


Assuntos
Aquecimento Global , Temperatura , Incêndios Florestais , California , Modelos Climáticos , Secas/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Atividades Humanas , Umidade , Aprendizado de Máquina , Medição de Risco , Incêndios Florestais/estatística & dados numéricos , Humanos
11.
Nature ; 617(7959): 111-117, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100901

RESUMO

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , Desidratação
12.
Nature ; 621(7978): 318-323, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612502

RESUMO

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Conservação dos Recursos Naturais , Política Ambiental , Aplicação da Lei , Floresta Úmida , Biomassa , Brasil , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Política Ambiental/legislação & jurisprudência , Atmosfera/química , Incêndios Florestais/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , El Niño Oscilação Sul , Secas/estatística & dados numéricos
13.
Nat Rev Genet ; 23(2): 104-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34561623

RESUMO

Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.


Assuntos
Produtos Agrícolas/genética , Secas , Ecossistema , Plantas/genética , Salinidade , Estresse Fisiológico/genética , Temperatura , Atmosfera/química , Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigênio/metabolismo , Plantas/metabolismo , Solo/química
14.
Nature ; 609(7926): 307-312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071188

RESUMO

Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year-1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth's radiative budget and, thereby, climate change1-3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (-) forms are rarely distinguished in measurement or modelling studies4-6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (-)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (-)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change.


Assuntos
Secas , Florestas , Monoterpenos , Árvores , Atmosfera/química , Mudança Climática , Monoterpenos/metabolismo , Árvores/metabolismo
15.
Nature ; 608(7921): 80-86, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922501

RESUMO

Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.


Assuntos
Secas , Clima Extremo , Inundações , Gestão de Riscos , Mudança Climática/estatística & dados numéricos , Conjuntos de Dados como Assunto , Secas/prevenção & controle , Secas/estatística & dados numéricos , Inundações/prevenção & controle , Inundações/estatística & dados numéricos , Humanos , Hidrologia , Internacionalidade , Gestão de Riscos/métodos , Gestão de Riscos/estatística & dados numéricos , Gestão de Riscos/tendências
16.
Plant Cell ; 36(5): 1377-1409, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382086

RESUMO

Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.


Assuntos
Ácido Abscísico , Raízes de Plantas , Água , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Secas , Parede Celular/metabolismo , Solo , Desidratação
17.
Plant Cell ; 36(3): 605-625, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079275

RESUMO

Drought stress limits crop yield, but the molecular modulators and their mechanisms underlying the trade-off between drought resistance and crop growth and development remain elusive. Here, a grain width and weight2 (GW2)-like really interesting new gene finger E3 ligase, TaGW2, was identified as a pivotal regulator of both kernel development and drought responses in wheat (Triticum aestivum). TaGW2 overexpression enhances drought resistance but leads to yield drag under full irrigation conditions. In contrast, TaGW2 knockdown or knockout attenuates drought resistance but remarkably increases kernel size and weight. Furthermore, TaGW2 directly interacts with and ubiquitinates the type-B Arabidopsis response regulator TaARR12, promoting its degradation via the 26S proteasome. Analysis of TaARR12 overexpression and knockdown lines indicated that TaARR12 represses the drought response but does not influence grain yield in wheat. Further DNA affinity purification sequencing combined with transcriptome analysis revealed that TaARR12 downregulates stress-responsive genes, especially group-A basic leucine zipper (bZIP) genes, resulting in impaired drought resistance. Notably, TaARR12 knockdown in the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated tagw2 knockout mutant leads to significantly higher drought resistance and grain yield compared to wild-type plants. Collectively, these findings show that the TaGW2-TaARR12 regulatory module is essential for drought responses, providing a strategy for improving stress resistance in high-yield wheat varieties.


Assuntos
Sementes , Triticum , Sementes/genética , Triticum/metabolismo , Resistência à Seca , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Grão Comestível/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
PLoS Biol ; 22(8): e3002736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141639

RESUMO

Grasslands are integral to maintaining biodiversity and key ecosystem services and are under threat from climate change. Plant and soil microbial diversity, and their interactions, support the provision of multiple ecosystem functions (multifunctionality). However, it remains virtually unknown whether plant and soil microbial diversity explain a unique portion of total variation or shared contributions to supporting multifunctionality across global grasslands. Here, we combine results from a global survey of 101 grasslands with a novel microcosm study, controlling for both plant and soil microbial diversity to identify their individual and interactive contribution to support multifunctionality under aridity and experimental drought. We found that plant and soil microbial diversity independently predict a unique portion of total variation in above- and belowground functioning, suggesting that both types of biodiversity complement each other. Interactions between plant and soil microbial diversity positively impacted multifunctionality including primary production and nutrient storage. Our findings were also climate context dependent, since soil fungal diversity was positively associated with multifunctionality in less arid regions, while plant diversity was strongly and positively linked to multifunctionality in more arid regions. Our results highlight the need to conserve both above- and belowground diversity to sustain grassland multifunctionality in a drier world and indicate climate change may shift the relative contribution of plant and soil biodiversity to multifunctionality across global grasslands.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Microbiologia do Solo , Ecossistema , Solo/química , Secas , Plantas , Fungos/fisiologia
19.
Nature ; 591(7850): 391-395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731949

RESUMO

Most rivers exchange water with surrounding aquifers1,2. Where groundwater levels lie below nearby streams, streamwater can infiltrate through the streambed, reducing streamflow and recharging the aquifer3. These 'losing' streams have important implications for water availability, riparian ecosystems and environmental flows4-10, but the prevalence of losing streams remains poorly constrained by continent-wide in situ observations. Here we analyse water levels in 4.2 million wells across the contiguous USA and show that nearly two-thirds (64 per cent) of them lie below nearby stream surfaces, implying that these streamwaters will seep into the subsurface if it is sufficiently permeable. A lack of adequate permeability data prevents us from quantifying the magnitudes of these subsurface flows, but our analysis nonetheless demonstrates widespread potential for streamwater losses into underlying aquifers. These potentially losing rivers are more common in drier climates, flatter landscapes and regions with extensive groundwater pumping. Our results thus imply that climatic factors, geological conditions and historic groundwater pumping jointly contribute to the widespread risk of streams losing flow into surrounding aquifers instead of gaining flow from them. Recent modelling studies10 have suggested that losing streams could become common in future decades, but our direct observations show that many rivers across the USA are already potentially losing flow, highlighting the importance of coordinating groundwater and surface water policy.


Assuntos
Água Subterrânea/análise , Rios , Clima , Secas , Ecossistema , Umidade , Estados Unidos , Abastecimento de Água
20.
Nature ; 597(7875): 225-229, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497393

RESUMO

In the past several decades, field studies have shown that woody plants can access substantial volumes of water from the pores and fractures of bedrock1-3. If, like soil moisture, bedrock water storage serves as an important source of plant-available water, then conceptual paradigms regarding water and carbon cycling may need to be revised to incorporate bedrock properties and processes4-6. Here we present a lower-bound estimate of the contribution of bedrock water storage to transpiration across the continental United States using distributed, publicly available datasets. Temporal and spatial patterns of bedrock water use across the continental United States indicate that woody plants extensively access bedrock water for transpiration. Plants across diverse climates and biomes access bedrock water routinely and not just during extreme drought conditions. On an annual basis in California, the volumes of bedrock water transpiration exceed the volumes of water stored in human-made reservoirs, and woody vegetation that accesses bedrock water accounts for over 50% of the aboveground carbon stocks in the state. Our findings indicate that plants commonly access rock moisture, as opposed to groundwater, from bedrock and that, like soil moisture, rock moisture is a critical component of terrestrial water and carbon cycling.


Assuntos
Mapeamento Geográfico , Água Subterrânea , Transpiração Vegetal , Plantas/metabolismo , Análise Espaço-Temporal , Recursos Hídricos/provisão & distribuição , Madeira , California , Ciclo do Carbono , Secas , Sedimentos Geológicos/química , Raízes de Plantas/metabolismo , Texas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa