RESUMO
Different plant species within the grasses were parallel targets of domestication, giving rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are mediated by specialized cell types2. Here we compare the transcriptomes of root cells in three grass species-Zea mays, Sorghum bicolor and Setaria viridis. We show that single-cell and single-nucleus RNA sequencing provide complementary readouts of cell identity in dicots and monocots, warranting a combined analysis. Cell types were mapped across species to identify robust, orthologous marker genes. The comparative cellular analysis shows that the transcriptomes of some cell types diverged more rapidly than those of others-driven, in part, by recruitment of gene modules from other cell types. The data also show that a recent whole-genome duplication provides a rich source of new, highly localized gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale cellular profiling can extract conserved modules from a pan transcriptome and provide insight on the evolution of cells that mediate key functions in crops.
Assuntos
Produtos Agrícolas , Setaria (Planta) , Sorghum , Transcriptoma , Zea mays , Sequência de Bases , Regulação da Expressão Gênica de Plantas/genética , Sorghum/citologia , Sorghum/genética , Transcriptoma/genética , Zea mays/citologia , Zea mays/genética , Setaria (Planta)/citologia , Setaria (Planta)/genética , Raízes de Plantas/citologia , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Evolução MolecularRESUMO
BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.
Assuntos
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores de Crescimento de Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacologia , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Herbicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Giberelinas/farmacologia , Giberelinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , ÉsteresRESUMO
Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.
Assuntos
Nitratos , Setaria (Planta) , Espécies Reativas de Oxigênio , Nitratos/farmacologia , Setaria (Planta)/genética , Peróxido de Hidrogênio , Cloreto de Sódio , Oxigênio , Transdução de Sinais , Perfilação da Expressão Gênica , NitrogênioRESUMO
Tubby-like proteins (TLPs) are a group of proteins found in both eukaryotes and prokaryotes. They are significant in various physiological and biochemical processes, especially in plants' response to abiotic stress. However, the role of TLP in foxtail millet (Setaria italica) remains unclear. The millet genome has 16 members of the TLP family with typical Tub domains, which can be sorted into five subgroups based on gene structure, motif, and protein domain distribution. SiTLPs were discovered to be predominantly located in the nucleus and also had extracellular distribution. The interspecific evolutionary analysis indicated that SiTLPs had a closer evolutionary relationship with monocots and were consistent with the morphological classification of foxtail millet. When subjected to salt stress, the abundance of SiTLP was affected, and qRT-PCR results showed that the expression levels of certain SiTLP members were induced by salt stress while others remained unresponsive. Except for SiTLP14, all other SiTLP genes were up-regulated in response to high-temperature stress, implying a potentially crucial role for SiTLP in mitigating high-temperature-induced damage. This study provides valuable insights into understanding the functional significance of the TLP gene family in foxtail millet.
Assuntos
Proteínas de Plantas , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Estresse Salino , Temperatura Alta , Estresse FisiológicoRESUMO
BACKGROUND: ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS: In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS: In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Perfilação da Expressão GênicaRESUMO
BACKGROUND: In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across eukaryotes remains limited. RESULTS: In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis and translation across these species. However, the cohort of modified transcripts changed based on environmental context and developmental program, a pattern that was also conserved across flowering plants. We determined that RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein abundance, and thus likely associated with facilitating translation. CONCLUSIONS: Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant lineage.
Assuntos
Arabidopsis , Splicing de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Sorghum/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Zea mays/genética , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Processamento Pós-Transcricional do RNARESUMO
MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.
Assuntos
Genoma Mitocondrial , Setaria (Planta) , Setaria (Planta)/genética , Genoma Mitocondrial/genética , Filogenia , RNA de Transferência/genética , Genoma de Planta/genética , Uso do Códon , RNA Ribossômico/genética , Códon/genéticaRESUMO
MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.
Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Setaria (Planta) , Estresse Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Setaria (Planta)/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Plantas Geneticamente Modificadas , Família Multigênica , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
Photosynthetic efficiency is reduced by the dual role of Rubisco, which acts either as a carboxylase or as an oxygenase, the latter leading to photorespiration. C4 photosynthesis evolved as a carbon-concentrating mechanism to reduce photorespiration. To engineer C4 into a C3 plant, it is essential to understand how C4 genes, such as phosphoenolpyruvate carboxylase (PEPC1), are regulated to be expressed at high levels and in a cell-specific manner. Yeast one-hybrid screening was used to show that OsPRI1, a rice bHLH transcription factor involved in iron homeostasis, binds to the Setaria viridis PEPC1 promoter. This promoter drives mesophyll-specific gene expression in rice. The role of OsPRI1 in planta was characterized using a rice line harbouring SvPEPC1pro ::GUS. We show that OsPRI1 activates the S. viridis PEPC1 promoter by binding to an N-box in the proximal promoter, and that GUS activity is highly reduced in SvPEPC1pro ::GUS lines when OsPRI1 is mutated. Cross-species comparisons showed that the SvPRI1 homolog binds to the SvPEPC1 promoter but the maize ZmPRI1 does not bind to the ZmPEPC1 promoter. Our results suggest that elements of the iron homeostasis pathway were co-opted to regulate PEPC1 gene expression during the evolution of some but not all C4 species.
Assuntos
Oryza , Setaria (Planta) , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Oryza/genética , Oryza/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Regiões Promotoras Genéticas/genética , Fotossíntese/genética , FerroRESUMO
The superior productivity of C4 plants is achieved via a metabolic C4 cycle which acts as a CO2 pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C4 photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells. We show that CEF accounts for 84% of electrons reducing PSI in BS cells and most of those electrons are delivered through NDH while the contribution of the complex to electron transport in mesophyll cells is minimal. A decreased leaf CO2 assimilation rate and growth of plants lacking NDH cannot be rescued by supplying additional CO2. Our results indicate that NDH-mediated CEF is the primary electron transport route in BS chloroplasts highlighting the essential role of NDH in generating ATP required for CO2 fixation by the C3 cycle in BS cells.
Assuntos
Cloroplastos , NADH Desidrogenase , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Cloroplastos/metabolismo , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Complexo de Proteína do Fotossistema I/metabolismo , Setaria (Planta)/metabolismo , Setaria (Planta)/genética , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese , Feixe Vascular de Plantas/metabolismo , Folhas de Planta/metabolismoRESUMO
Sedoheptulose-1,7-bisphosphatase (SBPase) is one of the rate-limiting enzymes of the Calvin cycle, and increasing the abundance of SBPase in C3 plants provides higher photosynthetic rates and stimulates biomass and yield. C4 plants usually have higher photosynthetic rates because they operate a biochemical CO2-concentrating mechanism between mesophyll and bundle sheath cells. In the C4 system, SBPase and other enzymes of the Calvin cycle are localized to the bundle sheath cells. Here we tested what effect increasing abundance of SBPase would have on C4 photosynthesis. Using green foxtail millet (Setaria viridis), a model C4 plant of NADP-ME subtype, we created transgenic plants with 1.5 to 3.2 times higher SBPase content compared to wild-type plants. Transcripts of the transgene were found predominantly in the bundle sheaths suggesting the correct cellular localization of the protein. The abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit was not affected in transgenic plants overexpressing SBPase, and neither was leaf chlorophyll content or photosynthetic electron transport parameters. We found no association between SBPase content in S. viridis and saturating rates of CO2 assimilation. Moreover, a detailed analysis of CO2 assimilation rates at different CO2 partial pressures, irradiances, and leaf temperatures showed no improvement of photosynthesis in plants overexpressing SBPase. We discuss the potential implications of these results for understanding the role of SBPase in regulation of C4 photosynthesis.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
Climate change inflicts several stresses on plants, of which dehydration stress severely affects growth and productivity. C4 plants possess better adaptability to dehydration stress; however, the role of epigenetic modifications underlying this trait is unclear. In particular, the molecular links between histone modifiers and their regulation remain elusive. In this study, genome-wide H3K9 acetylation (H3K9ac) enrichment using ChIP-sequencing was performed in two foxtail millet cultivars with contrasting dehydration tolerances (IC403579, cv. IC4-tolerant, and IC480117, cv. IC41-sensitive). It revealed that a histone deacetylase, SiHDA9, was significantly up-regulated in the sensitive cultivar. Further characterization indicated that SiHDA9 interacts with SiHAT3.1 and SiHDA19 to form a repressor complex. SiHDA9 might be recruited through the SiHAT3.1 recognition sequence onto the upstream of dehydration-responsive genes to decrease H3K9 acetylation levels. The silencing of SiHDA9 resulted in the up-regulation of crucial genes, namely, SiRAB18, SiRAP2.4, SiP5CS2, SiRD22, SiPIP1;4, and SiLHCB2.3, which imparted dehydration tolerance in the sensitive cultivar (IC41). Overall, the study provides mechanistic insights into SiHDA9-mediated regulation of dehydration stress response in foxtail millet.
Assuntos
Desidratação , Setaria (Planta) , Setaria (Planta)/genética , Regulação para Cima , Fenótipo , Histona Desacetilases/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genéticaRESUMO
Nitrogen (N) is a macronutrient limiting crop productivity with varied requirements across species and genotypes. Understanding the mechanistic basis of N responsiveness by comparing contrasting genotypes could inform the development and selection of varieties with lower N demands, or inform agronomic practices to sustain yields with lower N inputs. Given the established role of millets in ensuring climate-resilient food and nutrition security, we investigated the physiological and genetic basis of nitrogen responsiveness in foxtail millet (Setaria italica L.). We had previously identified genotypic variants linked to N responsiveness, and here we dissect the mechanistic basis of the trait by examining the physiological and molecular behaviour of N responsive (NRp-SI58) and non-responsive (NNRp-SI114) accessions at high and low N. Under high N, NRp-SI58 allocates significantly more biomass to nodes, internodes and roots, more N to developing grains, and is more effective at remobilizing flag leaf N compared with NNRp-SI114. Post-anthesis flag leaf gene expression suggests that differences in N induce much higher transcript abundance in NNRp-SI114 than NRp-SI58, a large proportion of which is potentially regulated by APETALA2 (AP2) transcription factors. Overall, the study provides novel insights into the regulation and manipulation of N responsiveness in S. italica.
Assuntos
Nitrogênio , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , GenótipoRESUMO
Chilling stress threatens plant growth and development, particularly affecting membrane fluidity and cellular integrity. Understanding plant membrane responses to chilling stress is important for unraveling the molecular mechanisms of stress tolerance. Whereas core transcriptional responses to chilling stress and stress tolerance are conserved across species, the associated changes in membrane lipids appear to be less conserved, as which lipids are affected by chilling stress varies by species. Here, we investigated changes in gene expression and membrane lipids in response to chilling stress during one 24 h cycle in chilling-tolerant foxtail millet (Setaria italica), and chilling-sensitive sorghum (Sorghum bicolor) and Urochloa (browntop signal grass, Urochloa fusca, lipids only), leveraging their evolutionary relatedness and differing levels of chilling stress tolerance. We show that most chilling-induced lipid changes are conserved across the three species, while we observed distinct, time-specific responses in chilling-tolerant foxtail millet, indicating the presence of a finely orchestrated adaptive mechanism. We detected rhythmicity in lipid responses to chilling stress in the three grasses, which were also present in Arabidopsis thaliana, suggesting the conservation of rhythmic patterns across species and highlighting the importance of accounting for time of day. When integrating lipid datasets with gene expression profiles, we identified potential candidate genes that showed corresponding transcriptional changes in response to chilling stress, providing insights into the differences in regulatory mechanisms between chilling-sensitive sorghum and chilling-tolerant foxtail millet.
Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Poaceae , Poaceae/genética , Poaceae/fisiologia , Metabolismo dos Lipídeos/genética , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Sorghum/genética , Sorghum/fisiologiaRESUMO
KEY MESSAGE: Two major genetic loci, qTN5.1 and qAB9.1, were identified and finely mapped to the 255 Kb region with one potential candidate gene for tiller number and the 521 Kb region with eight candidate genes for axillary branch number, respectively. Vegetative branching including tillering and axillary branching are vital traits affecting both the plant architecture and the biomass in cereal crops. However, the mechanism underlying the formation of vegetative branching in foxtail millet is largely unknown. Here, a foxtail millet cultivar and its bushy wild relative Setaria viridis accession were used to construct segregating populations to identify candidate genes regulating tiller number and axillary branch number. Transcriptome analysis using vegetative branching bud samples of parental accessions was performed, and key differentially expressed genes and pathways regulating vegetative branching were pointed out. Bulk segregant analysis on their F2:3 segregating population was carried out, and a major QTL for tiller number (qTN5.1) and two major QTLs for axillary branch number (qAB2.1 and qAB9.1) were detected. Fine-mapping strategy was further performed on F2:4 segregate population, and Seita.5G356600 encoding ß-glucosidase 11 was identified as the promising candidate gene for qTN5.1, and eight genes, especially Seita.9G125300 and Seita.9G125400 annotated as B-S glucosidase 44, were finally identified as candidate genes for regulating axillary branching. Findings in this study will help to elucidate the genetic basis of the vegetative branching formation of foxtail millet and lay a foundation for breeding foxtail millet varieties with ideal vegetative branching numbers.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Locos de Características QuantitativasRESUMO
KEY MESSAGE: Eleven QTLs for agronomic traits were identified by RTM- and MLM-GWAS, putative candidate genes were predicted and two markers for grain weight were developed and validated. Foxtail millet (Setaria italica), the second most cultivated millet crop after pearl millet, is an important grain crop in arid regions. Seven agronomic traits of 408 diverse foxtail millet accessions from 15 provinces in China were evaluated in three environments. They were clustered into two divergent groups based on genotypic data using ADMIXTURE, which was highly consistent with their geographical distribution. Two models for genome-wide association studies (GWAS), namely restricted two-stage multi-locus multi-allele (RTM)-GWAS and mixed linear model (MLM)-GWAS, were used to dissect the genetic architecture of the agronomic traits based on 13,723 SNPs. Eleven quantitative trait loci (QTLs) for seven traits were identified using two models (RTM- and MLM-GWAS). Among them, five were considered stable QTLs that were identified in at least two environments using MLM-GWAS. One putative candidate gene (SETIT_006045mg, Chr4: 744,701-746,852) that can enhance grain weight per panicle was identified based on homologous gene comparison and gene expression analysis and was validated by haplotype analysis of 330 accessions with high-depth (10×) resequencing data (unpublished). In addition, homologous gene comparison and haplotype analysis identified one putative foxtail millet ortholog (SETIT_032906mg, Chr2: 5,020,600-5,029,771) with rice affecting the target traits. Two markers (cGWP6045 and kTGW2906) were developed and validated and can be used for marker-assisted selection of foxtail millet with high grain weight. The results provide a fundamental resource for foxtail millet genetic research and breeding and demonstrate the power of integrating RTM- and MLM-GWAS approaches as a complementary strategy for investigating complex traits in foxtail millet.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Melhoramento Vegetal , Fenótipo , Grão ComestívelRESUMO
KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Variação GenéticaRESUMO
KEY MESSAGE: One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.
Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Setaria (Planta) , Oligoelementos , Setaria (Planta)/genética , Oligoelementos/análise , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único , GenótipoRESUMO
KEY MESSAGE: The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma , PotássioRESUMO
KEY MESSAGE: Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.