RESUMO
Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.
Assuntos
Epilepsia , Ferroptose , Soman , Ratos , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Soman/toxicidade , Epilepsia/tratamento farmacológico , Encéfalo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Imageamento por Ressonância Magnética , Ferritinas/farmacologia , Ferro , Benzilaminas/farmacologia , Amidinas/farmacologia , Amidinas/uso terapêutico , Óxido Nítrico/metabolismoRESUMO
Status epilepticus (SE) is a life-threatening development of self-sustaining seizures that becomes resistant to benzodiazepines when treatment is delayed. Benzodiazepine pharmacoresistance is thought in part to result from internalization of synaptic GABAA receptors, which are the main target of the drug. The naturally occurring neurosteroid allopregnanolone is a therapy of interest against SE for its ability to modulate all isoforms of GABAA receptors. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been partially effective in combination with benzodiazepines in mitigating SE-associated neurotoxicity. In this study, allopregnanolone as an adjunct to midazolam or midazolam-ketamine combination therapy was evaluated for efficacy against cholinergic-induced SE. Adult male rats implanted with electroencephalographic (EEG) telemetry devices were exposed to the organophosphorus chemical (OP) soman (GD) and treated with an admix of atropine sulfate and HI-6 at 1 minute after exposure followed by midazolam, midazolam-allopregnanolone, or midazolam-ketamine-allopregnanolone 40 minutes after seizure onset. Neurodegeneration, neuronal loss, and neuroinflammation were assessed 2 weeks after GD exposure. Seizure activity, EEG power integral, and epileptogenesis were also compared among groups. Overall, midazolam-ketamine-allopregnanolone combination therapy was effective in reducing cholinergic-induced toxic signs and neuropathology, particularly in the thalamus and hippocampus. Higher dosage of allopregnanolone administered in combination with midazolam and ketamine was also effective in reducing EEG power integral and epileptogenesis. The current study reports that there is a promising potential of neurosteroids in combination with benzodiazepine and ketamine treatments in a GD model of SE. SIGNIFICANCE STATEMENT: Allopregnanolone, a naturally occurring neurosteroid, reduced pathologies associated with soman (GD) exposure such as epileptogenesis, neurodegeneration, and neuroinflammation, and suppressed GD-induced toxic signs when used as an adjunct to midazolam and ketamine in a delayed treatment model of soman-induced status epilepticus (SE) in rats. However, protection was incomplete, suggesting that further studies are needed to identify optimal combinations of antiseizure medications and routes of administration for maximal efficacy against cholinergic-induced SE.
Assuntos
Ketamina , Neuroesteroides , Soman , Estado Epiléptico , Ratos , Masculino , Animais , Midazolam/farmacologia , Midazolam/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Pregnanolona/efeitos adversos , Soman/toxicidade , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Doenças Neuroinflamatórias , Neuroesteroides/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas , Colinérgicos/efeitos adversos , Receptores de GABA-A , Ácido gama-AminobutíricoRESUMO
Acute exposure to nerve agents induces a peripheral cholinergic crisis and prolonged status epilepticus (SE), causing death or long-term brain damage. To provide preclinical data pertinent to the protection of infants and newborns, we compared the antiseizure and neuroprotective effects of treating soman-induced SE with midazolam (MDZ) versus tezampanel (LY293558) in combination with caramiphen (CRM) in 12- and 7-day-old rats. The anticonvulsants were administered 1 hour after soman exposure; neuropathology data were collected up to 6 months postexposure. In both ages, the total duration of SE within 24 hours after soman exposure was significantly shorter in the LY293558 plus CRM groups compared with the MDZ groups. Neuronal degeneration was substantial in the MDZ-treated groups but absent or minimal in the groups treated with LY293558 plus CRM. Loss of neurons and interneurons in the basolateral amygdala and CA1 hippocampal area was significant in the MDZ-treated groups but virtually absent in the LY293558 plus CRM groups. Atrophy of the amygdala and hippocampus occurred only in MDZ-treated groups. Neuronal/interneuronal loss and atrophy of the amygdala and hippocampus deteriorated over time. Reduction of inhibitory activity in the basolateral amygdala and increased anxiety were found only in MDZ groups. Spontaneous recurrent seizures developed in the MDZ groups, deteriorating over time; a small percentage of rats from the LY293558 plus CRM groups also developed seizures. These results suggest that brain damage can be long lasting or permanent if nerve agent-induced SE in infant victims is treated with midazolam at a delayed timepoint after SE onset, whereas antiglutamatergic treatment with tezampanel and caramiphen provides significant neuroprotection. SIGNIFICANCE STATEMENT: To protect the brain and the lives of infants in a mass exposure to nerve agents, an anticonvulsant treatment must be administered that will effectively stop seizures and prevent neuropathology, even if offered with a relative delay after seizure onset. The present study shows that midazolam, which was recently approved by the Food and Drug Administration for the treatment of nerve agent-induced status epilepticus, is not an effective neuroprotectant, whereas brain damage can be prevented by targeting glutamate receptors.
Assuntos
Lesões Encefálicas , Ciclopentanos , Isoquinolinas , Agentes Neurotóxicos , Fármacos Neuroprotetores , Soman , Estado Epiléptico , Tetrazóis , Humanos , Recém-Nascido , Ratos , Animais , Agentes Neurotóxicos/toxicidade , Midazolam/farmacologia , Midazolam/uso terapêutico , Soman/toxicidade , Neuroproteção , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Anticonvulsivantes/efeitos adversos , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Encéfalo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Atrofia/tratamento farmacológicoRESUMO
Benzodiazepine pharmacoresistance develops when treatment of status epilepticus (SE) is delayed. This response may result from gamma-aminobutyric acid A receptors (GABAAR) internalization that follows prolonged SE; this receptor trafficking results in fewer GABAAR in the synapse to restore inhibition. Increase in synaptic N-methyl-D-aspartate receptors (NMDAR) also occurs in rodent models of SE. Lacosamide, a third-generation antiseizure medication (ASM), acts on the slow inactivation of voltage-gated sodium channels. Another ASM, rufinamide, similarly acts on sodium channels by extending the duration of time spent in the inactivation stage. Combination therapy of the benzodiazepine midazolam, NMDAR antagonist ketamine, and ASMs lacosamide (or rufinamide) was investigated for efficacy against soman (GD)-induced SE and neuropathology. Adult male rats implanted with telemetry transmitters for monitoring electroencephalographic (EEG) activity were exposed to a seizure-inducing dose of GD and treated with an admix of atropine sulfate and HI-6 1 minute later and with midazolam monotherapy or combination therapy 40 minutes after EEG seizure onset. Rats were monitored continuously for seizure activity for two weeks, after which brains were processed for assessment of neurodegeneration, neuronal loss, and neuroinflammatory responses. Simultaneous administration of midazolam, ketamine, and lacosamide (or rufinamide) was more protective against GD-induced SE compared with midazolam monotherapy. In general, lacosamide triple therapy had more positive outcomes on measures of epileptogenesis, EEG power integral, and the number of brain regions protected from neuropathology compared with rats treated with rufinamide triple therapy. Overall, both drugs were well tolerated in these combination models. SIGNIFICANCE STATEMENT: We currently report on improved efficacy of antiseizure medications lacosamide and rufinamide, each administered in combination with ketamine (NMDAR antagonist) and midazolam (benzodiazepine), in combatting soman (GD)-induced seizure, epileptogenesis, and brain pathology over that provided by midazolam monotherapy, or dual therapy of midazolam and lacosamide (or rufinamide) in rats. Administration of lacosamide as adjunct to midazolam and ketamine was particularly effective against GD-induced toxicity. However, protection was incomplete, suggesting the need for further study.
Assuntos
Ketamina , Soman , Estado Epiléptico , Triazóis , Ratos , Masculino , Animais , Midazolam/uso terapêutico , Midazolam/farmacologia , Lacosamida/efeitos adversos , Ketamina/farmacologia , Ketamina/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas , Colinérgicos/efeitos adversos , Ácido gama-AminobutíricoRESUMO
Soman produces excitotoxic effects by inhibiting acetylcholinesterase in the cholinergic synapses and neuromuscular junctions, resulting in soman-induced sustained status epilepticus (SSE). Our previous work showed delayed intramuscular (i.m.) treatment with A1 adenosine receptor agonist N-bicyclo-[2.2.1]-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone suppressed soman-induced SSE and prevented neuropathology. Using this same rat soman seizure model, we tested if delayed therapy with ENBA (60 mg/kg, i.m.) would terminate seizure, protect neuropathology, and aid in survival when given in conjunction with current standard medical countermeasures (MCMs): atropine sulfate, 2-PAM, and midazolam (MDZ). Either 15- or 30-min following soman-induced SSE onset, male rats received atropine and 2-PAM plus either MDZ or MDZ + ENBA. Electroencephalographic (EEG) activity, physiologic parameters, and motor function were recorded. Either 2- or 14-days following exposure surviving rats were euthanized and perfused for histology. All animals treated with MDZ + ENBA at both time points had 100% EEG seizure termination and reduced total neuropathology compared to animals treated with MDZ (2-day, p = 0.015 for 15-min, p = 0.002 for 30-min; 14-day, p < 0.001 for 15-min, p = 0.006 for 30-min), showing ENBA enhanced MDZ's anticonvulsant and neuroprotectant efficacy. However, combined MDZ + ENBA treatment, when compared to MDZ treatment groups, had a reduction in the 14-day survival rate regardless of treatment time, indicating possible enhancement of MDZ's neuronal inhibitory effects by ENBA. Based on our findings, ENBA shows promise as an anticonvulsant and neuroprotectant in a combined treatment regimen following soman exposure; when given as an adjunct to standard MCMs, the dose of ENBA needs to be adjusted.
Assuntos
Agonistas do Receptor A1 de Adenosina , Ratos Sprague-Dawley , Convulsões , Soman , Animais , Soman/toxicidade , Masculino , Agonistas do Receptor A1 de Adenosina/farmacologia , Ratos , Injeções Intramusculares , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Anticonvulsivantes/administração & dosagem , Eletroencefalografia/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/administração & dosagem , Adenosina/farmacologia , Atropina/farmacologia , Atropina/administração & dosagem , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Midazolam/farmacologia , Midazolam/uso terapêuticoRESUMO
The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively. The detection system was based on the principle of indirect competitive enzyme-linked immunosorbent assay. The specific monoclonal antibodies that respectively recognized the phosphonylated tyrosine 411 of GD-HSA and VX-HSA adducts were labeled by EuCM to capture corresponding adducts in the exposed samples. The phosphonylated peptides in the test line and goat-anti-rabbit antibody in the control line were utilized to bind the EuCM-labeled antibodies for signal exhibition. The developed IFMC chip could discriminatively detect exposed HSA adducts with high specificity, demonstrating a low limit of detection at exposure concentrations of 0.5 × 10-6 mol/L VX and 1.0 × 10-6 mol/L GD. The exposed serum samples can be qualitatively detected following an additional pretreatment procedure. This is a novel rapid detection system capable of discriminating GD and VX exposure, providing an alternative method for rapidly identifying OPNA exposure.
Assuntos
Soman , Animais , Humanos , Coelhos , Soman/metabolismo , Európio , Microfluídica , Estudos Retrospectivos , Albumina Sérica Humana , ImunofluorescênciaRESUMO
Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 µM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.
Assuntos
Reativadores da Colinesterase , Indolquinonas , Intoxicação por Organofosfatos , Soman , Humanos , Idoso , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo , Serina , Oximas , Reativadores da Colinesterase/químicaRESUMO
The idea of this study was the estimation of the theoretical acute toxicity (t-LD50, rat, oral dose) of organophosphorus-based chemical warfare agents from the G-series (n = 12) using different in silico methods. Initially identified in Germany, the G-type nerve agents include potent compounds such as tabun, sarin, and soman. Despite their historical significance, there is a noticeable gap in acute toxicity data for these agents. This study employs qualitative (STopTox and AdmetSAR) and quantitative (TEST; CATMoS; ProTox-II and QSAR Toolbox) in silico methods to predict LD50 values, offering an ethical alternative to animal testing. Additionally, we conducted quantitative extrapolation from animals, and the results of qualitative tests confirmed the acute toxicity potential of these substances and enabled the identification of toxicophoric groups. According to our estimations, the most lethal agents within this category were GV, soman (GD), sarin (GB), thiosarin (GBS), and chlorosarin (GC), with t-LD50 values (oral administration, extrapolated from rat to human) of 0.05 mg/kg bw, 0.08 mg/kg bw, 0.12 mg/kg bw, 0.15 mg/kg bw, and 0.17 mg/kg bw, respectively. On the contrary, compounds with a cycloalkane attached to the phospho-oxygen linkage, specifically methyl cyclosarin and cyclosarin, were found to be the least toxic, with values of 2.28 mg/kg bw and 3.03 mg/kg bw. The findings aim to fill the knowledge gap regarding the acute toxicity of these agents, highlighting the need for modern toxicological methods that align with ethical considerations, next-generation risk assessment (NGRA) and the 3Rs (replacement, reduction and refinement) principles.
Assuntos
Substâncias para a Guerra Química , Simulação por Computador , Compostos Organofosforados , Relação Quantitativa Estrutura-Atividade , Substâncias para a Guerra Química/toxicidade , Animais , Dose Letal Mediana , Compostos Organofosforados/toxicidade , Ratos , Administração Oral , Sarina/toxicidade , Testes de Toxicidade Aguda/métodos , Soman/toxicidade , Medição de Risco/métodosRESUMO
BACKGROUND: Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs-atropine, oximes, benzodiazepines), if administered in < 20 min of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for 3 days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. METHODS: Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132 µg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m) and HI-6 (125 mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3 mg/kg, i.m.). An hour post-midazolam, 1400W (20 mg/kg, i.m.) or vehicle was administered daily for 2 weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. RESULTS: We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20 min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68-positive glia) as a measure of neuroinflammation, and neurodegeneration (especially parvalbumin-positive neurons) in some brain regions. CONCLUSION: These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration (parvalbumin-positive neurons), and neuronal hyperexcitability.
Assuntos
Inibidores Enzimáticos , Epilepsia , Óxido Nítrico Sintase Tipo II , Soman , Estado Epiléptico , Animais , Masculino , Ratos , Atropina , Citocinas , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Gliose , Midazolam , Neuroglia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Parvalbuminas , Ratos Sprague-Dawley , Convulsões , Soman/toxicidadeRESUMO
Acetylcholinesterase (AChE) is a cholinergic enzyme that plays an essential role in the autonomic nervous system. This enzyme is often the target of many nerve agents. When this enzyme is inhibited, its function to hydrolyze acetylcholine is stopped, accumulating the acetylcholine in the tissue and causing prolonged stimulation. Some of the significant nerve agents include sarin (GB), soman (GD), tabun (GA), and venomous agent (VX). In order to determine which compound is the most stable and has the best affinity, the nerve agent venomous agent (VX), sarin (GB), soman (GD), and tabun (GA) are docked to the acetylcholinesterase (AChE) enzyme. After that, toxicity tests will be performed on 17 targets for the compound that was chosen. Autodock Vina 1.2.0 is the software used for the docking procedure. should use the Pymol program version 2.5.4 for analysis and the Ligplot software version 2.2 for visualization of the docking findings. The 'Tox Prediction' algorithm from Insilico was used to determine the toxicity of various substances. Based on the results of molecular docking, the free binding energy of Donepezil, sarin (GB), soman (GD), tabun (GA), and venomous agent (VX) in kcal/mol are -12,3, -4.8, -6.0, -5,1, and -6.3 respectively. Finally, four ligands bind strongly to the receptor Donepezil at RMSD 0.327 Å, and the venomous agent (VX) compound binds the most strongly compared to the other test ligands. Furthermore, in the toxicity test of Compound VX, which exhibits neurotoxic activity, no toxic activity was observed on specific organs and targets.
Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Organofosfatos , Compostos Organotiofosforados , Soman , Sarina/química , Soman/química , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Compostos Organofosforados , Simulação de Acoplamento Molecular , Donepezila , AcetilcolinaRESUMO
Pre-administration of huperzine A (Hup A) was validated to prevent poisoning from exposure to nerve agents (NAs) by reversibly inhibiting acetylcholinesterase (AChE). However, like the currently commonly used reversible inhibitors, Hup A has a short half-life and is unable to produce a long-term preventative effect. To extend the protective time of Hup A against NAs, 42 derivatives with a CN bond were designed based on the structure of Hup A in this study. All designed derivatives showed good binding capability with AChE via molecular docking. Six compounds (H3, H4, H11, H14, H16, and H25) with representative structures were selected for synthesis by Schiff base reaction, and their structures were stable. The modified Ellman's method showed the six compounds concentration-dependently inhibited AChE, and the half maximal inhibitory concentration (IC50) were higher than that of Hup A. Pretreatment of AChE with the derivatives significantly increased the IC50 of soman. In vivo experiments demonstrated H3, H4, H14, H16, and H25 had longer protective capacities against 1 × LD95 soman-induced death in mice than Hup A. The 12 h protective index showed that the protective ratios of H3, H4, H14 and H16 were 2.31, 1.85, 2.23 and 1.99 respectively, better than that of Hup A. The extended protection of the derivatives against soman may be explained by their transformation to Hup A in vivo. Furthermore, all six compounds showed lower acute oral toxicity than Hup A. Overall, our study provided an optional strategy to acquire pretreatment agents for NAs with extended action and low toxicity.
Assuntos
Agentes Neurotóxicos , Soman , Camundongos , Animais , Soman/toxicidade , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase/metabolismo , Simulação de Acoplamento MolecularRESUMO
Recently a novel humanized mouse strain has been successfully generated, in which serum carboxylesterase (CES) knock out (KO) mice (Es1-/-) were further genetically modified by knocking in (KI), or adding, the gene that encodes the human form of acetylcholinesterase (AChE). The resulting human AChE KI and serum CES KO (or KIKO) mouse strain should not only exhibit organophosphorus nerve agent (NA) intoxication in a manner more similar to humans, but also display AChE-specific treatment responses more closely mimicking those of humans to facilitate data translation to pre-clinic trials. In this study, we utilized the KIKO mouse to develop a seizure model for NA medical countermeasure investigation, and then applied it to evaluate the anticonvulsant and neuroprotectant (A/N) efficacy of a specific A1 adenosine receptor (A1AR) agonist, N-bicyclo-(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), which has been shown in a rat seizure model to be a potent A/N compound. Male mice surgically implanted with cortical electroencephalographic (EEG) electrodes a week earlier were pretreated with HI-6 and challenged with various doses (26 to 47 µg/kg, SC) of soman (GD) to determine a minimum effective dose (MED) that induced sustained status epilepticus (SSE) activity in 100% of animals while causing minimum lethality at 24 h. The GD dose selected was then used to investigate the MED doses of ENBA when given either immediately following SSE initiation (similar to wartime military first aid application) or at 15 min after ongoing SSE seizure activity (applicable to civilian chemical attack emergency triage). The selected GD dose of 33 µg/kg (1.4 x LD50) generated SSE in 100% of KIKO mice and produced only 30% mortality. ENBA at a dose as little as 10 mg/kg, IP, caused isoelectric EEG activity within minutes after administration in naïve un-exposed KIKO mice. The MED doses of ENBA to terminate GD-induced SSE activity were determined to be 10 and 15 mg/kg when treatment was given at the time of SSE onset and when seizure activity was ongoing for 15 min, respectively. These doses were much lower than in the non-genetically modified rat model, which required an ENBA dose of 60 mg/kg to terminate SSE in 100% GD-exposed rats. At MED doses, all mice survived for 24 h, and no neuropathology was observed when the SSE was stopped. The findings confirmed that ENBA is a potent A/N for both immediate and delayed (i.e., dual purposed) therapy to victims of NA exposure and serves as a promising neuroprotective antidotal and adjunctive medical countermeasure candidate for pre-clinical research and development for human application.
Assuntos
Agentes Neurotóxicos , Fármacos Neuroprotetores , Soman , Estado Epiléptico , Animais , Masculino , Camundongos , Ratos , Acetilcolinesterase , Anticonvulsivantes/efeitos adversos , Agentes Neurotóxicos/toxicidade , Fármacos Neuroprotetores/efeitos adversos , Compostos Organofosforados/uso terapêutico , Agonistas do Receptor Purinérgico P1/efeitos adversos , Receptores Purinérgicos P1 , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Soman/toxicidade , Soman/uso terapêutico , Estado Epiléptico/induzido quimicamenteRESUMO
This work aimed to assess whether mitochondrial damage in the liver induced by subacute soman exposure is caused by peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and whether PGC-1α regulates mitochondrial respiratory chain damage. Toxicity mechanism research may provide theoretical support for developing anti-toxic drugs in the future. First, a soman animal model was established in male Sprague-Dawley (SD) rats by subcutaneous soman injection. Then, liver damage was biochemically evaluated, and acetylcholinesterase (AChE) activity was also determined. Transmission electron microscopy (TEM) was performed to examine liver mitochondrial damage, and high-resolution respirometry was carried out for assessing mitochondrial respiration function. In addition, complex I-IV levels were quantitatively evaluated in isolated liver mitochondria by enzyme-linked immunosorbent assay (ELISA). PGC-1α levels were detected with a Jess capillary-based immunoassay device. Finally, oxidative stress was analyzed by quantifying superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and reactive oxygen species (ROS) levels. Repeated low-level soman exposure did not alter AChE activity, while increasing morphological damage of liver mitochondria and liver enzyme levels in rat homogenates. Complex I, II and I + II activities were 2.33, 4.95, and 5.22 times lower after treatment compared with the control group, respectively. Among complexes I-IV, I-III decreased significantly (p < 0.05), and PGC-1α levels were 1.82 times lower after soman exposure than in the control group. Subacute soman exposure significantly increased mitochondrial ROS production, which may cause oxidate stress. These findings indicated dysregulated mitochondrial energy metabolism involves PGC-1α protein expression imbalance, revealing non-cholinergic mechanisms for soman toxicity.
Assuntos
Soman , Fatores de Transcrição , Ratos , Masculino , Animais , Fatores de Transcrição/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Soman/metabolismo , Acetilcolinesterase/metabolismo , Transporte de Elétrons , Ratos Sprague-Dawley , Fígado/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismoRESUMO
Physostigmine (Phs) is a reversible inhibitor of acetylcholinesterase (AChE) that penetrates the blood-brain barrier (BBB) and could be used to protect the central nervous system (CNS) against the effects of nerve agents. For prophylactic effectiveness, long, steady, and adequate inhibition of AChE activity by Phs is needed to broadly protect against the CNS effects of nerve agents. Here, we evaluated the efficacy of transdermal patches containing Phs and procyclidine (PC) as prophylactic agents. Patches (25 cm2) containing 4.4 mg Phs and 17.8 mg PC had a protective ratio of approximately 78.6-fold in rhesus monkeys challenged with VX nerve agent and given an antidote. Physiologically based pharmacokinetic model in conjunction with an indirect pharmacodynamic (PBPK/PD) was developed for Phs and scaled to rhesus monkeys. The model was able to reproduce the concentration profile and inhibitory effect on AChE of Phs in monkeys, as evidenced by correlation coefficients of 0.994 and 0.992 for 25 cm2 and 49 cm2 patches, respectively (i.e., kinetic data), and 0.989 and 0.968 for 25 cm2 and 49 cm2 patches, respectively (i.e., dynamic data). By extending the monkey PBPK/ PD model to humans, the effective human dose was predicted to be five applications of a 25 cm2 patch (i.e., 22 mg Phs), and two applications of a 49 cm2 patch (i.e., 17.4 mg Phs). Therefore, given that patch application of Phs in rhesus monkeys has a prolonged effect (namely, AChE inhibition of 19.6% for the 25 cm2 patch and 23.0% for the 49 cm2 patch) for up to 216 h, patch formulation of Phs may provide similar protection against nerve agent intoxication in humans.
Assuntos
Agentes Neurotóxicos , Soman , Animais , Humanos , Fisostigmina/farmacologia , Prociclidina/farmacologia , Macaca mulatta , Inibidores da Colinesterase/farmacologia , AcetilcolinesteraseRESUMO
Organophosphorus nerve agents pose a global threat to both military personnel and civilian population, because of their high acute toxicity and insufficient medical countermeasures. Commonly used drugs could ameliorate the intoxication and overall medical outcomes. In this study, we tested the drugs able to alleviate the symptoms of Alzheimer's disease (donepezil, huperzine A, memantine) or Parkinson's disease (procyclidine). They were administered to mice before soman intoxication in terms of their: i) protection potential against soman toxicity and ii) influence on post-exposure therapy consisting of atropine and asoxime (also known as oxime HI-6). Their pretreatment effect was not significant, when administered alone, but in combination (acetylcholinesterase inhibitor such as denepezil or huperzine A with NMDA antagonist such as memantine or procyclidine) they lowered the soman toxicity more than twice. These combinations also positively influenced the efficacy of post-exposure treatment in a similar fashion; the combinations increased the therapeutic effectiveness of antidotal treatment. In conclusion, the most effective combination - huperzine A and procyclidine - lowered the toxicity three times and improved the post-exposure therapy efficacy more than six times. These results are unprecedented in the published literature.
Assuntos
Venenos , Soman , Camundongos , Animais , Inibidores da Colinesterase/toxicidade , Soman/toxicidade , Acetilcolinesterase/metabolismo , Receptores de N-Metil-D-Aspartato , Prociclidina/farmacologia , Memantina/uso terapêutico , Taxa de Sobrevida , Compostos de Piridínio/farmacologia , Antídotos/uso terapêutico , Atropina/uso terapêutico , Atropina/farmacologia , Oximas/uso terapêutico , Oximas/farmacologiaRESUMO
A growing demand for low-cost gas sensors capable of detecting the smallest amounts of highly toxic substances in air, including chemical warfare agents (CWAs) and toxic industrial chemicals (TICs), has emerged in recent years. Ion mobility spectrometers (IMS) are particularly suitable for this application due to their high sensitivity and fast response times. In view of the preferred mobile use of such devices, miniaturized ion drift tubes are required as the core of IMS-based lightweight, low-cost, hand-held gas detectors. Thus, we evaluate the suitability of a miniaturized ion mobility spectrometer featuring an ion drift tube length of just 40 mm and a high resolving power of Rp = 60 for the detection of various CWAs, such as nerve agents sarin (GB), tabun (GA), soman (GD), and cyclosarin (GF), as well as the blister agent sulfur mustard (HD), the blood agent hydrogen cyanide (AC) and the choking agent chlorine (CL). We report on the limits of detection reaching minimum concentration levels of, for instance, 29 pptv for sarin (GB) within an averaging time of only 1 s. Furthermore, we investigate the effects of precursors, simulants, and other common interfering substances on false positive alarms.
Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Agentes Neurotóxicos , Soman , Substâncias para a Guerra Química/análise , Sarina/química , Gás de Mostarda/análise , Soman/químicaRESUMO
Organophosphorus nerve agents (OPNAs) covalently bind to tyrosine 411 of human serum albumin (HSA) and the formed adducts are stable biomarkers of OPNA exposure. The detection of these adducts has been limited to mass spectrometry techniques combined with protein digestion. Here, we developed indirect competitive ELISA (icELISA) methods to verify OPNA exposure by the detection of OPNA-phosphonylated adducts at tyrosine 411 residue (OPNA-HSA adducts), in which monoclonal antibodies (mAbs) against phosphonylation sites at tyrosine 411 were introduced. The two mAbs were prepared by the fourth generation of rabbit mAb technology using the phosphonylated peptides of LVRY(GD or VX)TKKVPQC as the haptens. These mAbs were screened using our developed competitive ELISA method and then selected based on their individual affinity and selectivity. As a result, we obtained two mAbs that recognized the HSA Tyr 411 adduct of GD (mAb-5G2) or VX (mAb-12B9), respectively. They shared the highest affinity exhibiting a Kd value of about 10-6 mol/L of the OPNA exposure concentration. They also had remarkable selectivity, which could especially recognize their individual OPNA-HSA adducts in a native state but did not recognize other OPNA-HSAs and unadducted HSAs. Especially for mAb-12B9, it could clearly distinguish VX-HSA and GB-HSA between which there was only one alkyl difference in their phosphonyl portion of the adducted sites. The two mAbs were then used to build the icELISA method for analysis of the serum samples exposed to OPNA. It was found that the detectable lowest GD- and VX-exposed concentrations in serum samples were respectively 1.0 × 10-6 mol/L and 10.0 × 10-6 mol/L. This study provides one novel approach and strategy for the retrospective detection of OPNA exposure, and the two mAbs have great potential to be extended for point-of-care testing of OPNA intoxication.
Assuntos
Soman , Animais , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática , Compostos Organotiofosforados , Coelhos , Estudos RetrospectivosRESUMO
Prolonged seizures are a hallmark feature of intoxication with anticholinesterase nerve agents such as soman. While benzodiazepine drugs are typically used to control these seizures, studies in both rats and guinea pigs have shown that potent, centrally acting anticholinergic drugs such as scopolamine can also terminate such seizures. The present study was performed to determine if scopolamine could produce similar anticonvulsant effects in a nonhuman primate model of soman intoxication. Adult male African green monkeys, implanted with telemetry devices to record cortical electroencephalographic activity, were pretreated with pyridostigmine (0.02 mg/kg, intramuscularly [im]) and 40 min later challenged with 15 µg/kg (im) of the nerve agent soman. One min after soman exposure the animals were treated with atropine (0.4 mg/kg, im) and the oxime 2-PAM (25.7 mg/kg, im). One min after the start of seizure activity the animals were administered scopolamine (0.01-0.1 mg/kg, im), using an up-down dosing design over successive animals. Scopolamine was highly effective in stopping soman-induced seizures with an ED50 = 0.0312 mg/kg (0.021-0.047 mg/kg = 95% confidence limits). Seizure control was rapid, with all epileptiform activity stopping on average 21.7 min after scopolamine treatment. A separate pK study showed that scopolamine absorption peaked approximately 10 min after im administration and a dose of 0.032 mg/kg produced maximum plasma levels of 17.62 ng/ml. The results show that scopolamine exerts potent and rapid anticonvulsant action against soman-induced seizures and that it may serve as a valuable adjunct to current antidote treatments for nerve agent intoxication.
Assuntos
Agentes Neurotóxicos , Soman , Animais , Anticonvulsivantes/toxicidade , Chlorocebus aethiops , Inibidores da Colinesterase/toxicidade , Eletroencefalografia , Cobaias , Masculino , Agentes Neurotóxicos/toxicidade , Ratos , Escopolamina/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Soman/uso terapêutico , Soman/toxicidadeRESUMO
The G-type nerve agents, sarin (GB), soman (GD), and cyclosarin (GF), are among the most toxic compounds known. Much progress has been made in evolving the enzyme phosphotriesterase (PTE) from Pseudomonas diminuta for the decontamination of the G-agents; however, the extreme toxicity of the G-agents makes the use of substrate analogues necessary. Typical analogues utilize a chromogenic leaving group to facilitate high-throughput screening, and substitution of an O-methyl for the P-methyl group found in the G-agents, in an effort to reduce toxicity. Till date, there has been no systematic evaluation of the effects of these substitutions on catalytic activity, and the presumed reduction in toxicity has not been tested. A series of 21 G-agent analogues, including all combinations of O-methyl, p-nitrophenyl, and thiophosphate substitutions, have been synthesized and evaluated for their ability to unveil the stereoselectivity and catalytic activity of PTE variants against the authentic G-type nerve agents. The potential toxicity of these analogues was evaluated by measuring the rate of inactivation of acetylcholinesterase (AChE). All of the substitutions reduced inactivation of AChE by more than 100-fold, with the most effective being the thiophosphate analogues, which reduced the rate of inactivation by about 4-5 orders of magnitude. The analogues were found to reliably predict changes in catalytic activity and stereoselectivity of the PTE variants and led to the identification of the BHR-30 variant, which has no apparent stereoselectivity against GD and a kcat/Km of 1.4 × 106, making it the most efficient enzyme for GD decontamination reported till date.
Assuntos
Compostos Organofosforados/toxicidade , Sarina/análogos & derivados , Soman/análogos & derivados , Acetilcolinesterase/química , Catálise , Substâncias para a Guerra Química/química , Hidrólise , Agentes Neurotóxicos , Organofosfatos/química , Compostos Organofosforados/química , Compostos Organotiofosforados/química , Hidrolases de Triester Fosfórico/química , Sarina/química , Sarina/toxicidade , Soman/química , Soman/toxicidadeRESUMO
Position-specific isotope analysis (PSIA) by NMR spectroscopy is a technique that provides quantitative isotopic values for every site-a so-called isotopic fingerprint-of a compound of interest. The isotopic fingerprint can be used to link samples with a common origin or to attribute a synthetic chemical to its precursor source. Despite PSIA by NMR being a powerful tool in chemical forensics, it has not yet been applied on chemical warfare agents (CWAs). In this study, different batches of the CWA Soman were synthesized from three distinctive pinacolyl alcohols (PinOHs). Prior to NMR analysis, the Soman samples were hydrolyzed to the less toxic pinacolyl methylphosphonate (PMP), which is a common degradation product. The PinOHs and PMPs were applied to PSIA by 2H NMR experiments to measure the isotopic distribution of naturally abundant 2H within the pinacolyl moiety. By normalizing the 2H NMR peak areas, we show that the different PinOHs have unique intramolecular isotopic distributions. This normalization method makes the study independent of references and sample concentration. We also demonstrate, for the first time, that the isotopic fingerprint retrieved from PSIA by NMR remains stable during the production and degradation of the CWA. By comparing the intramolecular isotopic profiles of the precursor PinOH with the degradation product PMP, it is possible to attribute them to each other.