Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Development ; 147(17)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32816969

RESUMO

Identifying cell states during development from their mRNA profiles provides insight into their gene regulatory network. Here, we leverage the sea urchin embryo for its well-established gene regulatory network to interrogate the embryo using single cell RNA sequencing. We tested eight developmental stages in Strongylocentrotus purpuratus, from the eight-cell stage to late in gastrulation. We used these datasets to parse out 22 major cell states of the embryo, focusing on key transition stages for cell type specification of each germ layer. Subclustering of these major embryonic domains revealed over 50 cell states with distinct transcript profiles. Furthermore, we identified the transcript profile of two cell states expressing germ cell factors, one we conclude represents the primordial germ cells and the other state is transiently present during gastrulation. We hypothesize that these cells of the Veg2 tier of the early embryo represent a lineage that converts to the germ line when the primordial germ cells are deleted. This broad resource will hopefully enable the community to identify other cell states and genes of interest to expose the underpinning of developmental mechanisms.


Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , RNA-Seq , Análise de Célula Única , Strongylocentrotus purpuratus/embriologia , Animais , Embrião não Mamífero/citologia , Strongylocentrotus purpuratus/citologia
2.
Dev Biol ; 472: 98-114, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484703

RESUMO

microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Musculoesquelético/genética , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Feminino , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Fenótipo , Transdução de Sinais/genética , Strongylocentrotus purpuratus/metabolismo , Fatores de Transcrição/metabolismo
3.
Dev Biol ; 472: 85-97, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482173

RESUMO

We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-ß signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Regiões Promotoras Genéticas/genética , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR/genética , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Expressão Gênica , Técnicas de Inativação de Genes , Células Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética
4.
Dev Biol ; 460(2): 139-154, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816285

RESUMO

Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Lytechinus/embriologia , Transcriptoma/fisiologia , Animais , Strongylocentrotus purpuratus/embriologia
5.
Dev Biol ; 452(1): 34-42, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075220

RESUMO

Specification of the primordial germ cells (PGCs) is essential for sexually reproducing animals. Although the mechanisms of PGC specification are diverse between organisms, the RNA binding protein Nanos is consistently required in the germ line in all species tested. How Nanos is selectively expressed in the germ line, however, remains largely elusive. We report that in sea urchin embryos, the early expression of Nanos2 in the PGCs requires the maternal Wnt pathway. During gastrulation, however, Nanos2 expression expands into adjacent somatic mesodermal cells and this secondary Nanos expression instead requires Delta/Notch signaling through the forkhead family member FoxY. Each of these transcriptional regulators were tested by chromatin immunoprecipitation analysis and found to directly interact with a DNA locus upstream of Nanos2. Given the conserved importance of Nanos in germ line specification, and the derived character of the micromeres and small micromeres in the sea urchin, we propose that the ancestral mechanism of Nanos2 expression in echinoderms was by induction in mesodermal cells during gastrulation.


Assuntos
Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Ligação a RNA/metabolismo , Strongylocentrotus purpuratus/embriologia , Transcrição Gênica/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células Germinativas/citologia , Células Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Receptores Notch/metabolismo , Strongylocentrotus purpuratus/citologia
6.
Dev Dyn ; 248(12): 1273-1285, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515896

RESUMO

BACKGROUND: Embryonic cells and cancer cells share various cellular characteristics important for their functions. It has been thus proposed that similar mechanisms of regulation may be present in these otherwise disparate cell types. RESULTS: To explore how regulative embryonic cells are fundamentally different from cancerous cells, we report here that a fine balance of a tumor suppressor protein Retinoblastoma1 (Rb1) and a germline factor Vasa are important for proper cell proliferation and differentiation of the somatic cells during embryogenesis of the sea urchin. Rb1 knockdown blocked embryonic development and induced Vasa accumulation in the entire embryo, while its overexpression resulted in a smaller-sized embryo with differentiated body structures. These results suggest that a titrated level of Rb1 protein may be essential for a proper balance of cell proliferation and differentiation during development. Vasa knockdown or overexpression, on the other hand, reduced or increased Rb1 protein expression, respectively. CONCLUSIONS: Taken together, it appears that Vasa protein positively regulates Rb1 protein while Rb1 protein negatively regulates Vasa protein, balancing the act of these two antagonistic molecules in somatic cells. This mechanism may provide a fine control of cell proliferation and differentiation, which is essential for regulative embryonic development.


Assuntos
Desenvolvimento Embrionário/genética , Proteína do Retinoblastoma/fisiologia , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor/fisiologia , Células Germinativas/metabolismo , Proteína do Retinoblastoma/genética , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética
7.
Dev Biol ; 441(1): 19-30, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958898

RESUMO

Light inducible protein-protein interactions have been used to manipulate protein localization and function in the cell with utmost spatial and temporal precision. In this technical report, we use a recently developed optogenetic approach to manipulate protein localization in the developing sea urchin embryo. A photosensitive LOV domain from Avena sativa phototropin1 cages a small peptide that binds the engineered PDZ domain (ePDZ) upon blue light irradiation. Using this system, mCherry tagged proteins fused with the LOV domain were recruited to ectopic sub-cellular regions such as the membrane, microtubules, or actin by GFP tagged proteins fused with the ePDZ domain upon blue light irradiation within 1-3 min in the sea urchin embryo. The efficiency and speed of recruitment of each protein to its respective subcellular region appeared to be dependent on the power and duration of laser irradiation, as well as the respective level of affinity to the tagged location. Controlled laser irradiation allowed partial recruitment of the spindle to the membrane, and resulted in cell blebbing. Vasa, a cell cycle and germline factor that localizes on the spindle and enriches in the micromeres at 8-16 cell stage was recruited to ectopic sites, preventing normal enrichment. Continuous blue light activation with a regular blue aquarium light over two days of culture successfully induced LOV-ePDZ binding in the developing embryos, resulting in continued ectopic recruitment of Vasa and failure in gastrulation at Day 2. Although some cytotoxicity was observed with prolonged blue light irradiation, this optogenetic system provides a promising approach to test the sub-cellular activities of developmental factors, as well as to alter protein localization and development during embryogenesis.


Assuntos
Animais Geneticamente Modificados/embriologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Optogenética/métodos , Strongylocentrotus purpuratus/embriologia , Animais , Animais Geneticamente Modificados/genética , Avena/genética , Fototropinas/biossíntese , Fototropinas/genética , Strongylocentrotus purpuratus/genética
8.
Development ; 143(9): 1523-33, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26952978

RESUMO

Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Placa Neural/embriologia , Strongylocentrotus purpuratus/embriologia , Animais , Blástula/embriologia , Padronização Corporal/fisiologia , Proteínas do Olho/biossíntese , Proteínas de Homeodomínio/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/biossíntese , Proteínas/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Proteína Homeobox SIX3
9.
Dev Biol ; 430(1): 202-213, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780048

RESUMO

Embryonic development evolves by balancing stringent morphological constraints with genetic and environmental variation. The design principle that allows developmental transcriptional programs to conserve embryonic morphology while adapting to environmental changes is still not fully understood. To address this fundamental challenge, we compare developmental transcriptomes of two sea urchin species, Paracentrotus lividus and Strongylocentrotus purpuratus, that shared a common ancestor about 40 million years ago and are geographically distant yet show similar morphology. We find that both developmental and housekeeping genes show highly dynamic and strongly conserved temporal expression patterns. The expression of other gene sets, including homeostasis and response genes, show divergent expression which could result from either evolutionary drift or adaptation to local environmental conditions. The interspecies correlations of developmental gene expressions are highest between morphologically similar developmental time points whereas the interspecies correlations of housekeeping gene expression are high between all the late zygotic time points. Relatedly, the position of the phylotypic stage varies between these two groups of genes: developmental gene expression shows highest conservation at mid-developmental stage, in agreement with the hourglass model while the conservation of housekeeping genes keeps increasing with developmental time. When all genes are combined, the relationship between conservation of gene expression and morphological similarity is partially masked by housekeeping genes and genes with diverged expression. Our study illustrates various transcriptional programs that coexist in the developing embryo and evolve under different constraints. Apparently, morphological constraints underlie the conservation of developmental gene expression while embryonic fitness requires the conservation of housekeeping gene expression and the species-specific adjustments of homeostasis gene expression. The distinct evolutionary forces acting on these transcriptional programs enable the conservation of similar body plans while allowing adaption.


Assuntos
Adaptação Fisiológica/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Transcrição Gênica , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Genes Essenciais , Homeostase/genética , Cinética , Filogenia , Análise de Componente Principal , Especificidade da Espécie , Fatores de Tempo
10.
Development ; 142(11): 1960-70, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977366

RESUMO

Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Germinativas/metabolismo , Biossíntese de Proteínas , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/enzimologia , Animais , Divisão Celular , Linhagem da Célula/genética , Reprogramação Celular , RNA Helicases DEAD-box/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Carioferinas/metabolismo , Larva/genética , Modelos Biológicos , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fuso Acromático/metabolismo , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Cicatrização
11.
Proc Natl Acad Sci U S A ; 112(30): E4075-84, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170318

RESUMO

Evolution of animal body plans occurs with changes in the encoded genomic programs that direct development, by alterations in the structure of encoded developmental gene-regulatory networks (GRNs). However, study of this most fundamental of evolutionary processes requires experimentally tractable, phylogenetically divergent organisms that differ morphologically while belonging to the same monophyletic clade, plus knowledge of the relevant GRNs operating in at least one of the species. These conditions are met in the divergent embryogenesis of the two extant, morphologically distinct, echinoid (sea urchin) subclasses, Euechinoidea and Cidaroidea, which diverged from a common late Paleozoic ancestor. Here we focus on striking differences in the mode of embryonic skeletogenesis in a euechinoid, the well-known model Strongylocentrotus purpuratus (Sp), vs. the cidaroid Eucidaris tribuloides (Et). At the level of descriptive embryology, skeletogenesis in Sp and Et has long been known to occur by distinct means. The complete GRN controlling this process is known for Sp. We carried out targeted functional analyses on Et skeletogenesis to identify the presence, or demonstrate the absence, of specific regulatory linkages and subcircuits key to the operation of the Sp skeletogenic GRN. Remarkably, most of the canonical design features of the Sp skeletogenic GRN that we examined are either missing or operate differently in Et. This work directly implies a dramatic reorganization of genomic regulatory circuitry concomitant with the divergence of the euechinoids, which began before the end-Permian extinction.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Strongylocentrotus purpuratus/embriologia , Animais , Diferenciação Celular , Proteínas de Fluorescência Verde/metabolismo , Mesoderma/metabolismo , Oligonucleotídeos , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/metabolismo
12.
PLoS Genet ; 11(7): e1005435, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26230518

RESUMO

Accurate temporal control of gene expression is essential for normal development and must be robust to natural genetic and environmental variation. Studying gene expression variation within and between related species can delineate the level of expression variability that development can tolerate. Here we exploit the comprehensive model of sea urchin gene regulatory networks and generate high-density expression profiles of key regulatory genes of the Mediterranean sea urchin, Paracentrotus lividus (Pl). The high resolution of our studies reveals highly reproducible gene initiation times that have lower variation than those of maximal mRNA levels between different individuals of the same species. This observation supports a threshold behavior of gene activation that is less sensitive to input concentrations. We then compare Mediterranean sea urchin gene expression profiles to those of its Pacific Ocean relative, Strongylocentrotus purpuratus (Sp). These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our comparative analyses of five regulatory circuits operating in different embryonic territories reveal a high conservation of the temporal order of gene activation but also some cases of divergence. A linear ratio of 1.3-fold between gene initiation times in Pl and Sp is partially explained by scaling of the developmental rates with temperature. Scaling the developmental rates according to the estimated Sp-Pl ratio and normalizing the expression levels reveals a striking conservation of relative dynamics of gene expression between the species. Overall, our findings demonstrate the ability of biological developmental systems to tightly control the timing of gene activation and relative dynamics and overcome expression noise induced by genetic variation and growth conditions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Paracentrotus/embriologia , Strongylocentrotus purpuratus/embriologia , Ativação Transcricional/genética , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Variação Genética , Paracentrotus/genética , RNA Mensageiro/genética , Strongylocentrotus purpuratus/genética
13.
Differentiation ; 95: 31-43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28188999

RESUMO

The small GTPase Arf6 is a conserved protein that is expressed in all metazoans. Arf6 remodels cytoskeletal actin and mediates membrane protein trafficking between the plasma membrane in its active form and endosomal compartments in its inactive form. While a rich knowledge exists for the cellular functions of Arf6, relatively little is known about its physiological role in development. This study examines the function of Arf6 in mediating cellular morphogenesis in early development. We dissect the function of Arf6 with a loss-of-function morpholino and constitutively active Arf6-Q67L construct. We focus on the two cell types that undergo active directed migration: the primary mesenchyme cells (PMCs) that give rise to the sea urchin skeleton and endodermal cells that form the gut. Our results indicate that Arf6 plays an important role in skeleton formation and PMC migration, in part due to its ability to remodel actin. We also found that embryos injected with Arf6 morpholino have gastrulation defects and embryos injected with constitutively active Arf6 have endodermal cells detached from the gut epithelium with decreased junctional cadherin staining, indicating that Arf6 may mediate the recycling of cadherin. Thus, Arf6 impacts cells that undergo coordinated movement to form embryonic structures in the developing embryo.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Morfogênese , Strongylocentrotus purpuratus/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Caderinas/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Strongylocentrotus purpuratus/embriologia
14.
Dev Dyn ; 246(12): 1036-1046, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28857338

RESUMO

BACKGROUND: A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. RESULTS: In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. CONCLUSIONS: These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Sistemas CRISPR-Cas , Embrião não Mamífero/embriologia , Edição de Genes/métodos , Strongylocentrotus purpuratus , Animais , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética
15.
Dev Biol ; 416(1): 149-161, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265865

RESUMO

E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Leucopoese , Strongylocentrotus purpuratus/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Blástula/citologia , Blástula/embriologia , Sequência Conservada , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas , Células-Tronco , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia
16.
Dev Biol ; 418(1): 146-156, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27424271

RESUMO

Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability.


Assuntos
Células Germinativas/metabolismo , Fases de Leitura Aberta/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Strongylocentrotus purpuratus/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Morfolinos , Biossíntese de Proteínas/genética , Estabilidade Proteica , RNA Mensageiro/biossíntese , Estrelas-do-Mar/embriologia , Sumoilação , Ubiquitinação
17.
Development ; 141(16): 3134-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25100654

RESUMO

A crucial event in animal development is the specification of primordial germ cells (PGCs), which become the stem cells that create sperm and eggs. How PGCs are created provides a valuable paradigm for understanding stem cells in general. We find that the PGCs of the sea urchin Strongylocentrotus purpuratus exhibit broad transcriptional repression, yet enrichment for a set of inherited mRNAs. Enrichment of several germline determinants in the PGCs requires the RNA-binding protein Nanos to target the transcript that encodes CNOT6, a deadenylase, for degradation in the PGCs, thereby creating a stable environment for RNA. Misexpression of CNOT6 in the PGCs results in their failure to retain Seawi transcripts and Vasa protein. Conversely, broad knockdown of CNOT6 expands the domain of Seawi RNA as well as exogenous reporters. Thus, Nanos-dependent spatially restricted CNOT6 differential expression is used to selectively localize germline RNAs to the PGCs. Our findings support a 'time capsule' model of germline determination, whereby the PGCs are insulated from differentiation by retaining the molecular characteristics of the totipotent egg and early embryo.


Assuntos
Exorribonucleases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Strongylocentrotus purpuratus/embriologia , Animais , Sequência de Bases , Diferenciação Celular , Separação Celular , Citometria de Fluxo , Perfilação da Expressão Gênica , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Strongylocentrotus purpuratus/enzimologia , Fatores de Tempo , Transcriptoma
18.
Development ; 141(12): 2462-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850857

RESUMO

The anteroposterior patterning of the embryonic gut represents one of the most intriguing biological processes in development. A dynamic control of gene transcription regulation and cell movement is perfectly orchestrated to shape a functional gut in distinct specialized parts. Two ParaHox genes, Xlox and Cdx, play key roles in vertebrate and sea urchin gut patterning through molecular mechanisms that are still mostly unclear. Here, we have combined functional analysis methodologies with high-resolution imaging and RNA-seq to investigate Xlox and Cdx regulation and function. We reveal part of the regulatory machinery responsible for the onset of Xlox and Cdx transcription, uncover a Wnt10 signal that mediates Xlox repression in the intestinal cells, and provide evidence of Xlox- and Cdx-mediated control of stomach and intestine differentiation, respectively. Our findings offer a novel mechanistic explanation of how the control of transcription is linked to cell differentiation and morphogenesis for the development of a perfectly organized biological system such as the sea urchin larval gut.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Intestinos/embriologia , Proteína-Lisina 6-Oxidase/metabolismo , Strongylocentrotus purpuratus/embriologia , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mucosa Intestinal/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Estômago/embriologia , Strongylocentrotus purpuratus/genética
19.
Development ; 141(5): 1075-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550115

RESUMO

Apical constriction typically accompanies inward folding of an epithelial sheet. In recent years there has been progress in understanding mechanisms of apical constriction and their contribution to morphogenetic processes. Sea urchin embryos form a specialized region of ectoderm, the ciliary band, which is a strip of epithelium, three to five cells wide, encircling the oral ectoderm and functioning in larval swimming and feeding. Ciliary band cells exhibit distinctive apical-basal elongation, have narrow apices bearing a cilium, and are planar polarized, so that cilia beat away from the mouth. Here, we show that filamentous actin and phosphorylated myosin light chain are uniquely distributed in ciliary band cells. Inhibition of myosin phosphorylation or actin polymerization perturbs this distribution and blocks apical constriction. During ciliary band formation, Sp-Ephrin and Sp-Eph expression overlap in the presumptive ciliary band. Knockdown of Sp-Eph or Sp-Ephrin, or treatment with an Eph kinase inhibitor interferes with actomyosin networks, accumulation of phosphorylated FAK (pY(397)FAK), and apical constriction. The cytoplasmic domain of Sp-Eph, fused to GST and containing a single amino acid substitution reported as kinase dead, will pull down pY(397)FAK from embryo lysates. As well, pY(397)FAK colocalizes with Sp-Eph in a JNK-dependent, planar polarized manner on latitudinal apical junctions of the ciliary band and this polarization is dissociable from apical constriction. We propose that Sp-Eph and pY(397)FAK function together in an apical complex that is necessary for remodeling actomyosin to produce centripetal forces causing apical constriction. Morphogenesis of ciliary band cells is a unique example of apical constriction in which receptor-mediated cell shape change produces a strip of specialized tissue without an accompanying folding of epithelium.


Assuntos
Actomiosina/metabolismo , Efrinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Receptores da Família Eph/metabolismo , Strongylocentrotus purpuratus/embriologia , Animais , Polaridade Celular/genética , Polaridade Celular/fisiologia , Embrião não Mamífero/metabolismo , Efrinas/genética , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Masculino , Morfogênese/genética , Morfogênese/fisiologia , Receptores da Família Eph/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Nature ; 474(7353): 635-9, 2011 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-21623371

RESUMO

Specification of endoderm is the prerequisite for gut formation in the embryogenesis of bilaterian organisms. Modern lineage labelling studies have shown that in the sea urchin embryo model system, descendants of the veg1 and veg2 cell lineages produce the endoderm, and that the veg2 lineage also gives rise to mesodermal cell types. It is known that Wnt/ß-catenin signalling is required for endoderm specification and Delta/Notch signalling is required for mesoderm specification. Some direct cis-regulatory targets of these signals have been found and various phenomenological patterns of gene expression have been observed in the pre-gastrular endomesoderm. However, no comprehensive, causal explanation of endoderm specification has been conceived for sea urchins, nor for any other deuterostome. Here we propose a model, on the basis of the underlying genomic control system, that provides such an explanation, built at several levels of biological organization. The hardwired core of the control system consists of the cis-regulatory apparatus of endodermal regulatory genes, which determine the relationship between the inputs to which these genes are exposed and their outputs. The architecture of the network circuitry controlling the dynamic process of endoderm specification then explains, at the system level, a sequence of developmental logic operations, which generate the biological process. The control system initiates non-interacting endodermal and mesodermal gene regulatory networks in veg2-derived cells and extinguishes the endodermal gene regulatory network in mesodermal precursors. It also generates a cross-regulatory network that specifies future anterior endoderm in veg2 descendants and institutes a distinct network specifying posterior endoderm in veg1-derived cells. The network model provides an explanatory framework that relates endoderm specification to the genomic regulatory code.


Assuntos
Endoderma/embriologia , Redes Reguladoras de Genes/genética , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Animais , Padronização Corporal , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa