Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.211
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(10): 1294-1304, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38509349

RESUMO

Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.


Assuntos
Sulfeto de Hidrogênio , Neovascularização Patológica , Oxirredução , Animais , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Sulfeto de Hidrogênio/metabolismo , Humanos , Camundongos Knockout , Proliferação de Células , Células Endoteliais/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Angiogênese
2.
J Am Chem Soc ; 146(34): 24053-24060, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39136646

RESUMO

Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalization─installation of a covalent warhead─with mRNA display and showcases its application in targeted covalent ligand discovery.


Assuntos
RNA Mensageiro , RNA Mensageiro/antagonistas & inibidores , Ciclização , Sulfetos/química , Sulfetos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/síntese química , Sulfonas/química , Sulfonas/farmacologia , Descoberta de Drogas , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Estrutura Molecular
3.
Biochem Biophys Res Commun ; 699: 149562, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277726

RESUMO

Hydrogen sulfide (H2S) acts as a gas-signaling agent in various tissues. Although it has been reported that endogenous enzymes that generate H2S are expressed abundantly in the kidney, few reports examine cellular responses to H2S in renal tubular epithelial cells. In this study, we investigated the effects of NaHS, an H2S donor, and l-cysteine, a substrate for H2S production, on the principal cells of rat cortical collecting ducts (CCDs). NaHS increased the intracellular Ca2+ concentration ([Ca2+]i) in the principal cells. The removal of extracellular Ca2+ largely attenuated the [Ca2+]i response. The TRPV4 channel blocker significantly inhibited the effect of NaHS. Extracellular administration of l-cysteine also elicited a rise in [Ca2+]i. Prior treatment of CCDs with AOAA, an inhibitor of H2S production enzyme, l-cysteine-induced [Ca2+]i response was significantly reduced. These results suggest that not only exogenous H2S but also endogenously produced H2S triggers the extracellular influx pathway of Ca2+ in the principal cells of rat CCDs.


Assuntos
Sulfeto de Hidrogênio , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cisteína/metabolismo , Sulfetos/farmacologia , Transdução de Sinais
4.
BMC Plant Biol ; 24(1): 680, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020266

RESUMO

Hydrogen sulfide (H2S) has emerged as a novel endogenous gas signaling molecule, joining the ranks of nitric oxide (NO) and carbon monoxide (CO). Recent research has highlighted its involvement in various physiological processes, such as promoting root organogenesis, regulating stomatal movement and photosynthesis, and enhancing plant growth, development, and stress resistance. Tobacco, a significant cash crop crucial for farmers' economic income, relies heavily on root development to affect leaf growth, disease resistance, chemical composition, and yield. Despite its importance, there remains a scarcity of studies investigating the role of H2S in promoting tobacco growth. This study exposed tobacco seedlings to different concentrations of NaHS (an exogenous H2S donor) - 0, 200, 400, 600, and 800 mg/L. Results indicated a positive correlation between NaHS concentration and root length, wet weight, root activity, and antioxidant enzymatic activities (CAT, SOD, and POD) in tobacco roots. Transcriptomic and metabolomic analyses revealed that treatment with 600 mg/L NaHS significantly effected 162 key genes, 44 key enzymes, and two metabolic pathways (brassinosteroid synthesis and aspartate biosynthesis) in tobacco seedlings. The addition of exogenous NaHS not only promoted tobacco root development but also potentially reduced pesticide usage, contributing to a more sustainable ecological environment. Overall, this study sheds light on the primary metabolic pathways involved in tobacco root response to NaHS, offering new genetic insights for future investigations into plant root development.


Assuntos
Nicotiana , Raízes de Plantas , Sulfetos , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Sulfetos/farmacologia , Transcriptoma/efeitos dos fármacos , Metabolômica , Redes e Vias Metabólicas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
5.
Nitric Oxide ; 146: 19-23, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521487

RESUMO

The mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage. We will examine literature on the role of sulfide in hypoxia/ischemia, deep hibernation, and leigh syndrome patients, and present our recent data that support the neuroprotective effects of sulfide catabolism and persulfide production. When oxygen levels become low, hydrogen sulfide (H2S) accumulates in brain cells and impairs the ability of these cells to use the remaining, available oxygen to produce energy. In recent studies, we found that hibernating ground squirrels, which can withstand very low levels of oxygen, have high levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize hydrogen sulfide in the brain. Silencing SQOR increased the sensitivity of the brain of squirrels and mice to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury in mice. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological agents that scavenge sulfide and/or increase persulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to ischemic injury to the brain or spinal cord. Drugs that oxidize hydrogen sulfide and/or increase persulfide may prove to be an effective approach to the treatment of patients experiencing brain injury caused by oxygen deprivation or mitochondrial dysfunction.


Assuntos
Hibernação , Neuroproteção , Hibernação/fisiologia , Animais , Humanos , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Encéfalo/metabolismo , Camundongos , Sciuridae/metabolismo , Doença de Leigh/metabolismo , Quinona Redutases/metabolismo
6.
Langmuir ; 40(1): 604-613, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108826

RESUMO

Non-noble metal photothermal materials have recently attracted increasing attention as unique alternatives to noble metal-based ones due to advantages like earth abundance, cost-effectiveness, and large-scale application capability. In this study, hierarchical copper sulfide (CuS) nanostructures with tunable flower-like morphologies and dimensional sizes are prepared via a fatty amine-mediated one-pot polyol synthesis. In particular, the addition of fatty amines induces a significant decrease in the overall particle size and lamellar thickness, and their morphologies and sizes could be tuned using different types of fatty amines. The dense stacking of nanosheets with limited sizes in the form of such a unique hierarchical architecture facilitates the interactions of the electromagnetic fields between adjacent nanoplates and enables the creation of abundant hot-spot regions, thus, benefiting the enhanced second near-infrared (NIR-II) light absorptions. The optimized CuS nanoflowers exhibit a photothermal conversion efficiency of 37.6%, realizing a temperature increase of nearly 50 °C within 10 min under 1064 nm laser irradiations at a power density of 1 W cm-2. They also exhibit broad-spectrum antibacterial activity, rendering them promising candidates for combating a spectrum of bacterial infections. The present study offers a feasible strategy to generate nanosheet-based hierarchical CuS nanostructures and validates their promising use in photothermal conversion, which could find important use in NIR-II photothermal therapy.


Assuntos
Cobre , Nanoestruturas , Cobre/farmacologia , Cobre/química , Nanoestruturas/química , Sulfetos/farmacologia , Sulfetos/química , Antibacterianos/farmacologia , Aminas , Fototerapia
7.
Langmuir ; 40(28): 14346-14354, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953474

RESUMO

The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.


Assuntos
Antibacterianos , Dissulfetos , Ferro , Molibdênio , Sulfetos , Cicatrização , Molibdênio/química , Molibdênio/farmacologia , Cicatrização/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Animais , Dissulfetos/química , Dissulfetos/farmacologia , Ferro/química , Ferro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/química , Fototerapia , Testes de Sensibilidade Microbiana , Terapia Fototérmica , Compostos Ferrosos
8.
Physiol Plant ; 176(2): e14291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628053

RESUMO

Priming plants with chemical agents has been extensively investigated as a means for improving their tolerance to many biotic and abiotic stresses. Earlier, we showed that priming young avocado (Persea americana Mill cv. 'Hass') trees with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, improves the response of photosynthesis to simulated frost (cold followed by high light) conditions. In the current study, we performed a transcriptome analysis to gain insight into the molecular response of avocado 'Hass' leaves to frost, with or without NaHS priming. The analysis revealed 2144 (down-regulated) and 2064 (up-regulated) differentially expressed genes (DEGs) common to both non-primed and primed trees. Non-primed trees had 697 (down) and 559 (up) unique DEGs, while primed trees exhibited 1395 (down) and 1385 (up) unique DEGs. We focus on changes in the expression patterns of genes encoding proteins involved in photosynthesis, carbon cycle, protective functions, biosynthesis of isoprenoids and abscisic acid (ABA), as well as ABA-regulated genes. Notably, the differential expression results depict the enhanced response of primed trees to the frost and highlight gene expression changes unique to primed trees. Amongst these are up-regulated genes encoding pathogenesis-related proteins, heat shock proteins, enzymes for ABA metabolism, and ABA-induced transcription factors. Extending the priming experiments to field conditions, which showed a benefit to the physiology of trees following chilling, suggests that it can be a possible means to improve trees' response to cold stress under natural winter conditions.


Assuntos
Sulfeto de Hidrogênio , Persea , Persea/genética , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas
9.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759254

RESUMO

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Assuntos
Compostos de Bifenilo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Lignanas , Proteínas de Sinalização YAP , Humanos , Lignanas/farmacologia , Lignanas/química , Lignanas/síntese química , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Proteínas de Sinalização YAP/metabolismo , Estrutura Molecular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Sulfetos/síntese química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Alílicos , Fenóis
10.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880546

RESUMO

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Assuntos
Sulfeto de Hidrogênio , Miócitos Cardíacos , Sulfetos , Remodelação Ventricular , Animais , Miócitos Cardíacos/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Células Cultivadas , Trifosfato de Adenosina/metabolismo , Ratos , Atrofia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Animais Recém-Nascidos , Ratos Sprague-Dawley
11.
J Pharmacol Sci ; 155(3): 113-120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797535

RESUMO

Reactive sulfur species including sulfides, polysulfides and cysteine hydropersulfide play extensive roles in health and disease, which involve modification of protein functions through the interaction with metals bound to the proteins, cleavage of cysteine disulfide (S-S) bonds and S-persulfidation of cysteine residues. Sulfides over a wide micromolar concentration range enhance the activity of Cav3.2 T-type Ca2+ channels by eliminating Zn2+ bound to the channels, thereby promoting somatic and visceral pain. Cav3.2 is under inhibition by Zn2+ in physiological conditions, so that sulfides function to reboot Cav3.2 from Zn2+ inhibition and increase the excitability of nociceptors. On the other hand, polysulfides generated from sulfides activate TRPA1 channels via cysteine S-persulfidation, thereby facilitating somatic, but not visceral, pain. Thus, Cav3.2 function enhancement by sulfides and TRPA1 activation by polysulfides, synergistically accelerate somatic pain signals. The increased activity of the sulfide/Cav3.2 system, in particular, appears to have a great impact on pathological pain, and may thus serve as a therapeutic target for treatment of neuropathic and inflammatory pain including visceral pain.


Assuntos
Canais de Cálcio Tipo T , Sulfetos , Canal de Cátion TRPA1 , Sulfetos/farmacologia , Canal de Cátion TRPA1/metabolismo , Humanos , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/fisiologia , Animais , Zinco/metabolismo , Dor/metabolismo , Dor/tratamento farmacológico , Nociceptores/metabolismo , Nociceptores/efeitos dos fármacos
12.
J Pharmacol Sci ; 155(4): 131-139, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880547

RESUMO

Elevation of the homocysteine concentration in the plasma called hyperhomocysteinemia (hHCY) during pregnancy causes a number of pre- and postnatal developmental disorders. The aim of our study was to analyze the effects of H2S donors -NaHS and N-acetylcysteine (NAC) on blood-brain barrier (BBB) permeability in rats with prenatal hHCY. In rats with mild hHCY BBB permeability assessed by Evans Blue extravasation in brain increased markedly throughout life. Administration of NaHS or NAC during pregnancy attenuated hHCY-associated damage and increased endogenous concentrations of sulfides in brain tissues. Acute application of dl-homocysteine thiolactone induced BBB leakage, which was prevented by the NMDA receptor antagonist MK-801 or H2S donors. Rats with hHCY demonstrated high levels of NO metabolite - nitrites and proinflammatory cytokines (IL-1ß, TNF-α, IL-6) in brain. Lactate dehydrogenase (LDH) activity in the serum was higher in rats with hHCY. Mitochondrial complex-I activity was lower in brain of hHCY rats. NaHS treatment during pregnancy restored levels of proinflammatory cytokines, nitrites and activity of the respiratory chain complex in brain as well as the LDH activity in serum. Our data suggest that H2S has neuroprotective effects against prenatal hHCY-associated BBB disturbance providing a potential strategy for the prevention of developmental impairments in newborns.


Assuntos
Acetilcisteína , Barreira Hematoencefálica , Citocinas , Sulfeto de Hidrogênio , Hiper-Homocisteinemia , Fármacos Neuroprotetores , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Gravidez , Hiper-Homocisteinemia/metabolismo , Feminino , Sulfeto de Hidrogênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Acetilcisteína/farmacologia , Citocinas/metabolismo , Homocisteína/sangue , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Ratos Wistar , Sulfetos/farmacologia , Sulfetos/administração & dosagem , Ratos , Masculino , Complicações na Gravidez , Encéfalo/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/sangue , Permeabilidade , Nitritos/metabolismo , Nitritos/sangue
13.
J Pharmacol Sci ; 156(2): 69-76, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179336

RESUMO

Despite the widespread recognition of the global concern regarding the onset of cardiovascular diseases in a significant number of patients following cancer treatment, definitive strategies for prevention and treatment remain elusive. In this study, we established systems to evaluate the influence of anti-cancer drugs on the quality control of mitochondria, pivotal for energy metabolism, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor used for treatment in lung cancer, reportedly increases the risk of cardiovascular disease. However, its underlying mechanism is largely unknown. Here, we found that the treatment of hiPSC-CMs with osimertinib and doxorubicin, but not trastuzumab and cisplatin, revealed a concentration-dependent impairment of respiratory function accompanied by mitochondrial fission. We previously reported the significant role of sulfur metabolism in maintaining mitochondrial quality in the heart. Co-treatment with various inorganic sulfur donors (Na2S, Na2S2, Na2S3) alongside anti-cancer drugs demonstrated that Na2S attenuated the cardiotoxicity of osimertinib but not doxorubicin. Osimertinib decreased intracellular reduced sulfur levels, while Na2S treatment suppressed the sulfur leakage, suggesting its potential in mitigating osimertinib-induced cardiotoxicity. These results imply the prospect of inorganic sulfides, such as Na2S, as a seed for precision pharmacotherapy to alleviate osimertinib's cardiotoxic effects.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Doxorrubicina , Células-Tronco Pluripotentes Induzidas , Mitocôndrias , Miócitos Cardíacos , Sulfetos , Humanos , Acrilamidas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Compostos de Anilina/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Doxorrubicina/efeitos adversos , Sulfetos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Células Cultivadas , Dinâmica Mitocondrial/efeitos dos fármacos , Enxofre , Indóis , Pirimidinas
14.
Mol Biol Rep ; 51(1): 916, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158746

RESUMO

INTRODUCTION: In end stage renal disease )ESRD(, reduced EPO production resulted in decreased oxygen diffusion that cause Hypoxia-inducible factors (HIFs) stabilization. The mechanism of beneficial effects of H2S in chronic kidney disease (CKD) is the aim of the present study to examine the effects of the H2S donor sodium hydrosulfide (NaHS) on renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein in 5/6 nephrectomy-induced chronic renal failure in rats. METHODS AND MATERIALS: Male rats were assigned into 3 groups (n = 8): Sham, CKD and NaHS groups. In the CKD group, 5/6 nephrectomy was performed. In the sham group, rats were anesthetized but 5/6 nephrectomy was not induced. In the NaHS group, 30 µmol/L of NaHS in drinking water for 8 weeks was adminstrated 4 weeks after 5/6 nephrectomy induction. At the end of the 12 week, blood and renal tissues were taken to evaluate renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein. RESULTS: The induction of 5/6 nephrectomy significantly caused renal dysfunction, oxidative stress, increased HIF-2α gene expression and decreased erythropoietin levels in renal tissue samples. NaHS administration resulted in a marked improvement in renal function and oxidative stress indicators, a marked reduction in HIF-2α gene expression as well as an increase in erythropoietin protein levels in comparison with the CKD group. CONCLUSION: In this study, regional hypoxia and oxidative stress in CKD, may cause the stabilization of the HIFs complexes, although erythropoietin synthesis was not increased due to destructive effects of CKD on the kidney tissues. Administration of NaHS caused up-regulating HIF-erythropoietin signaling pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Eritropoetina , Sulfeto de Hidrogênio , Nefrectomia , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Eritropoetina/genética , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Masculino , Ratos , Sulfeto de Hidrogênio/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estresse Oxidativo/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Sulfetos/farmacologia , Modelos Animais de Doenças
15.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 59-68, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814234

RESUMO

Development of novel functional foods is trending as one of the hot topics in food science and food/beverage industries. In the present study, the anti-diabetic, anti-hyperlipidemic and histo-protective effects of the extra virgin olive oil (EVOO) enriched with the organosulfur diallyl sulfide (DAS) (DAS-rich EVOO) were evaluated in alloxan-induced diabetic mice. The ingestion of EVOO (500µL daily for two weeks) attenuated alloxan-induced elevated glucose, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, lactate dehydrogenase (LDH), urea and creatinine. It also normalized the levels of triglycerides (TG), total cholesterols (TC), low-density lipoprotein-cholesterol (LDL-c) and their consequent atherogenic index of plasma (AIP) in diabetic animals. Additionally, EVOO prevented lipid peroxidation (MDA) and reduced the level of hydrogen peroxide (H2O2) in diabetic animals. Concomitantly, it enhanced the activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), reducing thereby tissue oxidative stress injury. The overall histologic (pancreas, liver, and kidney) alterations were also improved after EVOO ingestion. The manifest anti-diabetic, lipid-lowering and histo-protective properties of EVOO were markedly potentiated with DAS-rich EVOO suggesting possible synergistic interactions between DAS and EVOO lipophilic bioactive ingredients. Overall, EVOO and DAS-rich EVOO show promise as functional foods and/or adjuvants for the treatment of diabetes and its complications.


Assuntos
Compostos Alílicos , Diabetes Mellitus Experimental , Hipoglicemiantes , Hipolipemiantes , Azeite de Oliva , Sulfetos , Animais , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Compostos Alílicos/farmacologia , Compostos Alílicos/uso terapêutico , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Sulfetos/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos , Hipolipemiantes/farmacologia , Masculino , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxido Dismutase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Triglicerídeos/sangue , Triglicerídeos/metabolismo
16.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38126104

RESUMO

AIM: To assess the effectiveness of Bacillus subtilis strain LN8B as a biocollector for recovering pyrite (Py) and chalcopyrite (CPy) in both seawater (Sw) and deionized water (Dw), and to explore the underlying adhesion mechanism in these bioflotation experiments. MATERIALS AND METHODS: The bioflotation test utilized B. subtilis strain LN8B as the biocollector through microflotation experiments. Additionally, frother methyl isobutyl carbinol (MIBC) and conventional collector potassium amyl xanthate (PAX) were introduced in some experiments. The zeta potential (ZP) and Fourier-transform infrared spectroscopy (FTIR) was employed to explore the adhesion mechanism of Py and CPy interacting with the biocollector in Sw and Dw. The adaptability of the B. subtilis strain to different water types and salinities was assessed through growth curves measuring optical density. Finally, antibiotic susceptibility tests were conducted to evaluate potential risks of the biocollector. RESULTS: Superior outcomes were observed in Sw where Py and CPy recovery was ∼39.3% ± 7.7% and 41.1% ± 5.8%, respectively, without microorganisms' presence. However, B. subtilis LN8B potentiate Py and CPy recovery, reaching 72.8% ± 4.9% and 84.6% ± 1.5%, respectively. When MIBC was added, only the Py recovery was improved (89.4% ± 3.6%), depicting an adverse effect for CPy (81.8% ± 1.1%). ZP measurements indicated increased mineral surface hydrophobicity when Py and CPy interacted with the biocollector in both Sw and Dw. FTIR revealed the presence of protein-related amide peaks, highlighting the hydrophobic nature of the bacterium. The adaptability of this strain to diverse water types and salinities was assessed, demonstrating remarkable growth versatility. Antibiotic susceptibility tests indicated that B. subtilis LN8B was susceptible to 23 of the 25 antibiotics examined, suggesting it poses minimal environmental risks. CONCLUSIONS: The study substantiates the biotechnological promise of B. subtilis strain LN8B as an efficient sulfide collector for promoting cleaner mineral production. This effectiveness is attributed to its ability to induce mineral surface hydrophobicity, a result of the distinct characteristics of proteins within its cell wall.


Assuntos
Bacillus subtilis , Cobre , Ferro , Minerais , Bacillus subtilis/metabolismo , Água do Mar , Sulfetos/farmacologia , Sulfetos/metabolismo , Água/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
17.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587815

RESUMO

AIMS: Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS: The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION: This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.


Assuntos
Acetatos , Antibacterianos , Biofilmes , Cefoperazona , Ciclopropanos , Pseudomonas aeruginosa , Quinolinas , Percepção de Quorum , Sulfetos , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sulfetos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Acetatos/farmacologia , Quinolinas/farmacologia , Ciclopropanos/farmacologia , Cefoperazona/farmacologia , Testes de Sensibilidade Microbiana , Piocianina/metabolismo , Ciprofloxacina/farmacologia , Quinolonas/farmacologia
18.
Biotechnol Appl Biochem ; 71(4): 960-973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764255

RESUMO

The effects of 180, 210, and 230°C reaction temperatures on the structural and magnetic properties of synthesized iron sulfide nanoparticles were studied. The Rietveld refinement analysis result of the X-ray diffraction data indicated that greigite was the dominant phase in all samples. The sample was prepared at 210°C for 18 h and had a greater wt% ratio of the greigite phase. The crystallite and particle sizes increased with increasing reaction temperatures. Scanning electron microscope images confirmed the presence of aggregation of synthesized rod-shaped nanoparticles. The magnetic hysteresis curves of all samples showed ferromagnetic behavior at room temperature. The magnetic saturation of three samples increases with increased reaction temperature, but the coercive force has the opposite behavior. Antioxidant activity and cytotoxicity of the sample synthesized at 210°C were investigated. This sample killed cancer cells at relatively moderate and high concentrations with high viability of normal cells, demonstrating the sample's suitability for use in killing cancer cells while avoiding normal cells.


Assuntos
Antioxidantes , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química , Tamanho da Partícula , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Sulfetos/química , Sulfetos/farmacologia
19.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914787

RESUMO

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Assuntos
Parede Celular , Temperatura Baixa , Metabolismo Energético , Frutas , Sulfeto de Hidrogênio , Solanum lycopersicum , Parede Celular/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Frutas/metabolismo , Frutas/genética , Frutas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Armazenamento de Alimentos/métodos , Sulfetos/farmacologia , Sulfetos/metabolismo
20.
Curr Microbiol ; 81(8): 245, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940852

RESUMO

Garlic (Allium sativum L.), particularly its volatile essential oil, is widely recognized for medicinal properties. We have evaluated the efficacy of Indian Garlic Essential Oil (GEO) for antimicrobial and antibiofilm activity and its bioactive constituents. Allyl sulfur-rich compounds were identified as predominant phytochemicals in GEO, constituting 96.51% of total volatile oils, with 38% Diallyl trisulphide (DTS) as most abundant. GEO exhibited significant antibacterial activity against eleven bacteria, including three drug-resistant strains with minimum inhibitory concentrations (MICs) ranging from 78 to 1250 µg/mL. In bacterial growth kinetic assay GEO effectively inhibited growth of all tested strains at its ½ MIC. Antibiofilm activity was evident against two important human pathogens, S. aureus and P. aeruginosa. Mechanistic studies demonstrated that GEO disrupts bacterial cell membranes, leading to the release of nucleic acids, proteins, and reactive oxygen species. Additionally, GEO demonstrated potent antioxidant activity at IC50 31.18 mg/mL, while its isolated constituents, Diallyl disulphide (DDS) and Diallyl trisulphide (DTS), showed effective antibacterial activity ranging from 125 to 500 µg/mL and 250-1000 µg/mL respectively. Overall, GEO displayed promising antimicrobial and antibiofilm activity against enteric bacteria, suggesting its potential application in the food industry.


Assuntos
Antibacterianos , Antioxidantes , Biofilmes , Alho , Testes de Sensibilidade Microbiana , Óleos Voláteis , Alho/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Compostos Alílicos/farmacologia , Compostos Alílicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Sulfetos/farmacologia , Bactérias/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Dissulfetos/farmacologia , Índia , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa