Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(3): 1059-1064, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593566

RESUMO

The vast complexity of native heteromeric K+ channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K+ channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this "zone of ignorance" in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from Conus radiatus precisely targets "asymmetric" Kv channels composed of three Kv1.2 subunits and one Kv1.1 or Kv1.6 subunit with 100-fold higher apparent affinity compared with homomeric Kv1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional Kv1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative Kv1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by (i) covalent linkage of members of the mammalian Shaker-related Kv1 family to Kv1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K+ channel-mediated currents in heterologous expression systems; (ii) molecular dynamics simulations of asymmetric Kv1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and (iii) evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric Kv channel complexes that operate in native tissues.


Assuntos
Conotoxinas , Gânglios Espinais , Potenciais da Membrana , Simulação de Dinâmica Molecular , Neurônios , Superfamília Shaker de Canais de Potássio , Conotoxinas/química , Conotoxinas/metabolismo , Gânglios Espinais/química , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Transporte de Íons , Neurônios/química , Neurônios/metabolismo , Ligação Proteica , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(37): 18700-18709, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444298

RESUMO

Voltage-dependent potassium channels (Kvs) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K+-selective pore. Animal toxins targeting Kvs are classified as pore blockers, which physically plug the ion conduction pathway, or as gating modifiers, which disrupt voltage sensor movements. A third group of toxins blocks K+ conduction by an unknown mechanism via binding to the channel turrets. Here, we show that Conkunitzin-S1 (Cs1), a peptide toxin isolated from cone snail venom, binds at the turrets of Kv1.2 and targets a network of hydrogen bonds that govern water access to the peripheral cavities that surround the central pore. The resulting ectopic water flow triggers an asymmetric collapse of the pore by a process resembling that of inherent slow inactivation. Pore modulation by animal toxins exposes the peripheral cavity of K+ channels as a novel pharmacological target and provides a rational framework for drug design.


Assuntos
Membrana Celular/efeitos dos fármacos , Proteínas de Drosophila/antagonistas & inibidores , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio Kv1.2/antagonistas & inibidores , Venenos de Moluscos/toxicidade , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Animais , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Proteínas de Drosophila/metabolismo , Desenho de Fármacos , Feminino , Ligação de Hidrogênio/efeitos dos fármacos , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/isolamento & purificação , Canal de Potássio Kv1.2/metabolismo , Dose Letal Mediana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Venenos de Moluscos/química , Mutação , Oócitos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/isolamento & purificação , Superfamília Shaker de Canais de Potássio/metabolismo , Água/química , Água/metabolismo , Xenopus laevis
3.
J Neurophysiol ; 125(5): 2000-2012, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881911

RESUMO

This study demonstrates that the action potential discharge in vagal afferent A-fiber neurons is about 20 times more sensitive to the rate of membrane depolarization compared to C-fiber neurons. The sensitivity of action potential generation to the depolarization rate in vagal sensory neurons is independent of the intensity of current stimuli but nearly abrogated by inhibiting the D-type potassium channel. These findings help better understand the mechanisms that control the activation of vagal afferent nerves.


Assuntos
Potenciais de Ação/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/fisiologia , Gânglio Nodoso/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores
4.
Mar Drugs ; 18(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823677

RESUMO

Recently, Conorfamide-Sr3 (CNF-Sr3) was isolated from the venom of Conus spurius and was demonstrated to have an inhibitory concentration-dependent effect on the Shaker K+ channel. The voltage-gated potassium channels play critical functions on cellular signaling, from the regeneration of action potentials in neurons to the regulation of insulin secretion in pancreatic cells, among others. In mammals, there are at least 40 genes encoding voltage-gated K+ channels and the process of expression of some of them may include alternative splicing. Given the enormous variety of these channels and the proven use of conotoxins as tools to distinguish different ligand- and voltage-gated ion channels, in this work, we explored the possible effect of CNF-Sr3 on four human voltage-gated K+ channel subtypes homologous to the Shaker channel. CNF-Sr3 showed a 10 times higher affinity for the Kv1.6 subtype with respect to Kv1.3 (IC50 = 2.7 and 24 µM, respectively) and no significant effect on Kv1.4 and Kv1.5 at 10 µM. Thus, CNF-Sr3 might become a novel molecular probe to study diverse aspects of human Kv1.3 and Kv1.6 channels.


Assuntos
Venenos de Moluscos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Animais , Caramujo Conus , Ativação do Canal Iônico , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.4/antagonistas & inibidores , Canal de Potássio Kv1.4/genética , Canal de Potássio Kv1.4/metabolismo , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Canal de Potássio Kv1.6/antagonistas & inibidores , Canal de Potássio Kv1.6/genética , Canal de Potássio Kv1.6/metabolismo , Potenciais da Membrana , Oócitos , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
5.
Mar Drugs ; 18(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245015

RESUMO

Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.


Assuntos
Canalopatias/tratamento farmacológico , Toxinas Marinhas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Animais , Caramujo Conus/química , Cianobactérias/química , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Humanos , Toxinas Marinhas/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Anêmonas-do-Mar/química , Superfamília Shaker de Canais de Potássio/metabolismo
6.
Mar Drugs ; 17(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893914

RESUMO

Understanding subtype specific ion channel pore blockage by natural peptide-based toxins is crucial for developing such compounds into promising drug candidates. Herein, docking and molecular dynamics simulations were employed in order to understand the dynamics and binding states of the µ-conotoxins, PIIIA, SIIIA, and GIIIA, at the voltage-gated potassium channels of the KV1 family, and they were correlated with their experimental activities recently reported by Leipold et al. Their different activities can only adequately be understood when dynamic information about the toxin-channel systems is available. For all of the channel-bound toxins investigated herein, a certain conformational flexibility was observed during the molecular dynamic simulations, which corresponds to their bioactivity. Our data suggest a similar binding mode of µ-PIIIA at KV1.6 and KV1.1, in which a plethora of hydrogen bonds are formed by the Arg and Lys residues within the α-helical core region of µ-PIIIA, with the central pore residues of the channel. Furthermore, the contribution of the K+ channel's outer and inner pore loops with respect to the toxin binding. and how the subtype specificity is induced, were proposed.


Assuntos
Conotoxinas/farmacologia , Simulação de Dinâmica Molecular , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Conotoxinas/química , Ligação Proteica , Homologia de Sequência de Aminoácidos , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Relação Estrutura-Atividade
7.
J Neurosci ; 37(44): 10738-10747, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982705

RESUMO

Reliable and precise signal transmission is essential in circuits of the auditory brainstem to encode timing with submillisecond accuracy. Globular bushy cells reliably and faithfully transfer spike signals to the principal neurons of the medial nucleus of the trapezoid body (MNTB) through the giant glutamatergic synapse, the calyx of Held. Thus, the MNTB works as a relay nucleus that preserves the temporal pattern of firing at high frequency. Using whole-cell patch-clamp recordings, we observed a K+ conductance mediated by small-conductance calcium-activated potassium (SK) channels in the MNTB neurons from rats of either sex. SK channels were activated by intracellular Ca2+ sparks and mediated spontaneous transient outward currents in developing MNTB neurons. SK channels were also activated by Ca2+ influx through voltage-gated Ca2+ channels and synaptically activated NMDA receptors. Blocking SK channels with apamin depolarized the resting membrane potential, reduced resting conductance, and affected the responsiveness of MNTB neurons to signal inputs. Moreover, SK channels were activated by action potentials and affected the spike afterhyperpolarization. Blocking SK channels disrupted the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons and induced extra postsynaptic action potentials in response to presynaptic firing. These data reveal that SK channels play crucial roles in regulating the resting properties and maintaining reliable signal transmission of MNTB neurons.SIGNIFICANCE STATEMENT Reliable and precise signal transmission is required in auditory brainstem circuits to localize the sound source. The calyx of Held synapse in the mammalian medial nucleus of the trapezoid body (MNTB) plays an important role in sound localization. We investigated the potassium channels that shape the reliability of signal transfer across the calyceal synapse and observed a potassium conductance mediated by small-conductance calcium-activated potassium (SK) channels in rat MNTB principal neurons. We found that SK channels are tonically activated and contribute to the resting membrane properties of MNTB neurons. Interestingly, SK channels are transiently activated by calcium sparks and calcium influx during action potentials and control the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Corpo Trapezoide/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Apamina/farmacologia , Tronco Encefálico/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Fatores de Tempo , Corpo Trapezoide/efeitos dos fármacos
8.
Nature ; 485(7396): 133-6, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22522931

RESUMO

A number of functionally important actions of proteins are mediated by short, intrinsically disordered peptide segments, but the molecular interactions that allow disordered domains to mediate their effects remain a topic of active investigation. Many K+ channel proteins, after initial channel opening, show a time-dependent reduction in current flux, termed 'inactivation', which involves movement of mobile cytosolic peptide segments (approximately 20-30 residues) into a position that physically occludes ion permeation. Peptide segments that produce inactivation show little amino-acid identity and tolerate appreciable mutational substitutions without disrupting the inactivation process. Solution nuclear magnetic resonance of several isolated inactivation domains reveals substantial conformational heterogeneity with only minimal tendency to ordered structures. Channel inactivation mechanisms may therefore help us to decipher how intrinsically disordered regions mediate functional effects. Whereas many aspects of inactivation of voltage-dependent K+ channels (Kv) can be described by a simple one-step occlusion mechanism, inactivation of the voltage-dependent large-conductance Ca2+-gated K+ (BK) channel mediated by peptide segments of auxiliary ß-subunits involves two distinguishable kinetic steps. Here we show that two-step inactivation mediated by an intrinsically disordered BK ß-subunit peptide involves a stereospecific binding interaction that precedes blockade. In contrast, blocking mediated by a Shaker Kv inactivation peptide is consistent with direct, simple occlusion by a hydrophobic segment without substantial steric requirement. The results indicate that two distinct types of molecular interaction between disordered peptide segments and their binding sites produce qualitatively similar functions.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Aminoácidos/metabolismo , Animais , Ligação Competitiva , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Camundongos , Oócitos/metabolismo , Peptídeos/química , Potássio/metabolismo , Ligação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
9.
Biochem Biophys Res Commun ; 482(4): 1135-1140, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27916464

RESUMO

The neurotoxic cone snail peptide µ-GIIIA specifically blocks skeletal muscle voltage-gated sodium (NaV1.4) channels. The related conopeptides µ-PIIIA and µ-SIIIA, however, exhibit a wider activity spectrum by also inhibiting the neuronal NaV channels NaV1.2 and NaV1.7. Here we demonstrate that those µ-conopeptides with a broader target range also antagonize select subtypes of voltage-gated potassium channels of the KV1 family: µ-PIIIA and µ-SIIIA inhibited KV1.1 and KV1.6 channels in the nanomolar range, while being inactive on subtypes KV1.2-1.5 and KV2.1. Construction and electrophysiological evaluation of chimeras between KV1.5 and KV1.6 revealed that these toxins block KV channels involving their pore regions; the subtype specificity is determined in part by the sequence close to the selectivity filter but predominantly by the so-called turret domain, i.e. the extracellular loop connecting the pore with transmembrane segment S5. Conopeptides µ-SIIIA and µ-PIIIA, thus, are not specific for NaV channels, and the known structure of some KV channel subtypes may provide access to structural insight into the molecular interaction between µ-conopeptides and their target channels.


Assuntos
Conotoxinas/química , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.4/antagonistas & inibidores , Canal de Potássio Kv1.6/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Eletrofisiologia , Células HEK293 , Humanos , Neurônios/metabolismo , Peptídeos/química , Domínios Proteicos
10.
J Neurophysiol ; 115(2): 947-57, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26609114

RESUMO

It is known that some patients with diabetic neuropathy are usually accompanied by abnormal painful sensations. Evidence has accumulated that diabetic neuropathic pain is associated with the hyperexcitability of peripheral nociceptors. Previously, we demonstrated that reduced conduction failure of polymodal nociceptive C-fibers and enhanced voltage-dependent sodium currents of small dorsal root ganglion (DRG) neurons contribute to diabetic hyperalgesia. To further investigate whether and how potassium channels are involved in the conduction failure, α-dendrotoxin (α-DTX), a selective blocker of the low-threshold sustained Kv1 channel, was chosen to examine its functional capability in modulating the conduction properties of polymodal nociceptive C-fibers and the excitability of sensory neurons. We found that α-DTX reduced the conduction failure of C-fibers from coccygeal nerve in vivo accompanied by an increased initial conduction velocity but a decreased activity-dependent slowing of conduction velocity. In addition, the number of APs evoked by step currents was significantly enhanced after the treatment with α-DTX in small-diameter sensory neurons. Further study of the mechanism indicates α-DTX-sensitive K(+) current significantly reduced and the activation of this current in peak and steady state shifted to depolarization for diabetic neurons. Expression of Kv channel subunits Kv1.2 and Kv1.6 was downregulated in both small dorsal root ganglion neurons and peripheral C-fibers. Taken together, these results suggest that α-DTX-sensitive Kv1 channels might play an important role in regulating the conduction properties of polymodal nociceptive C-fibers and firing properties of sensory neurons.


Assuntos
Potenciais de Ação , Neuropatias Diabéticas/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Nociceptividade , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Células Cultivadas , Neuropatias Diabéticas/fisiopatologia , Regulação para Baixo , Venenos Elapídicos/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Fibras Nervosas Amielínicas/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/genética
11.
Neural Plast ; 2016: 8782518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379187

RESUMO

In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Terminações Pré-Sinápticas/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , Canais de Potássio Shaw/fisiologia , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Masculino , Bloqueadores dos Canais de Potássio/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/fisiologia , Ratos , Ratos Wistar , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Canais de Potássio Shaw/antagonistas & inibidores , Sinapses/efeitos dos fármacos
12.
Biophys J ; 106(1): 134-44, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411245

RESUMO

Kv channels detect changes in the membrane potential via their voltage-sensing domains (VSDs) that control the status of the S6 bundle crossing (BC) gate. The movement of the VSDs results in a transfer of the S4 gating charges across the cell membrane but only the last 10-20% of the total gating charge movement is associated with BC gate opening, which involves cooperative transition(s) in the subunits. Substituting the proline residue P475 in the S6 of the Shaker channel by a glycine or alanine causes a considerable shift in the voltage-dependence of the cooperative transition(s) of BC gate opening, effectively isolating the late gating charge component from the other gating charge that originates from earlier VSD movements. Interestingly, both mutations also abolished Shaker's sensitivity to 4-aminopyridine, which is a pharmacological tool to isolate the late gating charge component. The alanine substitution (that would promote a α-helical configuration compared to proline) resulted in the largest separation of both gating charge components; therefore, BC gate flexibility appears to be important for enabling the late cooperative step of channel opening.


Assuntos
4-Aminopiridina/farmacologia , Ativação do Canal Iônico , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética
13.
J Neurophysiol ; 112(10): 2492-504, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143545

RESUMO

Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder.


Assuntos
Gânglios Espinais/fisiologia , Nociceptores/fisiologia , Superfamília Shaker de Canais de Potássio/metabolismo , Pele/inervação , Bexiga Urinária/inervação , Amidinas , Animais , Células CHO , Cricetulus , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Nociceptores/citologia , Nociceptores/efeitos dos fármacos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/genética , Transfecção
14.
Biophys J ; 103(6): 1198-207, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995492

RESUMO

Potassium channels exhibit a large diversity of single-channel conductances. Shaker is a low-conductance K-channel in which Pro475→Asp, a single-point mutation near the internal pore entrance, promotes 6- to 8-fold higher unitary current. To assess the mechanism for this higher conductance, we measured Shaker-P475D single-channel current in a wide range of symmetrical K(+) concentrations and voltages. Below 300 mM K(+), the current-to-voltage relations (i-V) showed inward rectification that disappeared at 1000 mM K(+). Single-channel conductance reached a maximum of ∼190 pS at saturating [K(+)], a value 4- to 5-fold larger than that estimated for the native channel. Intracellular Mg(2+) blocked this variant with ∼100-fold higher affinity. Near zero voltage, blockade was competitively antagonized by K(+); however, at voltages >100 mV, it was enhanced by K(+). This result is consistent with a lock-in effect in a single-file diffusion regime of Mg(2+) and K(+) along the pore. Molecular-dynamics simulations revealed higher K(+) density in the pore, especially near the Asp-475 side chains, as in the high-conductance MthK bacterial channel. The molecular dynamics also showed that K(+) ions bound distally can coexist with other K(+) or Mg(2+) in the cavity, supporting a lock-in mechanism. The maximal K(+) transport rate and higher occupancy could be due to a decrease in the electrostatic energy profile for K(+) throughout the pore, reducing the energy wells and barriers differentially by ∼0.7 and ∼2 kT, respectively.


Assuntos
Condutividade Elétrica , Magnésio/farmacologia , Mutação Puntual , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Simulação de Dinâmica Molecular , Porosidade , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Eletricidade Estática , Xenopus laevis
15.
J Cell Mol Med ; 16(3): 555-68, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21507200

RESUMO

Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito\xE2\x80\x90toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts.


Assuntos
Cerebelo/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais KATP/metabolismo , Canais de Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Agonistas de Aminoácidos Excitatórios/toxicidade , Perfilação da Expressão Gênica , Glutamatos/metabolismo , Glibureto/farmacologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Injeções Intraventriculares , Canais KATP/antagonistas & inibidores , Canais KATP/genética , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Canais de Potássio/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia , Regulação para Cima
16.
J Biol Chem ; 286(18): 16414-25, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454671

RESUMO

The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic ß-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shab/antagonistas & inibidores , Canais de Potássio Shab/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células Secretoras de Insulina/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos , Canais de Potássio Shab/genética , Superfamília Shaker de Canais de Potássio/genética , Xenopus laevis
17.
J Appl Toxicol ; 32(10): 858-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22761000

RESUMO

Evaluation of the proarrhythmic potential of an investigated compound is now an integral element of the safety profile required for the approval of new drugs. The human ether-à-go-go-related gene (hERG) channel blocking potency is regarded as a surrogate marker of the proarrhythmic risk at the early stages of the research and development process. However, there is no straight correlation between QT prolongation and TdP occurrence probability, and hERG inhibition potential can be an inadequate predictor of QT prolongation. The L-type calcium channel plays a pivotal role in cardiomyocytes' physiology. Thus the main aim of this study was to develop a predictive model for drug-triggered CaL channel inhibition and also the assessment of drug-multichannel interaction effects on the heart rate-corrected QT interval. The data set, consisting of 123 records describing in vitro experimental settings, measured IC50 values and calculated physico-chemical properties for 72 various chemicals, was collected. The models were tested in a modified 10-fold cross-validation procedure. The generalization ability of the best model was as follows: root mean squared error (RMSE) = 1.10, normalized root mean squared error (NRMSE) = 16.09%. Out of the 10 most important variables, 5 described conditions of the in vitro experiments thus their description and experiment's conditions standardization might be the key to the models better performance. The simulations performed with the ToxComp system showed that the hERG block alone causes concentration-dependent QT prolongation, whereas when multichannel block is regarded, the effect could be reversed. For that reason, the multichannel interaction of tested compounds should be taken into consideration, in order to make the proarrhythmic risk assessment more reliable.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Torsades de Pointes/induzido quimicamente , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Inteligência Artificial , Bloqueadores dos Canais de Cálcio/efeitos adversos , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo L/química , Linhagem Celular , Biologia Computacional , Simulação por Computador , Drogas em Investigação/efeitos adversos , Drogas em Investigação/química , Drogas em Investigação/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Sistemas Inteligentes , Frequência Cardíaca/efeitos dos fármacos , Humanos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Bloqueadores dos Canais de Potássio/efeitos adversos , Bloqueadores dos Canais de Potássio/química , Relação Quantitativa Estrutura-Atividade , Medição de Risco/métodos , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos
18.
Biophys J ; 101(6): 1364-75, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21943417

RESUMO

Voltage-gated potassium (Kv) currents generated by N-type α-subunit homotetramers inactivate rapidly because an N-terminal ball domain blocks the channel pore after activation. Hence, the inactivation rate of heterotetrameric channels comprising both N-type and non-N-type (delayed rectifier) α-subunits depends upon the number of N-type α-subunits in the complex. As Kv channel inactivation and inactivation recovery rates regulate cellular excitability, the composition and expression of these heterotetrameric complexes are expected to be tightly regulated. In a companion article, we showed that the single transmembrane segment ancillary (ß) subunits KCNE1 and KCNE2 suppress currents generated by homomeric Kv1.4, Kv3.3, and Kv3.4 channels, by trapping them early in the secretory pathway. Here, we show that this trapping is prevented by coassembly of the N-type α-subunits with intra-subfamily delayed rectifier α-subunits. Extra-subfamily delayed rectifier α-subunits, regardless of their capacity to interact with KCNE1 and KCNE2, cannot rescue Kv1.4 or Kv3.4 surface expression unless engineered to interact with them using N-terminal A and B domain swapping. The KCNE1/2-enforced checkpoint ensures N-type α-subunits only reach the cell surface as part of intra-subfamily mixed-α complexes, thereby governing channel composition, inactivation rate, and-by extension-cellular excitability.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Condutividade Elétrica , Regulação da Expressão Gênica , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Ratos , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química
19.
Mol Pharmacol ; 80(6): 1085-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21926190

RESUMO

Guanidine and its alkyl analogs stimulate the neuromuscular junction presynaptically by inhibiting voltage-gated potassium (Kv) channels, leading to enhanced release of acetylcholine in the synaptic cleft. This stimulatory effect of guanidine underlies its use in the therapy for the neuromuscular diseases myasthenic syndrome of Lambert-Eaton and botulism. The therapeutic use of guanidine is limited, however, because of side effects that accompany its administration. Therefore, the design of guanidine analogs with improved therapeutic indices is desirable. Progress toward this goal is hindered by the lack of knowledge of the mechanism by which these molecules inhibit Kv channels. Here we examine an array of possible mechanisms, including charge screening, disruption of the protein-lipid interfaces, direct interaction with the voltage sensors, and pore-binding. Our results demonstrate that guanidines bind within the intracellular pore of the channel and perturb a hydrophobic subunit interface to stabilize a closed state of the channel. This mechanism provides a foundation for the design of guanidine analogs for the therapeutic intervention of neuromuscular diseases.


Assuntos
Guanidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Animais , Feminino , Guanidina/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica/fisiologia , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
20.
J Physiol ; 589(Pt 21): 5125-42, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21911608

RESUMO

Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na(+) channel inactivation is the primary mechanism of threshold accommodation, the possible role of K(+) channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2-3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs.


Assuntos
Córtex Motor/fisiologia , Células Piramidais/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , 4-Aminopiridina/farmacologia , Animais , Venenos Elapídicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Masculino , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa