Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.797
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 622(7984): 810-817, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853121

RESUMO

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Assuntos
Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Internacionalidade , Animais , África/epidemiologia , Animais Selvagens/virologia , Ásia/epidemiologia , Aves/virologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Europa (Continente)/epidemiologia , Evolução Molecular , Especificidade de Hospedeiro , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mamíferos/virologia , Mutação , Filogenia , Aves Domésticas/virologia
2.
PLoS Comput Biol ; 20(7): e1012263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38995977

RESUMO

Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.


Assuntos
COVID-19 , Cervos , SARS-CoV-2 , Animais , Cervos/virologia , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/veterinária , COVID-19/virologia , Humanos , Modelos Epidemiológicos , Animais Selvagens/virologia , Biologia Computacional , Surtos de Doenças/veterinária , Surtos de Doenças/estatística & dados numéricos , Zoonoses/transmissão , Zoonoses/epidemiologia , Zoonoses/virologia
3.
Rev Med Virol ; 34(4): e2559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886173

RESUMO

The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.


Assuntos
Aves , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/virologia , Região do Mediterrâneo/epidemiologia , Aves/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vírus da Influenza A/patogenicidade , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária
5.
Emerg Infect Dis ; 30(6): 1133-1143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781927

RESUMO

We describe an unusual mortality event caused by a highly pathogenic avian influenza (HPAI) A(H5N1) virus clade 2.3.4.4b involving harbor (Phoca vitulina) and gray (Halichoerus grypus) seals in the St. Lawrence Estuary, Quebec, Canada, in 2022. Fifteen (56%) of the seals submitted for necropsy were considered to be fatally infected by HPAI H5N1 containing fully Eurasian or Eurasian/North American genome constellations. Concurrently, presence of large numbers of bird carcasses infected with HPAI H5N1 at seal haul-out sites most likely contributed to the spillover of infection to the seals. Histologic changes included meningoencephalitis (100%), fibrinosuppurative alveolitis, and multiorgan acute necrotizing inflammation. This report of fatal HPAI H5N1 infection in pinnipeds in Canada raises concerns about the expanding host of this virus, the potential for the establishment of a marine mammal reservoir, and the public health risks associated with spillover to mammals.Nous décrivons un événement de mortalité inhabituelle causé par un virus de l'influenza aviaire hautement pathogène A(H5N1) clade 2.3.4.4b chez des phoques communs (Phoca vitulina) et gris (Halichoerus grypus) dans l'estuaire du Saint-Laurent au Québec, Canada, en 2022. Quinze (56%) des phoques soumis pour nécropsie ont été considérés comme étant fatalement infectés par le virus H5N1 de lignées eurasiennes ou de réassortiment eurasiennes/nord-américaines. Un grand nombre simultané de carcasses d'oiseaux infectés par le H5N1 sur les sites d'échouement a probablement contribué à la contamination de ces phoques. Les changements histologiques associés à cette infection incluaient : méningo-encéphalite (100%), alvéolite fibrinosuppurée et inflammation nécrosante aiguë multi-organique. Cette documentation soulève des préoccupations quant à l'émergence de virus mortels, à la possibilité d'établissement de réservoirs chez les mammifères marins, et aux risques pour la santé publique associés aux propagations du virus chez les mammifères.


Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Animais , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Quebeque/epidemiologia , Surtos de Doenças/veterinária , Estuários , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/história , Focas Verdadeiras/virologia , Filogenia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Aves/virologia
6.
Emerg Infect Dis ; 30(6): 1240-1244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782018

RESUMO

A 2022 canine gastroenteritis outbreak in the United Kingdom was associated with circulation of a new canine enteric coronavirus closely related to a 2020 variant with an additional spike gene recombination. The variants are unrelated to canine enteric coronavirus-like viruses associated with human disease but represent a model for coronavirus population adaptation.


Assuntos
Infecções por Coronavirus , Surtos de Doenças , Doenças do Cão , Gastroenterite , Filogenia , Animais , Cães , Surtos de Doenças/veterinária , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , Reino Unido/epidemiologia , Gastroenterite/virologia , Gastroenterite/epidemiologia , Gastroenterite/veterinária , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus Canino/genética , Coronavirus Canino/classificação , Humanos , Glicoproteína da Espícula de Coronavírus/genética
7.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975739

RESUMO

The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots (Calidris canutus islandica) in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of islandica red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.


Assuntos
Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Europa (Continente)/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Vírus Reordenados/genética , Surtos de Doenças/veterinária , Charadriiformes/virologia , Aves/virologia
8.
Appl Environ Microbiol ; 90(3): e0220123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412030

RESUMO

Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE: Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.


Assuntos
Coxiella burnetii , Doenças das Cabras , Febre Q , Vacinas , Gravidez , Feminino , Humanos , Animais , Ovinos , Febre Q/epidemiologia , Febre Q/prevenção & controle , Febre Q/veterinária , Estações do Ano , Cabras , Surtos de Doenças/veterinária , Vacinação/veterinária , Aerossóis , Poeira , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/microbiologia
9.
Appl Environ Microbiol ; 90(6): e0229723, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38722170

RESUMO

Salmonella Typhimurium is a zoonotic pathogen that poses a major threat to public health. This generalist serotype can be found in many hosts and the environment where varying selection pressures may result in the accumulation of antimicrobial resistance determinants. However, the transmission of this serotype between food-producing hosts, specifically between poultry layer flocks and nearby dairy herds, was never demonstrated. We investigated an outbreak at a dairy in Israel to determine the role of nearby poultry houses to be sources of infection. The 2-month outbreak resulted in a 47% mortality rate among 15 calves born in that period. Routine treatment of fluid therapy, a nonsteroidal anti-inflammatory, and cefquinome was ineffective, and control was achieved by the introduction of vaccination of dry cows against Salmonella (Bovivac S, MSD Animal Health) and a strict colostrum regime. Whole genome sequencing and antimicrobial sensitivity tests were performed on S. Typhimurium strains isolated from the dairy (n = 4) and strains recovered from poultry layer farms (n = 10). We identified acquired antimicrobial-resistant genes, including the blaCTX-M-55 gene, conferring resistance to extended-spectrum cephalosporins, which was exclusive to dairy isolates. Genetic similarity with less than five single nucleotide polymorphism differences between dairy and poultry strains suggested a transmission link. This investigation highlights the severe impact of S. Typhimurium on dairy farms and the transmission risk from nearby poultry farms. The accumulation of potentially transferable genes conferring resistance to critically important antimicrobials underscores the increased public health risk associated with S. Typhimurium circulation between animal hosts.IMPORTANCESalmonella Typhimurium is one of the major causes of food-borne illness globally. Infections may result in severe invasive disease, in which antimicrobial treatment is warranted. Therefore, the emergence of multi-drug-resistant strains poses a significant challenge to successful treatment and is considered one of the major threats to global health. S. Typhimurium can be found in a variety of animal hosts and environments; however, its transmission between food-producing animals, specifically poultry layers flocks and dairy herds, was never studied. Here, we demonstrate the transmission of the pathogen from poultry to a nearby dairy farm. Alarmingly, the multi-drug-resistant strains collected during the outbreak in the dairy had acquired resistance to extended-spectrum cephalosporins, antibiotics critically important in treating Salmonellosis in humans. The findings of the study emphasize the increased risk to public health posed by zoonotic pathogens' circulation between animal hosts.


Assuntos
Antibacterianos , Fazendas , Saúde Pública , Salmonelose Animal , Salmonella typhimurium , Animais , Salmonella typhimurium/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonelose Animal/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/transmissão , Bovinos , Antibacterianos/farmacologia , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Israel/epidemiologia , Indústria de Laticínios , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/epidemiologia , Farmacorresistência Bacteriana/genética , Surtos de Doenças/veterinária , Galinhas/microbiologia , Humanos , Farmacorresistência Bacteriana Múltipla/genética
10.
Microb Pathog ; 186: 106485, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052279

RESUMO

Lumpy skin disease (LSD) is an emerging transboundary viral disease of livestock animals which was first reported in 1929 in Zambia. Although LSD is a neglected disease of economic importance, it extends a direct impact on the international trade and economy in livestock-dependent countries. Lumpy skin disease virus (LSDV) has been endemic in African countries, where several outbreaks have been reported previously. However, the virus has spread rapidly across the Middle East in the past two decades, reaching Russia and, recently, the Asian subcontinent. With unprecedented cluster outbreaks being reported across Asian countries like India, China, Nepal, Bangladesh, and Pakistan, LSDV is certainly undergoing an epidemiological shift and expanding its geographical footprint worldwide. Due to high mortality among livestock animals, the recent LSD outbreaks have gained attention from global regulatory authorities and raised serious concerns among epidemiologists and veterinary researchers. Despite networked global surveillance of the disease, recurrent LSD cases pose a threat to the livestock industry. Hence, this review provides recent insights into the LSDV biology by augmenting the latest literature associated with its pathogenesis, transmission, current intervention strategies, and economic implications. The review critically examines the changing epidemiological footprint of LSDV globally, especially in relation to developing countries of the Asian subcontinent. We also speculate the possible reasons contributing to the ongoing LSD outbreaks, including illegal animal trade, climate change, genetic recombination events between wild-type and vaccine strains, reversion of vaccine strains to virulent phenotype, and deficiencies in active monitoring during the COVID-19 pandemic.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Humanos , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Comércio , Pandemias , Internacionalidade , Vírus da Doença Nodular Cutânea/genética , Surtos de Doenças/veterinária , Vacinas Atenuadas , Paquistão , Filogenia
11.
Arch Microbiol ; 206(5): 210, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592503

RESUMO

Lumpy skin disease (LSD) is a highly infectious and economically devastating viral disease of cattle. It is caused by Lumpy Skin Disease Virus (LSDV) belonging to the genus Capripoxvirus and family Poxviridae. The origin of lumpy skin disease has been traced to Zambia, (an African nation) in Southern part during the year 1929. The first reported case of LSD besides Africa was from Israel, a Middle Eastern nation, thus proving inter-continental spread. Subsequently, the disease entered Middle East, Eastern Europe and Asia with numerous outbreaks in the recent years. LSD has emerged as a significant concern in the Indian sub-continent, due to outbreaks reported in countries such as Bangladesh, India, China in 2019. In the following years, other South and East Asian countries like Taipei, Nepal, Sri Lanka, Myanmar, Bhutan, Vietnam, Hong Kong, Thailand, Malaysia, Laos, Cambodia, Pakistan, Indonesia and Singapore also faced severe outbreaks. At present, LSD is considered to be an emerging disease in the Indian sub-continent due to the recent status of disease. Considering the global scenario, LSDV is changing its transmission dynamics as evidenced by a shift in its epidemiology. As a result of high morbidity and mortality rate among cattle, the current outbreaks have been a major cause of socio-economic catastrophe. This contagious viral disease has eminent repercussions as the estimated monetary damage incurred is quite high. Despite having networked surveillance and comprehensive databases, the recurring outbreaks have raised major concern among researchers. Therefore, this review offers brief insights into the emergence of LSDV by amalgamating the newest literature related to its biology, transmission, clinico-pathology, epidemiology, prevention strategies, and economic consequences. Additionally, we have also provided the epidemiological insights of the recent outbreaks with detailed state wise studies.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Bovinos , Animais , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/epidemiologia , Surtos de Doenças/veterinária , China , Índia/epidemiologia
12.
PLoS Comput Biol ; 19(2): e1010910, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812266

RESUMO

The impacts of disease on host vital rates can be demonstrated using longitudinal studies, but these studies can be expensive and logistically challenging. We examined the utility of hidden variable models to infer the individual effects of infectious disease from population-level measurements of survival when longitudinal studies are not possible. Our approach seeks to explain temporal deviations in population-level survival after introducing a disease causative agent when disease prevalence cannot be directly measured by coupling survival and epidemiological models. We tested this approach using an experimental host system (Drosophila melanogaster) with multiple distinct pathogens to validate the ability of the hidden variable model to infer per-capita disease rates. We then applied the approach to a disease outbreak in harbor seals (Phoca vituline) that had data on observed strandings but no epidemiological data. We found that our hidden variable modeling approach could successfully detect the per-capita effects of disease from monitored survival rates in both the experimental and wild populations. Our approach may prove useful for detecting epidemics from public health data in regions where standard surveillance techniques are not available and in the study of epidemics in wildlife populations, where longitudinal studies can be especially difficult to implement.


Assuntos
Drosophila melanogaster , Phoca , Animais , Surtos de Doenças/veterinária , Animais Selvagens , Prevalência
13.
PLoS Comput Biol ; 19(9): e1011448, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672554

RESUMO

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.


Assuntos
Doença Equina Africana , Animais , Cavalos , África do Sul/epidemiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/prevenção & controle , Surtos de Doenças/veterinária , Número Básico de Reprodução , Simulação por Computador
14.
EMBO Rep ; 23(10): e56048, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36102819

RESUMO

This year's outbreak of avian flu has been the worst ever and prompted much debate and research on developing vaccines for domestic and wild birds.


Assuntos
Influenza Aviária , Animais , Animais Selvagens , Aves , Surtos de Doenças/veterinária , Europa (Continente)/epidemiologia , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle
15.
Vet Res ; 55(1): 72, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840261

RESUMO

Salmonellosis, one of the most common foodborne infections in Europe, is monitored by food safety surveillance programmes, resulting in the generation of extensive databases. By leveraging tree-based machine learning (ML) algorithms, we exploited data from food safety audits to predict spatiotemporal patterns of salmonellosis in northwestern Italy. Data on human cases confirmed in 2015-2018 (n = 1969) and food surveillance data collected in 2014-2018 were used to develop ML algorithms. We integrated the monthly municipal human incidence with 27 potential predictors, including the observed prevalence of Salmonella in food. We applied the tree regression, random forest and gradient boosting algorithms considering different scenarios and evaluated their predictivity in terms of the mean absolute percentage error (MAPE) and R2. Using a similar dataset from the year 2019, spatiotemporal predictions and their relative sensitivities and specificities were obtained. Random forest and gradient boosting (R2 = 0.55, MAPE = 7.5%) outperformed the tree regression algorithm (R2 = 0.42, MAPE = 8.8%). Salmonella prevalence in food; spatial features; and monitoring efforts in ready-to-eat milk, fruits and vegetables, and pig meat products contributed the most to the models' predictivity, reducing the variance by 90.5%. Conversely, the number of positive samples obtained for specific food matrices minimally influenced the predictions (2.9%). Spatiotemporal predictions for 2019 showed sensitivity and specificity levels of 46.5% (due to the lack of some infection hotspots) and 78.5%, respectively. This study demonstrates the added value of integrating data from human and veterinary health services to develop predictive models of human salmonellosis occurrence, providing early warnings useful for mitigating foodborne disease impacts on public health.


Assuntos
Surtos de Doenças , Aprendizado de Máquina , Intoxicação Alimentar por Salmonella , Itália/epidemiologia , Surtos de Doenças/veterinária , Surtos de Doenças/prevenção & controle , Humanos , Intoxicação Alimentar por Salmonella/prevenção & controle , Intoxicação Alimentar por Salmonella/epidemiologia , Animais , Salmonella/fisiologia , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Prevalência , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/prevenção & controle
16.
Arch Virol ; 169(3): 51, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374459

RESUMO

In this study, we investigated and confirmed natural lumpy skin disease virus (LSDV) infection in Himalayan yaks (Bos grunniens) in Himachal Pradesh, India, based on clinical manifestations and results of genome detection, antibody detection, virus isolation, and nucleotide sequencing. Subsequent phylogenetic analysis based on complete GPCR, RPO30, and EEV gene sequences revealed that the LSDV isolates from these yaks and local cattle belonged to LSDV subcluster 1.2.1 rather than the dominant subcluster 1.2.2, which is currently circulating in India, suggesting a separate recent introduction. This is the first report of natural LSDV infection in yaks in India, expanding the known host range of LSDV. Further investigations are needed to assess the impact of LSDV infection in yaks.


Assuntos
Vírus da Doença Nodular Cutânea , Animais , Bovinos , Filogenia , Sequência de Bases , Índia/epidemiologia , Surtos de Doenças/veterinária
17.
Arch Virol ; 169(7): 145, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864875

RESUMO

Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Surtos de Doenças , Filogenia , Animais , Febre Suína Africana/virologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Índia/epidemiologia , Suínos , Surtos de Doenças/veterinária , Genótipo , Fator 88 de Diferenciação Mieloide/genética , Resistência à Doença/genética
18.
Arch Virol ; 169(7): 137, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847873

RESUMO

The present study focuses on the pathological and molecular characterization of African swine fever virus (ASFV) associated with an outbreak in wild boars in two national parks in southern India in 2022-2023. Significant mortality was observed among free-ranging wild boars at Bandipur National Park, Karnataka, and Mudumalai National Park, Tamil Nadu. Extensive combing operations were undertaken in both national parks, spanning an area of around 100 km2, originating from the reported epicenter, to estimate the mortality rate. Recovered carcasses were pathologically examined, and ASFV isolates was genetically characterized. Our findings suggested spillover infection of ASFV from nearby domestic pigs, and the virus was equally pathogenic in wild boars and domestic pigs. ASFV intrusion was reported in the Northeastern region of the country, which borders China and Myanmar, whereas the current outbreak is very distantly located, in southern India. Molecular data will help in tracing the spread of the virus in the country.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Surtos de Doenças , Sus scrofa , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Índia/epidemiologia , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/mortalidade , Sus scrofa/virologia , Surtos de Doenças/veterinária , Filogenia , Animais Selvagens/virologia
19.
Virus Genes ; 60(1): 44-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185717

RESUMO

Infectious bronchitis virus (IBV) causes considerable economic impacts on global poultry production. Since its emergence in early 1930, IBV continues to evolve and now exists in a wide range of antigenically and genetically distinct variants, that makes the prevention and the control of the disease both complex and challenging. Although IBV has been reported regularly from different corner of India, information about the molecular epidemiology of circulating strain in relation to clinical form of the disease is not available. We have studied the clinico-pathology and confirmed eight distinct field outbreaks of the disease from poultry population of Mizoram, India. The clinical disease in affected birds resulted sever pathological lesions involving respiratory, gastrointestinal, and urinary system together. The complete S1 nucleotide sequences and protein analyses have revealed a distinct variant of genotype I-IBV (GI), designated as GI-24 circulating in India. The S1 protein of the field strains displayed unique additional eighteen amino acids at C terminal end when compared with M41strain. Comparison of the S1 protein among all the 27 lineages of GI revealed five mutations that are exclusive to only the Indian strains. All the field strains have also possessed the amino acid mutations at highly variable region 2 (HVR2) of S1 receptor-binding domain (RBD) that are considered characteristic of nephropathogenic strains. The circulating GI-24 strains displayed potency for a wide range of tropism from respiratory epithelium to GIT and urinary system. This study provides insight on recently emerging IBV outbreaks in NER, India, which might be causing huge economic losses to the poultry farmers in the region.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Aves Domésticas , Genótipo , Surtos de Doenças/veterinária , Filogenia
20.
Epidemiol Infect ; 152: e27, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282573

RESUMO

Introduction of African swine fever (ASF) to China in mid-2018 and the subsequent transboundary spread across Asia devastated regional swine production, affecting live pig and pork product-related markets worldwide. To explore the spatiotemporal spread of ASF in China, we reconstructed possible ASF transmission networks using nearest neighbour, exponential function, equal probability, and spatiotemporal case-distribution algorithms. From these networks, we estimated the reproduction numbers, serial intervals, and transmission distances of the outbreak. The mean serial interval between paired units was around 29 days for all algorithms, while the mean transmission distance ranged 332 -456 km. The reproduction numbers for each algorithm peaked during the first two weeks and steadily declined through the end of 2018 before hovering around the epidemic threshold value of 1 with sporadic increases during 2019. These results suggest that 1) swine husbandry practices and production systems that lend themselves to long-range transmission drove ASF spread; 2) outbreaks went undetected by the surveillance system. Efforts by China and other affected countries to control ASF within their jurisdictions may be aided by the reconstructed spatiotemporal model. Continued support for strict implementation of biosecurity standards and improvements to ASF surveillance is essential for halting transmission in China and spread across Asia.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Epidemias , Doenças dos Suínos , Suínos , Humanos , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Surtos de Doenças/veterinária , China/epidemiologia , Sus scrofa , Doenças dos Suínos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa