Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.748
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31883839

RESUMO

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Assuntos
Complemento C3/imunologia , Encefalomielite Autoimune Experimental/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Sinapses/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Callithrix , Linhagem Celular Tumoral , Complemento C3/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Gliose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de Complemento 3b/metabolismo
2.
Nature ; 607(7918): 321-329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676479

RESUMO

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Assuntos
Afeto , Destreza Motora , Vias Neurais , Doença de Parkinson , Tálamo , Animais , Modelos Animais de Doenças , Aprendizagem , Locomoção , Potenciação de Longa Duração , Camundongos , Neurônios/fisiologia , Núcleo Accumbens , Optogenética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalâmico , Sinapses , Tálamo/citologia , Tálamo/patologia
3.
Nature ; 588(7838): 459-465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866962

RESUMO

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Assuntos
Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Progranulinas/deficiência , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/imunologia , Complemento C3b/antagonistas & inibidores , Complemento C3b/imunologia , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Progranulinas/genética , RNA-Seq , Análise de Célula Única , Proteinopatias TDP-43/tratamento farmacológico , Proteinopatias TDP-43/genética , Tálamo/metabolismo , Tálamo/patologia , Transcriptoma
4.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991274

RESUMO

Spina bifida affects spinal cord and cerebral development, leading to motor and cognitive delay. We investigated whether there are associations between thalamocortical connectivity topography, neurological function, and developmental outcomes in open spina bifida. Diffusion tensor MRI was used to assess thalamocortical connectivity in 44 newborns with open spina bifida who underwent prenatal surgical repair. We quantified the volume of clusters formed based on the strongest probabilistic connectivity to the frontal, parietal, and temporal cortex. Developmental outcomes were assessed using the Bayley III Scales, while the functional level of the lesion was assessed by neurological examination at 2 years of age. Higher functional level was associated with smaller thalamo-parietal, while lower functional level was associated with smaller thalamo-temporal connectivity clusters (Bonferroni-corrected P < 0.05). Lower functional levels were associated with weaker thalamic temporal connectivity, particularly in the ventrolateral and ventral anterior nuclei. No associations were found between thalamocortical connectivity and developmental outcomes. Our findings suggest that altered thalamocortical circuitry development in open spina bifida may contribute to impaired lower extremity function, impacting motor function and independent ambulation. We hypothesize that the neurologic function might not merely be caused by the spinal cord lesion, but further impacted by the disruption of cerebral neuronal circuitry.


Assuntos
Espinha Bífida Cística , Disrafismo Espinal , Gravidez , Feminino , Recém-Nascido , Humanos , Espinha Bífida Cística/complicações , Disrafismo Espinal/diagnóstico por imagem , Disrafismo Espinal/complicações , Disrafismo Espinal/psicologia , Medula Espinal/patologia , Imagem de Tensor de Difusão , Tálamo/patologia
5.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38212287

RESUMO

This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.


Assuntos
Conectoma , AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Conectoma/métodos , AVC Isquêmico/patologia , Tálamo/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Fadiga/diagnóstico por imagem , Fadiga/etiologia
6.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914171

RESUMO

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Assuntos
Córtex Cerebral , Imagem de Tensor de Difusão , Lisencefalia , Vias Neurais , Tálamo , Humanos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/embriologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Lisencefalia/patologia , Lisencefalia/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/embriologia , Imagem de Tensor de Difusão/métodos , Feto/patologia , Feto/diagnóstico por imagem , Idade Gestacional , Feminino , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/embriologia , Imagem de Difusão por Ressonância Magnética/métodos
7.
Ann Neurol ; 93(4): 729-742, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565271

RESUMO

OBJECTIVE: This study was undertaken to identify magnetic resonance imaging (MRI) biomarkers that differentiate migraine from cluster headache patients and imaging features that are shared. METHODS: Clinical, functional, and structural MRI data were obtained from 20 migraineurs, 20 cluster headache patients, and 15 healthy controls. Support vector machine algorithms and a stepwise removal process were used to discriminate headache patients from controls, and subgroups of patients. Regional between-group differences and association between imaging features and patients' clinical characteristics were also investigated. RESULTS: The accuracy for classifying headache patients from controls was 80%. The classification accuracy for discrimination between migraine and controls was 89%, and for cluster headache and controls it was 98%. For distinguishing cluster headache from migraine patients, the MRI classifier yielded an accuracy of 78%, whereas MRI-clinical combined classification model achieved an accuracy of 99%. Bilateral hypothalamic and periaqueductal gray (PAG) functional networks were the most important MRI features in classifying migraine and cluster headache patients from controls. The left thalamic network was the most discriminative MRI feature in classifying migraine from cluster headache patients. Compared to migraine, cluster headache patients showed decreased functional interaction between the left thalamus and cortical areas mediating interoception and sensory integration. The presence of restlessness was the most important clinical feature in discriminating the two groups of patients. INTERPRETATION: Functional biomarkers, including the hypothalamic and PAG networks, are shared by migraine and cluster headache patients. The thalamocortical pathway may be the neural substrate that differentiates migraine from cluster headache attacks with their distinct clinical features. ANN NEUROL 2023;93:729-742.


Assuntos
Cefaleia Histamínica , Transtornos de Enxaqueca , Humanos , Cefaleia Histamínica/diagnóstico por imagem , Transtornos de Enxaqueca/diagnóstico por imagem , Cefaleia , Imageamento por Ressonância Magnética/métodos , Tálamo/patologia
8.
NMR Biomed ; 37(6): e5119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383137

RESUMO

Advanced imaging techniques (tractography) enable the mapping of white matter (WM) pathways and the understanding of brain connectivity patterns. We combined tractography with a network-based approach to examine WM microstructure on a network level in people with relapsing-remitting multiple sclerosis (pw-RRMS) and healthy controls (HCs) over 2 years. Seventy-six pw-RRMS matched with 43 HCs underwent clinical assessments and 3T MRI scans at baseline (BL) and 2-year follow-up (2-YFU). Probabilistic tractography was performed, accounting for the effect of lesions, producing connectomes of 25 million streamlines. Network differences in fibre density across pw-RRMS and HCs at BL and 2-YFU were quantified using network-based statistics (NBS). Longitudinal network differences in fibre density were quantified using NBS in pw-RRMS, and were tested for correlations with disability, cognition and fatigue scores. Widespread network reductions in fibre density were found in pw-RRMS compared with HCs at BL in cortical regions, with more reductions detected at 2-YFU. Pw-RRMS had reduced fibre density at BL in the thalamocortical network compared to 2-YFU. This effect appeared after correction for age, was robust across different thresholds, and did not correlate with lesion volume or disease duration. Pw-RRMS demonstrated a robust and long-distance improvement in the thalamocortical WM network, regardless of age, disease burden, duration or therapy, suggesting a potential locus of neuroplasticity in MS. This network's role over the disease's lifespan and its potential implications in prognosis and treatment warrants further investigation.


Assuntos
Córtex Cerebral , Esclerose Múltipla Recidivante-Remitente , Tálamo , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Feminino , Masculino , Adulto , Tálamo/diagnóstico por imagem , Tálamo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Imagem de Tensor de Difusão
9.
Mult Scler ; 30(6): 687-695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469809

RESUMO

BACKGROUND: Loss of brain gray matter fractional volume predicts multiple sclerosis (MS) progression and is associated with worsening physical and cognitive symptoms. Within deep gray matter, thalamic damage is evident in early stages of MS and correlates with physical and cognitive impairment. Natalizumab is a highly effective treatment that reduces disease progression and the number of inflammatory lesions in patients with relapsing-remitting MS (RRMS). OBJECTIVE: To evaluate the effect of natalizumab on gray matter and thalamic atrophy. METHODS: A combination of deep learning-based image segmentation and data augmentation was applied to MRI data from the AFFIRM trial. RESULTS: This post hoc analysis identified a reduction of 64.3% (p = 0.0044) and 64.3% (p = 0.0030) in mean percentage gray matter volume loss from baseline at treatment years 1 and 2, respectively, in patients treated with natalizumab versus placebo. The reduction in thalamic fraction volume loss from baseline with natalizumab versus placebo was 57.0% at year 2 (p < 0.0001) and 41.2% at year 1 (p = 0.0147). Similar findings resulted from analyses of absolute gray matter and thalamic fraction volume loss. CONCLUSION: These analyses represent the first placebo-controlled evidence supporting a role for natalizumab treatment in mitigating gray matter and thalamic fraction atrophy among patients with RRMS. CLINICALTRIALS.GOV IDENTIFIER: NCT00027300URL: https://clinicaltrials.gov/ct2/show/NCT00027300.


Assuntos
Atrofia , Substância Cinzenta , Fatores Imunológicos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente , Natalizumab , Tálamo , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Adulto , Tálamo/patologia , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Masculino , Feminino , Fatores Imunológicos/farmacologia , Atrofia/patologia , Pessoa de Meia-Idade , Aprendizado Profundo
10.
J Inherit Metab Dis ; 47(4): 792-804, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430011

RESUMO

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects. Cerebrum, cortical GM, (total) CSF, cerebellum, deep gray matter (DGM) (excluding thalamus) and thalamus volumes were analyzed. Longitudinal correlations with measures of cognitive and motor functioning were assessed. Cross-sectionally, juvenile and adult type patients (infantiles excluded based on limited numbers) were compared with controls at earliest scan, before possible treatment. Patients had lower cerebrum, cortical GM, DGM and thalamus volumes. Differences were most pronounced for adult type patients. Longitudinal analyses showed substantial and progressive atrophy of all regions and increase of CSF in untreated patients. Similar, albeit less pronounced, effects were seen in treated patients for cerebrum, cortical GM, CSF and thalamus volumes. Deterioration in motor performance (all patients) was related to atrophy, and increase of CSF, in all regions. Cognitive functioning (data available for treated patients) was related to cerebral, cortical GM and thalamus atrophy; and to CSF increase. Our findings illustrate the importance of recognizing GM pathology as a potentially substantial, clinically relevant part of MLD, apparently less amenable to treatment.


Assuntos
Atrofia , Substância Cinzenta , Leucodistrofia Metacromática , Imageamento por Ressonância Magnética , Humanos , Leucodistrofia Metacromática/patologia , Leucodistrofia Metacromática/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Atrofia/patologia , Masculino , Feminino , Adulto , Estudos Longitudinais , Adolescente , Adulto Jovem , Criança , Estudos Transversais , Pré-Escolar , Pessoa de Meia-Idade , Transplante de Células-Tronco Hematopoéticas , Lactente , Tálamo/patologia , Tálamo/diagnóstico por imagem , Cognição
11.
BMC Neurol ; 24(1): 174, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789945

RESUMO

BACKGROUND: The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS: Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS: Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION: This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.


Assuntos
Imageamento por Ressonância Magnética , Tálamo , Torcicolo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Torcicolo/diagnóstico por imagem , Torcicolo/patologia , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto , Idoso , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia
12.
Neurol Sci ; 45(9): 4633-4634, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38796823

RESUMO

A 65-years-old female was hospitalized 24 h after experiencing the sudden onset of subjective reduction in visual acuity and hypersomnia. On admission to the neurological ward, she presented isolated downgaze palsy. A Magnetic Resonance Imaging of the brain disclosed a discrete, ovalar hyperintensity involving the left paramedian thalamic-mesencephalon junction. The lesion was consistent with infarction. Isolated downgaze palsy has been described in thrombosis of Artery of Percheron leading to infarction of bilateral paramedian thalami along with structures from the mesencephalic-diencephalic junction such as the Medial Longitudinal Fasciculus (riMLF). While neurons from the riMLF controlling upward vertical saccades project to either ipsilateral and contralateral oculomotor nuclear complexes, those involved in regulating downgaze descend ipsilaterally in the brain stem. Isolated downgaze palsy has an extreme localizer value to the diencephalic-mesencephalon junction and can arise from a unilateral lesion.


Assuntos
Mesencéfalo , Tálamo , Humanos , Feminino , Idoso , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/patologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Imageamento por Ressonância Magnética
13.
Addict Biol ; 29(5): e13402, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38797559

RESUMO

Increases in harmful drinking among older adults indicate the need for a more thorough understanding of the relationship between later-life alcohol use and brain health. The current study investigated the relationships between alcohol use and progressive grey and white matter changes in older adults using longitudinal data. A total of 530 participants (aged 70 to 90 years; 46.0% male) were included. Brain outcomes assessed over 6 years included total grey and white matter volume, as well as volume of the hippocampus, thalamus, amygdala, corpus callosum, orbitofrontal cortex and insula. White matter integrity was also investigated. Average alcohol use across the study period was the main exposure of interest. Past-year binge drinking and reduction in drinking from pre-baseline were additional exposures of interest. Within the context of low-level average drinking (averaging 11.7 g per day), higher average amount of alcohol consumed was associated with less atrophy in the left (B = 7.50, pFDR = 0.010) and right (B = 5.98, pFDR = 0.004) thalamus. Past-year binge-drinking was associated with poorer white matter integrity (B = -0.013, pFDR = 0.024). Consuming alcohol more heavily in the past was associated with greater atrophy in anterior (B = -12.73, pFDR = 0.048) and posterior (B = -17.88, pFDR = 0.004) callosal volumes over time. Across alcohol exposures and neuroimaging markers, no other relationships were statistically significant. Within the context of low-level drinking, very few relationships between alcohol use and brain macrostructure were identified. Meanwhile, heavier drinking was negatively associated with white matter integrity.


Assuntos
Consumo de Bebidas Alcoólicas , Atrofia , Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Idoso , Feminino , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/efeitos dos fármacos , Idoso de 80 Anos ou mais , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Atrofia/patologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/efeitos dos fármacos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Corpo Caloso/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34011608

RESUMO

Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.


Assuntos
Córtex Cerebral/metabolismo , Cromatina/química , Corpo Caloso/metabolismo , Proteínas de Ligação a DNA/genética , Mutação com Perda de Função , Tálamo/metabolismo , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Córtex Cerebral/patologia , Cromatina/metabolismo , Conectoma , Corpo Caloso/patologia , Proteínas de Ligação a DNA/deficiência , Face/anormalidades , Face/patologia , Deleção de Genes , Regulação da Expressão Gênica , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Deformidades Congênitas da Mão/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Camundongos , Camundongos Transgênicos , Micrognatismo/genética , Micrognatismo/metabolismo , Micrognatismo/patologia , Pescoço/anormalidades , Pescoço/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Tálamo/patologia , Fatores de Transcrição/deficiência , Vibrissas/metabolismo , Vibrissas/patologia , Substância Branca/metabolismo , Substância Branca/patologia
15.
J Integr Neurosci ; 23(4): 77, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38682227

RESUMO

BACKGROUND: Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by motor impairment and non-motor symptoms. The involvement of the thalamus in MNDs, especially in conditions such as amyotrophic lateral sclerosis (ALS), and its interaction with frontotemporal dementia (FTD), has garnered increasing research interest. This systematic review analyzed magnetic resonance imaging (MRI) studies that focused on thalamic alterations in MNDs to understand the significance of these changes and their correlation with clinical outcomes. METHODS: Following PRISMA 2020 guidelines, the PubMed and Scopus databases were searched from inception to June 2023 for studies related to MRI findings in the thalamus of patients with MNDs. Eligible studies included adult patients diagnosed with ALS or other forms of MND who underwent brain MRI, with outcomes related to thalamic alterations. Studies were evaluated for risk of bias using the Newcastle-Ottawa scale. RESULTS: A total of 52 studies (including 3009 MND patients and 2181 healthy controls) used various MRI techniques, including volumetric analysis, diffusion tensor imaging, and functional MRI, to measure thalamic volume, connectivity, and other alterations. This review confirmed significant thalamic changes in MNDs, such as atrophy and microstructural degradation, which are associated with disease severity, progression, and functional disability. Thalamic involvement varies across different MND subtypes and is influenced by the presence of cognitive impairment and mutations in genes including chromosome 9 open reading frame 72 (C9orf72). The synthesis of findings across studies indicates that thalamic pathology is a prevalent early biomarker of MNDs that contributes to motor and cognitive deficits. The thalamus is a promising target for monitoring as its dysfunction underpins a variety of clinical symptoms in MNDs. CONCLUSIONS: Thalamic alterations provide valuable insights into the pathophysiology and progression of MNDs. Multimodal MRI techniques are potent tools for detecting dynamic thalamic changes, indicating structural integrity, connectivity disruption, and metabolic activity.


Assuntos
Imageamento por Ressonância Magnética , Doença dos Neurônios Motores , Tálamo , Humanos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/fisiopatologia , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia
16.
Radiol Med ; 129(8): 1215-1223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954239

RESUMO

PURPOSE: Spinocerebellar ataxia SCA1 and SCA2 are adult-onset hereditary disorders, due to triplet CAG expansion in their respective causative genes. The pathophysiology of SCA1 and SCA2 suggests alterations of cerebello-thalamo-cortical pathway and its connections to the basal ganglia. In this framework, thalamic integrity is crucial for shaping efficient whole-brain dynamics and functions. The aims of the study are to identify structural changes in thalamic nuclei in presymptomatic and symptomatic SCA1 and SCA2 patients and to assess disease progression within a 1-year interval. MATERIAL AND METHODS: A prospective 1-year clinical and MRI assessment was conducted in 27 presymptomatic and 23 clinically manifest mutation carriers for SCA1 and SCA2 expansions. Cross-sectional and longitudinal changes of thalamic nuclei volume were investigated in SCA1 and SCA2 individuals and in healthy participants (n = 20). RESULTS: Both SCA1 and SCA2 patients had significant atrophy in the majority of thalamic nuclei, except for the posterior and partly medial nuclei. The 1-year longitudinal evaluation showed a specific pattern of atrophy in ventral and posterior thalamus, detectable even at the presymptomatic stage of the disease. CONCLUSION: For the first time in vivo, our exploratory study has shown that different thalamic nuclei are involved at different stages of the degenerative process in both SCA1 and SCA2. It is therefore possible that thalamic alterations might significantly contribute to the progression of the disease years before overt clinical manifestations occur.


Assuntos
Progressão da Doença , Imageamento por Ressonância Magnética , Ataxias Espinocerebelares , Tálamo , Humanos , Masculino , Feminino , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/genética , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Estudos Transversais , Atrofia/diagnóstico por imagem , Ataxina-1/genética , Estudos Longitudinais , Ataxina-2/genética , Tamanho do Órgão
17.
Nord J Psychiatry ; 78(5): 402-410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573199

RESUMO

BACKGROUND: Pediatric generalized anxiety disorder (GAD) is debilitating and increasingly prevalent, yet its etiology remains unclear. Some believe the disorder to be propagated by chronic dysregulation of the limbic-hypothalamic-pituitary-adrenal (L-HPA) axis, but morphometric studies of implicated subcortical areas have been largely inconclusive. Recognizing that certain subcortical subdivisions are more directly involved in L-HPA axis functioning, this study aims to detect specific abnormalities in these critical areas. METHODS: Thirty-eight MRI scans of preschool children with (n = 15) and without (n = 23) GAD underwent segmentation and between-group volumetric comparisons of the basolateral amygdala (BLA), ventral hippocampal subiculum (vSC), and mediodorsal medial magnocellular (MDm) area of the thalamus. RESULTS: Children with GAD displayed significantly larger vSC compared to healthy peers, F(1, 31) = 6.50, pFDR = .048. On average, children with GAD presented with larger BLA and MDm, Fs(1, 31) ≥ 4.86, psFDR ≤ .054. Exploratory analyses revealed right-hemispheric lateralization of all measures, most notably the MDm, F(1, 31) = 8.13, pFDR = .024, the size of which scaled with symptom severity, r = .83, pFDR = .033. CONCLUSION: The BLA, vSC, and MDm are believed to be involved in the regulation of anxiety and stress, both individually and collectively through the excitation and inhibition of the L-HPA axis. All were found to be enlarged in children with GAD, perhaps reflecting hypertrophy related to hyperexcitability, or early neuronal overgrowth. Longitudinal studies should investigate the relationship between these early morphological differences and the long-term subcortical atrophy previously observed.


Assuntos
Tonsila do Cerebelo , Transtornos de Ansiedade , Hipocampo , Sistema Hipotálamo-Hipofisário , Imageamento por Ressonância Magnética , Tálamo , Humanos , Masculino , Feminino , Transtornos de Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/fisiopatologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Criança , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipotálamo-Hipofisário/metabolismo , Pré-Escolar , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/patologia
18.
Stroke ; 54(5): 1367-1376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912138

RESUMO

BACKGROUND: Structural network damage is a potentially important mechanism by which cerebral small vessel disease (SVD) can cause cognitive impairment. As a central hub of the structural network, the role of thalamus in SVD-related cognitive impairments remains unclear. We aimed to determine the associations between the structural alterations of thalamic subregions and cognitive impairments in SVD. METHODS: In this cross-sectional study, 205 SVD participants without thalamic lacunes from the third follow-up (2020) of the prospective RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort), which was initiated in 2006, Nijmegen, were included. Cognitive functions included processing speed, executive function, and memory. Probabilistic tractography was performed from thalamus to 6 cortical regions, followed by connectivity-based thalamic segmentation to assess each thalamic subregion volume and connectivity (measured by mean diffusivity [MD] of the connecting white matter tracts) with the cortex. Least absolute shrinkage and selection operator regression analysis was conducted to identify the volumes or connectivity of the total thalamus and 6 thalamic subregions that have the strongest association with cognitive performance. Linear regression and mediation analyses were performed to test the association of least absolute shrinkage and selection operator-selected thalamic subregion volume or MD with cognitive performance, while adjusting for age and education. RESULTS: We found that higher MD of the thalamic-motor tract was associated with worse processing speed (ß=-0.27; P<0.001), higher MD of the thalamic-frontal tract was associated with worse executive function (ß=-0.24; P=0.001), and memory (ß=-0.28; P<0.001), respectively. The mediation analysis showed that MD of thalamocortical tracts mediated the association between corresponding thalamic subregion volumes and the cognitive performances in 3 domains. CONCLUSIONS: Our results suggest that the structural alterations of thalamus are linked to cognitive impairment in SVD, largely depending on the damage pattern of the white matter tracts connecting specific thalamic subregions and cortical regions.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Estudos Prospectivos , Estudos Transversais , Imageamento por Ressonância Magnética , Tálamo/patologia , Doenças de Pequenos Vasos Cerebrais/complicações
19.
Eur J Neurosci ; 57(11): 1892-1912, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066486

RESUMO

Cardiac arrest survivors develop a variety of neuropsychological impairments and neuroanatomical lesions. The goal of this study is to evaluate if brain voxel-based morphometry and lesional Magnetic Resonance Imaging (MRI) analyses performed in the acute phase of an Out-of-Hospital Cardiac Arrest (OHCA) can be sensitive enough to predict the persistence of neuropsychological disorders beyond 3 months. Survivors underwent a prospective brain MRI during the first month after an OHCA and performed neuropsychological assessments at 1 and 3 months. According to the second neuropsychological assessment, survivors were separated into two subgroups, a deficit subgroup with persistent memory, executive functions, attention and/or praxis disorders (n = 11) and a preserved subgroup, disorders free (n = 14). Brain vascular lesion images were investigated, and volumetric changes were compared with healthy controls. Correlations were discussed between brain MRI results, OHCA data and the second neuropsychological assessment. Analyses of acute ischemic lesions did not reveal significant differences between the two subgroups (p = .35), and correlations with cognitive impairments could not be assessed. voxel-based morphometry analyses revealed a global cerebral volume reduction for the two subgroups and a clear decrease of the right thalamic volume for the deficit subgroup. It was associated with a cognitive dysexecutive syndrome represented by four executive indexes according to the 'Groupe de Réflexion pour l'Evaluation des Fonctions EXécutives' criteria. The right thalamus atrophy seems to be more predictive than the vascular lesions and more specific than a global cerebral volume reduction of post-OHCA neuropsychological executive disorders.


Assuntos
Disfunção Cognitiva , Parada Cardíaca Extra-Hospitalar , Humanos , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Parada Cardíaca Extra-Hospitalar/complicações , Parada Cardíaca Extra-Hospitalar/patologia , Estudos Prospectivos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/patologia , Cognição
20.
Development ; 147(12)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32541009

RESUMO

Thalamocortical axons (TCAs) cross several tissues on their journey to the cortex. Mechanisms must be in place along the route to ensure they connect with their targets in an orderly fashion. The ventral telencephalon acts as an instructive tissue, but the importance of the diencephalon in TCA mapping is unknown. We report that disruption of diencephalic development by Pax6 deletion results in a thalamocortical projection containing mapping errors. We used conditional mutagenesis to test whether these errors are due to the disruption of pioneer projections from prethalamus to thalamus and found that, although this correlates with abnormal TCA fasciculation, it does not induce topographical errors. To test whether the thalamus contains navigational cues for TCAs, we used slice culture transplants and gene expression studies. We found the thalamic environment is instructive for TCA navigation and that the molecular cues netrin 1 and semaphorin 3a are likely to be involved. Our findings indicate that the correct topographic mapping of TCAs onto the cortex requires the order to be established from the earliest stages of their growth by molecular cues in the thalamus itself.


Assuntos
Axônios/fisiologia , Diencéfalo/metabolismo , Tálamo/metabolismo , Animais , Diencéfalo/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Mutagênese , Netrina-1/metabolismo , Técnicas de Cultura de Órgãos , Fator de Transcrição PAX6/deficiência , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Semaforina-3A/metabolismo , Tálamo/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa