Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.285
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Cell ; 187(19): 5357-5375.e24, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39260374

RESUMO

Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.


Assuntos
DNA , Proteolipídeos , Animais , Camundongos , DNA/metabolismo , DNA/administração & dosagem , Proteolipídeos/metabolismo , Terapia Genética/métodos , Humanos , Folistatina/metabolismo , Folistatina/genética , Técnicas de Transferência de Genes , RNA/metabolismo , RNA/administração & dosagem , Feminino , Camundongos Endogâmicos C57BL
2.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051369

RESUMO

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Resistência Microbiana a Medicamentos/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Vida Livre de Germes , Inflamação/patologia , Intestinos/patologia , Masculino , Metaboloma/genética , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Mutação/genética , RNA Ribossômico 16S/genética , Transcrição Gênica
3.
Annu Rev Immunol ; 32: 189-225, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423116

RESUMO

Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials to establish adoptive immunotherapy as a mainstream technology.


Assuntos
Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Viroses/imunologia , Viroses/terapia , Transferência Adotiva , Animais , Antígenos/genética , Antígenos/imunologia , Biomarcadores , Terapia Baseada em Transplante de Células e Tecidos , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução Genética , Viroses/genética
4.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34506722

RESUMO

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Assuntos
Capsídeo/metabolismo , Dependovirus/metabolismo , Evolução Molecular Direcionada , Técnicas de Transferência de Genes , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Capsídeo/química , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Multimerização Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Recombinação Genética/genética , Especificidade da Espécie , Transgenes
5.
Annu Rev Biochem ; 89: 77-101, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569517

RESUMO

DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.


Assuntos
DNA/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Genes Sintéticos , Engenharia Genética/métodos , Genoma , Sistemas CRISPR-Cas , DNA/química , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/genética , Esferoplastos/metabolismo
6.
Annu Rev Biochem ; 88: 191-220, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30883196

RESUMO

Programmable nucleases and deaminases, which include zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR RNA-guided nucleases, and RNA-guided base editors, are now widely employed for the targeted modification of genomes in cells and organisms. These gene-editing tools hold tremendous promise for therapeutic applications. Importantly, these nucleases and deaminases may display off-target activity through the recognition of near-cognate DNA sequences to their target sites, resulting in collateral damage to the genome in the form of local mutagenesis or genomic rearrangements. For therapeutic genome-editing applications with these classes of programmable enzymes, it is essential to measure and limit genome-wide off-target activity. Herein, we discuss the key determinants of off-target activity for these systems. We describe various cell-based and cell-free methods for identifying genome-wide off-target sites and diverse strategies that have been developed for reducing the off-target activity of programmable gene-editing enzymes.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/genética , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Artefatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Transferência de Genes , Genoma Humano , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Software
7.
Annu Rev Neurosci ; 45: 447-469, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440143

RESUMO

Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.


Assuntos
Dependovirus , Vetores Genéticos , Encéfalo , Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes
8.
Nat Rev Neurosci ; 25(8): 553-572, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38898231

RESUMO

Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.


Assuntos
Doenças do Sistema Nervoso Central , Terapia Genética , Humanos , Terapia Genética/métodos , Terapia Genética/tendências , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/genética , Animais , Pesquisa Translacional Biomédica/métodos , Técnicas de Transferência de Genes/tendências
9.
Trends Biochem Sci ; 49(5): 457-469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531696

RESUMO

Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Dependovirus/genética , Humanos , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Engenharia Genética , Animais , Biologia Computacional/métodos
10.
Nat Immunol ; 17(3): 241-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26692175

RESUMO

The gene encoding PTEN is one of the most frequently mutated tumor suppressor-encoding genes in human cancer. While PTEN's function in tumor suppression is well established, its relationship to anti-microbial immunity remains unknown. Here we found a pivotal role for PTEN in the induction of type I interferon, the hallmark of antiviral innate immunity, that was independent of the pathway of the kinases PI(3)K and Akt. PTEN controlled the import of IRF3, a master transcription factor responsible for IFN-ß production, into the nucleus. We further identified a PTEN-controlled negative phosphorylation site at Ser97 of IRF3 and found that release from this negative regulation via the phosphatase activity of PTEN was essential for the activation of IRF3 and its import into the nucleus. Our study identifies crosstalk between PTEN and IRF3 in tumor suppression and innate immunity.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , PTEN Fosfo-Hidrolase/imunologia , Infecções por Respirovirus/imunologia , Infecções por Rhabdoviridae/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular , Proliferação de Células , Citocinas/imunologia , Células Dendríticas/imunologia , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Células MCF-7 , Macrófagos/imunologia , Espectrometria de Massas , Camundongos , Microscopia Confocal , Mutagênese Sítio-Dirigida , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai , Vesiculovirus
11.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507752

RESUMO

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Neuropatia Axonal Gigante , Criança , Humanos , Proteínas do Citoesqueleto/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/terapia , Transgenes , Injeções Espinhais
12.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39023164

RESUMO

Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.


Assuntos
Animais Geneticamente Modificados , Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Células Germinativas , Lytechinus , Transgenes , Animais , Elementos de DNA Transponíveis/genética , Células Germinativas/metabolismo , Lytechinus/genética , Feminino , Masculino , Ouriços-do-Mar/genética , Membranas Associadas à Mitocôndria
13.
Proc Natl Acad Sci U S A ; 121(35): e2400194121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172792

RESUMO

Size-dependent phagocytosis is a well-characterized phenomenon in monocytes and macrophages. However, this size effect for preferential gene delivery to these important cell targets has not been fully exploited because commonly adopted stabilization methods for electrostatically complexed nucleic acid nanoparticles, such as PEGylation and charge repulsion, typically arrest the vehicle size below 200 nm. Here, we bridge the technical gap in scalable synthesis of larger submicron gene delivery vehicles by electrostatic self-assembly of charged nanoparticles, facilitated by a polymer structurally designed to modulate internanoparticle Coulombic and van der Waals forces. Specifically, our strategy permits controlled assembly of small poly(ß-amino ester)/messenger ribonucleic acid (mRNA) nanoparticles into particles with a size that is kinetically tunable between 200 and 1,000 nm with high colloidal stability in physiological media. We found that assembled particles with an average size of 400 nm safely and most efficiently transfect monocytes following intravenous administration and mediate their differentiation into macrophages in the periphery. When a CpG adjuvant is co-loaded into the particles with an antigen mRNA, the monocytes differentiate into inflammatory dendritic cells and prime adaptive anticancer immunity in the tumor-draining lymph node. This platform technology offers a unique ligand-independent, particle-size-mediated strategy for preferential mRNA delivery and enables therapeutic paradigms via monocyte programming.


Assuntos
Monócitos , Nanopartículas , RNA Mensageiro , Monócitos/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Camundongos , Humanos , Polieletrólitos/química , Macrófagos/metabolismo , Poliaminas/química , Tamanho da Partícula , Diferenciação Celular , Técnicas de Transferência de Genes , Células Dendríticas/metabolismo , Eletricidade Estática , Polímeros
14.
Hum Mol Genet ; 33(17): 1467-1480, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-38757200

RESUMO

Gaucher Disease (GD) is an inherited metabolic disorder caused by mutations in the GBA1 gene. It can manifest with severe neurodegeneration and visceral pathology. The most acute neuronopathic form (nGD), for which there are no curative therapeutic options, is characterised by devastating neuropathology and death during infancy. In this study, we investigated the therapeutic benefit of systemically delivered AAV9 vectors expressing the human GBA1 gene at two different doses comparing a neuronal-selective promoter with ubiquitous promoters. Our results highlight the importance of a careful evaluation of the promoter sequence used in gene delivery vectors, suggesting a neuron-targeted therapy leading to high levels of enzymatic activity in the brain but lower GCase expression in the viscera, might be the optimal therapeutic strategy for nGD.


Assuntos
Dependovirus , Doença de Gaucher , Terapia Genética , Vetores Genéticos , Glucosilceramidase , Regiões Promotoras Genéticas , Doença de Gaucher/genética , Doença de Gaucher/terapia , Doença de Gaucher/patologia , Vetores Genéticos/genética , Terapia Genética/métodos , Humanos , Regiões Promotoras Genéticas/genética , Dependovirus/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Transferência de Genes
15.
N Engl J Med ; 388(8): 694-705, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36812433

RESUMO

BACKGROUND: Valoctocogene roxaparvovec delivers a B-domain-deleted factor VIII coding sequence with an adeno-associated virus vector to prevent bleeding in persons with severe hemophilia A. The findings of a phase 3 study of the efficacy and safety of valoctocogene roxaparvovec therapy evaluated after 52 weeks in men with severe hemophilia A have been published previously. METHODS: We conducted an open-label, single-group, multicenter, phase 3 trial in which 134 men with severe hemophilia A who were receiving factor VIII prophylaxis received a single infusion of 6×1013 vector genomes of valoctocogene roxaparvovec per kilogram of body weight. The primary end point was the change from baseline in the annualized rate of treated bleeding events at week 104 after receipt of the infusion. The pharmacokinetics of valoctocogene roxaparvovec were modeled to estimate the bleeding risk relative to the activity of transgene-derived factor VIII. RESULTS: At week 104, a total of 132 participants, including 112 with data that were prospectively collected at baseline, remained in the study. The mean annualized treated bleeding rate decreased by 84.5% from baseline (P<0.001) among the participants. From week 76 onward, the trajectory of the transgene-derived factor VIII activity showed first-order elimination kinetics; the model-estimated typical half-life of the transgene-derived factor VIII production system was 123 weeks (95% confidence interval, 84 to 232). The risk of joint bleeding was estimated among the trial participants; at a transgene-derived factor VIII level of 5 IU per deciliter measured with chromogenic assay, we expected that participants would have 1.0 episode of joint bleeding per year. At 2 years postinfusion, no new safety signals had emerged and no new serious adverse events related to treatment had occurred. CONCLUSIONS: The study data show the durability of factor VIII activity and bleeding reduction and the safety profile of valoctocogene roxaparvovec at least 2 years after the gene transfer. Models of the risk of joint bleeding suggest that the relationship between transgene-derived factor VIII activity and bleeding episodes is similar to that reported with the use of epidemiologic data for persons with mild-to-moderate hemophilia A. (Funded by BioMarin Pharmaceutical; GENEr8-1 ClinicalTrials.gov number, NCT03370913.).


Assuntos
Fator VIII , Hemofilia A , Humanos , Masculino , Fator VIII/uso terapêutico , Técnicas de Transferência de Genes , Meia-Vida , Hemofilia A/complicações , Hemofilia A/tratamento farmacológico , Hemorragia/etiologia , Hemorragia/prevenção & controle , Proteínas Recombinantes de Fusão/uso terapêutico
16.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975217

RESUMO

Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.


Assuntos
Técnicas de Transferência de Genes , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Elementos de DNA Transponíveis/genética
17.
Nat Methods ; 20(7): 1070-1081, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291262

RESUMO

The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Animais , Vetores Genéticos/genética , Camundongos Transgênicos , Terapia Genética , Transgenes , Dependovirus/genética , Transdução Genética
18.
Blood ; 143(23): 2373-2385, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452208

RESUMO

ABSTRACT: Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.


Assuntos
Dependovirus , Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Fígado , Animais , Cães , Dependovirus/genética , Hemofilia A/genética , Hemofilia A/terapia , Vetores Genéticos/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Terapia Genética/métodos , Feminino , Fator VIII/genética , Técnicas de Transferência de Genes , Integração Viral , Transgenes , Modelos Animais de Doenças
19.
Nucleic Acids Res ; 52(13): 7539-7555, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38783375

RESUMO

The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.


Assuntos
DNA Tumoral Circulante , Elementos de DNA Transponíveis , Humanos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Elementos de DNA Transponíveis/genética , Linhagem Celular Tumoral , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Camundongos , Especificidade de Órgãos/genética , Retroelementos/genética , Técnicas de Transferência de Genes
20.
Nucleic Acids Res ; 52(5): 2724-2739, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38300794

RESUMO

Transposons, as non-viral integration vectors, provide a secure and efficient method for stable gene delivery. In this study, we have discovered Mage (MG), a novel member of the piggyBac(PB) family, which exhibits strong transposability in a variety of mammalian cells and primary T cells. The wild-type MG showed a weaker insertion preference for near genes, transcription start sites (TSS), CpG islands, and DNaseI hypersensitive sites in comparison to PB, approaching the random insertion pattern. Utilizing in silico virtual screening and feasible combinatorial mutagenesis in vitro, we effectively produced the hyperactive MG transposase (hyMagease). This variant boasts a transposition rate 60% greater than its native counterpart without significantly altering its insertion pattern. Furthermore, we applied the hyMagease to efficiently deliver chimeric antigen receptor (CAR) into T cells, leading to stable high-level expression and inducing significant anti-tumor effects both in vitro and in xenograft mice models. These findings provide a compelling tool for gene transfer research, emphasizing its potential and prospects in the domains of genetic engineering and gene therapy.


Assuntos
Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Humanos , Camundongos , Animais , Elementos de DNA Transponíveis/genética , Terapia Genética , Linfócitos T/metabolismo , Transposases/genética , Transposases/metabolismo , Vetores Genéticos , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa