Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.465
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Nature ; 628(8006): 84-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538792

RESUMO

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Pele , Têxteis , Eletrodos
2.
Nature ; 630(8016): 381-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811733

RESUMO

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Assuntos
Compostos Benzidrílicos , Biomassa , Fracionamento Químico , Lignina , Fenóis , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Catálise , Celulose/química , Celulose/metabolismo , Fracionamento Químico/métodos , Hidrogenação , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Madeira/química , Xilanos/química , Xilanos/metabolismo , Xilose/química , Xilose/metabolismo , Combustíveis Fósseis , Têxteis
3.
Nature ; 603(7902): 616-623, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296860

RESUMO

Fabrics, by virtue of their composition and structure, have traditionally been used as acoustic absorbers1,2. Here, inspired by the auditory system3, we introduce a fabric that operates as a sensitive audible microphone while retaining the traditional qualities of fabrics, such as machine washability and draping. The fabric medium is composed of high-Young's modulus textile yarns in the weft of a cotton warp, converting tenuous 10-7-atmosphere pressure waves at audible frequencies into lower-order mechanical vibration modes. Woven into the fabric is a thermally drawn composite piezoelectric fibre that conforms to the fabric and converts the mechanical vibrations into electrical signals. Key to the fibre sensitivity is an elastomeric cladding that concentrates the mechanical stress in a piezocomposite layer with a high piezoelectric charge coefficient of approximately 46 picocoulombs per newton, a result of the thermal drawing process. Concurrent measurements of electric output and spatial vibration patterns in response to audible acoustic excitation reveal that fabric vibrational modes with nanometre amplitude displacement are the source of the electrical output of the fibre. With the fibre subsuming less than 0.1% of the fabric by volume, a single fibre draw enables tens of square metres of fabric microphone. Three different applications exemplify the usefulness of this study: a woven shirt with dual acoustic fibres measures the precise direction of an acoustic impulse, bidirectional communications are established between two fabrics working as sound emitters and receivers, and a shirt auscultates cardiac sound signals.


Assuntos
Têxteis , Vibração , Dispositivos Eletrônicos Vestíveis , Acústica , Fibras na Dieta , Auscultação Cardíaca
4.
Nature ; 596(7871): 238-243, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381233

RESUMO

Structured fabrics, such as woven sheets or chain mail armours, derive their properties both from the constitutive materials and their geometry1,2. Their design can target desirable characteristics, such as high impact resistance, thermal regulation, or electrical conductivity3-5. Once realized, however, the fabrics' properties are usually fixed. Here we demonstrate structured fabrics with tunable bending modulus, consisting of three-dimensional particles arranged into layered chain mails. The chain mails conform to complex shapes2, but when pressure is exerted at their boundaries, the particles interlock and the chain mails jam. We show that, with small external pressure (about 93 kilopascals), the sheets become more than 25 times stiffer than in their relaxed configuration. This dramatic increase in bending resistance arises because the interlocking particles have high tensile resistance, unlike what is found for loose granular media. We use discrete-element simulations to relate the chain mail's micro-structure to macroscale properties and to interpret experimental measurements. We find that chain mails, consisting of different non-convex granular particles, undergo a jamming phase transition that is described by a characteristic power-law function akin to the behaviour of conventional convex media. Our work provides routes towards lightweight, tunable and adaptive fabrics, with potential applications in wearable exoskeletons, haptic architectures and reconfigurable medical supports.


Assuntos
Fenômenos Mecânicos , Têxteis , Exoesqueleto Energizado , Humanos , Maleabilidade , Pressão , Resistência à Tração , Dispositivos Eletrônicos Vestíveis
5.
Nature ; 591(7849): 240-245, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33692559

RESUMO

Displays are basic building blocks of modern electronics1,2. Integrating displays into textiles offers exciting opportunities for smart electronic textiles-the ultimate goal of wearable technology, poised to change the way in which we interact with electronic devices3-6. Display textiles serve to bridge human-machine interactions7-9, offering, for instance, a real-time communication tool for individuals with voice or speech difficulties. Electronic textiles capable of communicating10, sensing11,12 and supplying electricity13,14 have been reported previously. However, textiles with functional, large-area displays have not yet been achieved, because it is challenging to obtain small illuminating units that are both durable and easy to assemble over a wide area. Here we report a 6-metre-long, 25-centimetre-wide display textile containing 5 × 105 electroluminescent units spaced approximately 800 micrometres apart. Weaving conductive weft and luminescent warp fibres forms micrometre-scale electroluminescent units at the weft-warp contact points. The brightness between electroluminescent units deviates by less than 8 per cent and remains stable even when the textile is bent, stretched or pressed. Our display textile is flexible and breathable and withstands repeated machine-washing, making it suitable for practical applications. We show that an integrated textile system consisting of display, keyboard and power supply can serve as a communication tool, demonstrating the system's potential within the 'internet of things' in various areas, including healthcare. Our approach unifies the fabrication and function of electronic devices with textiles, and we expect that woven-fibre materials will shape the next generation of electronics.


Assuntos
Terminais de Computador , Eletrônica/instrumentação , Têxteis , Humanos , Maleabilidade , Dispositivos Eletrônicos Vestíveis
6.
Nature ; 597(7874): 57-63, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471277

RESUMO

Fibre lithium-ion batteries are attractive as flexible power solutions because they can be woven into textiles, offering a convenient way to power future wearable electronics1-4. However, they are difficult to produce in lengths of more than a few centimetres, and longer fibres were thought to have higher internal resistances3,5 that compromised electrochemical performance6,7. Here we show that the internal resistance of such fibres has a hyperbolic cotangent function relationship with fibre length, where it first decreases before levelling off as length increases. Systematic studies confirm that this unexpected result is true for different fibre batteries. We are able to produce metres of high-performing fibre lithium-ion batteries through an optimized scalable industrial process. Our mass-produced fibre batteries have an energy density of 85.69 watt hour per kilogram (typical values8 are less than 1 watt hour per kilogram), based on the total weight of a lithium cobalt oxide/graphite full battery, including packaging. Its capacity retention reaches 90.5% after 500 charge-discharge cycles and 93% at 1C rate (compared with 0.1C rate capacity), which is comparable to commercial batteries such as pouch cells. Over 80 per cent capacity can be maintained after bending the fibre for 100,000 cycles. We show that fibre lithium-ion batteries woven into safe and washable textiles by industrial rapier loom can wirelessly charge a cell phone or power a health management jacket integrated with fibre sensors and a textile display.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Eletrônica , Lítio/química , Óxidos/química , Têxteis , Dispositivos Eletrônicos Vestíveis , Grafite/química , Humanos , Íons , Masculino , Tecnologia sem Fio
7.
Proc Natl Acad Sci U S A ; 121(33): e2407971121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110725

RESUMO

Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.


Assuntos
Sinapses , Têxteis , Sinapses/fisiologia , Dispositivos Eletrônicos Vestíveis , Biomimética/métodos , Biomimética/instrumentação , Humanos , Plasticidade Neuronal/fisiologia
8.
Chem Rev ; 124(4): 1535-1648, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373392

RESUMO

Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Porosidade , Têxteis , Condutividade Elétrica
9.
Nature ; 587(7833): 219-224, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177670

RESUMO

Soft machines are a promising design paradigm for human-centric devices1,2 and systems required to interact gently with their environment3,4. To enable soft machines to respond intelligently to their surroundings, compliant sensory feedback mechanisms are needed. Specifically, soft alternatives to strain gauges-with high resolution at low strain (less than 5 per cent)-could unlock promising new capabilities in soft systems. However, currently available sensing mechanisms typically possess either high strain sensitivity or high mechanical resilience, but not both. The scarcity of resilient and compliant ultra-sensitive sensing mechanisms has confined their operation to laboratory settings, inhibiting their widespread deployment. Here we present a versatile and compliant transduction mechanism for high-sensitivity strain detection with high mechanical resilience, based on strain-mediated contact in anisotropically resistive structures (SCARS). The mechanism relies upon changes in Ohmic contact between stiff, micro-structured, anisotropically conductive meanders encapsulated by stretchable films. The mechanism achieves high sensitivity, with gauge factors greater than 85,000, while being adaptable for use with high-strength conductors, thus producing sensors resilient to adverse loading conditions. The sensing mechanism also exhibits high linearity, as well as insensitivity to bending and twisting deformations-features that are important for soft device applications. To demonstrate the potential impact of our technology, we construct a sensor-integrated, lightweight, textile-based arm sleeve that can recognize gestures without encumbering the hand. We demonstrate predictive tracking and classification of discrete gestures and continuous hand motions via detection of small muscle movements in the arm. The sleeve demonstration shows the potential of the SCARS technology for the development of unobtrusive, wearable biomechanical feedback systems and human-computer interfaces.


Assuntos
Retroalimentação Sensorial , Maleabilidade , Robótica/instrumentação , Robótica/métodos , Interface Usuário-Computador , Dispositivos Eletrônicos Vestíveis , Mãos/fisiologia , Humanos , Movimento (Física) , Movimento , Têxteis
10.
Nature ; 572(7770): 516-519, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413364

RESUMO

Machines made of soft materials bridge life sciences and engineering1. Advances in soft materials have led to skin-like sensors and muscle-like actuators for soft robots and wearable devices1-3. Flexible or stretchable counterparts of most key mechatronic components have been developed4,5, principally using fluidically driven systems6-8; other reported mechanisms include electrostatic9-12, stimuli-responsive gels13,14 and thermally responsive materials such as liquid metals15-17 and shape-memory polymers18. Despite the widespread use of fluidic actuation, there have been few soft counterparts of pumps or compressors, limiting the portability and autonomy of soft machines4,8. Here we describe a class of soft-matter bidirectional pumps based on charge-injection electrohydrodynamics19. These solid-state pumps are flexible, stretchable, modular, scalable, quiet and rapid. By integrating the pump into a glove, we demonstrate wearable active thermal management. Embedding the pump in an inflatable structure produces a self-contained fluidic 'muscle'. The stretchable pumps have potential uses in wearable laboratory-on-a-chip and microfluidic sensors, thermally active clothing and autonomous soft robots.


Assuntos
Robótica/instrumentação , Dispositivos Eletrônicos Vestíveis , Eletrodos , Calefação/instrumentação , Humanos , Microfluídica , Temperatura , Têxteis
11.
Am J Respir Crit Care Med ; 209(4): 427-443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971785

RESUMO

Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 µm nylon 6,6 (nylon) and 15 × 52 µm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Plásticos , Polímeros , Camundongos , Humanos , Animais , Nylons , Têxteis , Poliésteres
12.
Proc Natl Acad Sci U S A ; 119(35): e2202118119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994641

RESUMO

Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.


Assuntos
Robótica , Indústria Têxtil , Têxteis , Dispositivos Eletrônicos Vestíveis , Biotecnologia , Lógica
13.
BMC Biotechnol ; 24(1): 2, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200466

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative cleavage of different types of polysaccharides have potential to be used in various industries. However, AA13 family LPMOs which specifically catalyze starch substrates have relatively less members than AA9 and AA10 families to limit their application range. Amylase has been used in enzymatic desizing treatment of cotton fabric for semicentury which urgently need for new assistant enzymes to improve reaction efficiency and reduce cost so as to promote their application in the textile industry. RESULTS: A total of 380 unannotated new genes which probably encode AA13 family LPMOs were discovered by the Hidden Markov model scanning in this study. Ten of them have been successfully heterologous overexpressed. AlLPMO13 with the highest activity has been purified and determined its optimum pH and temperature as pH 5.0 and 50 °C. It also showed various oxidative activities on different substrates (modified corn starch > amylose > amylopectin > corn starch). The results of enzymatic textile desizing application showed that the best combination of amylase (5 g/L), AlLPMO13 (5 mg/L), and H2O2 (3 g/L) made the desizing level and the capillary effects increased by 3 grades and more than 20%, respectively, compared with the results treated by only amylase. CONCLUSION: The Hidden Markov model constructed basing on 34 AA13 family LPMOs was proved to be a valid bioinformatics tool for discovering novel starch-active LPMOs. The novel enzyme AlLPMO13 has strong development potential in the enzymatic textile industry both concerning on economy and on application effect.


Assuntos
Peróxido de Hidrogênio , Amido , Humanos , Polissacarídeos , Amilases , Biologia Computacional , Oxigenases de Função Mista/genética , Têxteis
14.
Eur Respir J ; 63(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857425

RESUMO

BACKGROUND: We determined the effectiveness of an intervention to reduce cotton dust-related respiratory symptoms and improve lung function of textile workers. METHODS: We undertook a cluster randomised controlled trial at 38 textile mills in Karachi, Pakistan. The intervention comprised: training in occupational health for workers and managers, formation of workplace committees to promote a health and safety plan that included wet mopping and safe disposal of cotton dust, provision of simple face masks, and further publicity about the risks from cotton dust. Participating mills were randomised following baseline data collection. The impact of the intervention was measured through surveys at 3, 12 and 18 months using questionnaires, spirometry and dust measurements. The primary outcomes were 1) changes in prevalence of a composite respiratory symptom variable, 2) changes in post-bronchodilator percentage predicted forced expiratory volume in 1 s (FEV1) and 3) changes in cotton dust levels. These were assessed using two-level mixed effects linear and logistic regression. RESULTS: Of 2031 participants recruited at baseline, 807 (40%) were available at the third follow-up. At that point, workers in the intervention arm were more likely to report an improvement in respiratory symptoms (OR 1.58, 95% CI 1.06-2.36) and lung function (FEV1 % pred: ß 1.31%, 95% CI 0.04-2.57%). Personal dust levels decreased, more so in intervention mills, although we did not observe this in adjusted models due to the small number of samples. CONCLUSION: We found the intervention to be effective in improving the respiratory health of textile workers and recommend scaling-up of such simple and feasible interventions in low- and middle-income countries.


Assuntos
Pneumopatias , Exposição Ocupacional , Humanos , Poeira , Exposição Ocupacional/prevenção & controle , Têxteis , Volume Expiratório Forçado
15.
Small ; 20(30): e2309514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415913

RESUMO

Sustainable, durable, and diverse photochromic smart textiles based on bacterial cellulose (BC) have emerged as attractive candidates in UV-sensing applications due to the green and easy functionalization of BC. However, existing BC-based photochromic textiles lack photochromic efficiency and combining fastness. In this study, a green strategy for in situ fermentation is developed to achieve the directional distribution of functional particles and remarkable photochromism in photochromic bacterial cellulose (PBC). The unique functional design obtained by regulating the photochromic dye distribution in 3D nanonetworks of PBCs during in situ growth affords a more uniform distribution and high fastness. Benefiting from the uniform distribution of photochromic dyes and adequate utilization of the 3D network structure, more surface area is provided to receive and utilize the photon energy from the UV rays, making the photochromic process more effective. The as-prepared PBCs exhibited rapid (within 1 min) and stable (30 cycles) discoloration and multicolor selectivity. Their simple preparation process and exceptional wearability, e.g., their flexibility, lightweight, and air permeability, make them suitable for various applications, including tunable color switching systems, photopatterning, and daily sunlight UV monitoring. This study provides empirical value for the biofabrication of photochromic textiles and wearable flexible UV sensors.


Assuntos
Celulose , Luz Solar , Raios Ultravioleta , Celulose/química , Bactérias , Têxteis , Cor
16.
Small ; 20(33): e2310032, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566533

RESUMO

Wearable pressure sensors have attracted great interest due to their potential applications in healthcare monitoring and human-machine interaction. However, it is still a critical challenge to simultaneously achieve high sensitivity, low detection limit, fast response, and outstanding breathability for wearable electronics due to the difficulty in constructing microstructure on a porous substrate. Inspired by the spinosum microstructure of human skin for highly-sensitive tactile perception, a biomimetic flexible pressure sensor is designed and fabricated by assembling MXene-based sensing electrode and MXene-based interdigitated electrode. The product biomimetic sensor exhibits good flexibility and suitable air permeability (165.6 mm s-1), comparable to the typical air permeable garments. Benefiting from the two-stage amplification effect of the bionic intermittent structure, the product bionic sensor exhibits an ultrahigh sensitivity (1368.9 kPa-1), ultrafast response (20 ms), low detection limit (1 Pa), and high-linearity response (R2 = 0.997) across the entire sensing range. Moreover, the pressure sensor can detect a wide range of human motion in real-time through intimate skin contact, providing essential data for biomedical monitoring and personal medical diagnosis. This principle lays a foundation for the development of human skin-like high-sensitivity, fast-response tactile sensors.


Assuntos
Pressão , Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Eletrônica , Eletrodos
17.
Small ; 20(23): e2308404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148325

RESUMO

Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.


Assuntos
Condutividade Elétrica , Têxteis , Humanos , Nanofios/química , Prata/química , Medicina de Precisão/métodos , Dispositivos Eletrônicos Vestíveis , Temperatura , Grafite/química
18.
BMC Microbiol ; 24(1): 210, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877404

RESUMO

Efficiently mitigating and managing environmental pollution caused by the improper disposal of dyes and effluents from the textile industry is of great importance. This study evaluated the effectiveness of Streptomyces albidoflavus 3MGH in decolorizing and degrading three different azo dyes, namely Reactive Orange 122 (RO 122), Direct Blue 15 (DB 15), and Direct Black 38 (DB 38). Various analytical techniques, such as Fourier Transform Infrared (FTIR) spectroscopy, High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze the degraded byproducts of the dyes. S. albidoflavus 3MGH demonstrated a strong capability to decolorize RO 122, DB 15, and DB 38, achieving up to 60.74%, 61.38%, and 53.43% decolorization within 5 days at a concentration of 0.3 g/L, respectively. The optimal conditions for the maximum decolorization of these azo dyes were found to be a temperature of 35 °C, a pH of 6, sucrose as a carbon source, and beef extract as a nitrogen source. Additionally, after optimization of the decolorization process, treatment with S. albidoflavus 3MGH resulted in significant reductions of 94.4%, 86.3%, and 68.2% in the total organic carbon of RO 122, DB 15, and DB 38, respectively. After the treatment process, we found the specific activity of the laccase enzyme, one of the mediating enzymes of the degradation mechanism, to be 5.96 U/mg. FT-IR spectroscopy analysis of the degraded metabolites showed specific changes and shifts in peaks compared to the control samples. GC-MS analysis revealed the presence of metabolites such as benzene, biphenyl, and naphthalene derivatives. Overall, this study demonstrated the potential of S. albidoflavus 3MGH for the effective decolorization and degradation of different azo dyes. The findings were validated through various analytical techniques, shedding light on the biodegradation mechanism employed by this strain.


Assuntos
Compostos Azo , Biodegradação Ambiental , Corantes , Streptomyces , Streptomyces/metabolismo , Compostos Azo/metabolismo , Compostos Azo/química , Corantes/metabolismo , Corantes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Têxteis , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Temperatura , Indústria Têxtil , Poluentes Químicos da Água/metabolismo , Cromatografia Líquida de Alta Pressão , Carbono/metabolismo
19.
Electrophoresis ; 45(13-14): 1171-1181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837441

RESUMO

The integration of microfluidics with electric field control, commonly referred to as electrofluidics, has led to new opportunities for biomedical analysis. The requirement for closed microcapillary channels in microfluidics, typically formed via complex microlithographic fabrication approaches, limits the direct accessibility to the separation processes during conventional electrofluidic devices. Textile structures provide an alternative and low-cost approach to overcome these limitations via providing open and surface-accessible capillary channels. Herein, we investigate the potential of different 3D textile structures for electrofluidics. In this study, 12 polyester yarns were braided around nylon monofilament cores of different diameters to produce functional 3D core-shell textile structures. Capillary electrophoresis performances of these 3D core-shell textile structures both before and after removing the nylon core were evaluated in terms of mobility and bandwidth of a fluorescence marker compound. It was shown that the fibre arrangement and density govern the inherent capillary formation within these textile structures which also impacts upon the solute analyte mobility and separation bandwidth during electrophoretic studies. Core-shell textile structures with a 0.47 mm nylon core exhibited the highest fluorescein mobility and presented a narrower separation bandwidth. This optimal textile structure was readily converted to different geometries via a simple heat-setting of the central nylon core. This approach can be used to fabricate an array of miniaturized devices that possess many of the basic functionalities required in electrofluidics while maintaining open surface access that is otherwise impractical in classical approaches.


Assuntos
Eletroforese Capilar , Têxteis , Têxteis/análise , Eletroforese Capilar/métodos , Eletroforese Capilar/instrumentação , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Nylons/química
20.
Electrophoresis ; 45(13-14): 1182-1197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837242

RESUMO

Electric field-driven microfluidics, known as electrofluidics, is a novel attractive analytical tool when it is integrated with low-cost textile substrate. Textile-based electrofluidics, primarily explored on yarn substrates, is in its early stages, with few studies on 3D structures. Further, textile structures have rarely been used in cellular analysis as a low-cost alternative. Herein, we investigated novel 3D textile structures and develop optimal electrophoretic designs and conditions that are favourable for direct 3D cell culture integration, developing an integrated cell culture textile-based electrofluidic platform that was optimised to balance electrokinetic performance and cell viability requirements. Significantly, there were contrasting electrolyte compositional conditions that were required to satisfy cell viability and electrophoretic mobility requiring the development of and electrolyte that satisfied the minimum requirements of both these components within the one platform. Human dermal fibroblast cell cultures were successfully integrated with gelatine methacryloyl (GelMA) hydrogel-coated electrofluidic platform and studied under different electric fields using 5 mM TRIS/HEPES/300 mM glucose. Higher analyte mobility was observed on 2.5% GelMA-coated textile which also facilitated excellent cell attachment, viability and proliferation. Cell viability also increased by decreasing the magnitude and time duration of applied electric field with good cell viability at field of up to 20 V cm-1.


Assuntos
Técnicas de Cultura de Células , Sobrevivência Celular , Fibroblastos , Técnicas Analíticas Microfluídicas , Têxteis , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Fibroblastos/citologia , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa