Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.285
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 34: 203-42, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907216

RESUMO

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.


Assuntos
Quimiocinas/imunologia , Sistema Imunitário , Infecções/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Tecido Linfoide/imunologia , Receptores de Quimiocinas/imunologia , Animais , Comunicação Celular , Movimento Celular , Humanos , Ativação Linfocitária
2.
Annu Rev Immunol ; 33: 715-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861980

RESUMO

Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Animais , Comunicação Celular , Doença Crônica , Humanos , Inflamação/patologia , Organogênese/imunologia , Fenótipo
3.
Nat Immunol ; 25(1): 142-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049580

RESUMO

Spleen marginal zone (MZ) B cells are important for antibody responses against blood-borne antigens. The signals they use to detect exposure to blood are not well defined. Here, using intravital two-photon microscopy in mice, we observe transient contacts between MZ B cells and red blood cells that are in flow. We show that MZ B cells use adhesion G-protein-coupled receptor ADGRE5 (CD97) for retention in the spleen. CD97 function in MZ B cells depends on its ability to undergo autoproteolytic cleavage and signaling via Gα13 and ARHGEF1. Red blood cell expression of the CD97 ligand CD55 is required for MZ B cell homeostasis. Applying a pulling force on CD97-transfected cells using an optical C-trap and CD55+ beads leads to accumulation of active RhoA and membrane retraction. Finally, we show that CD97 deficiency leads to a reduced T cell-independent IgM response. Thus, our studies provide evidence that MZ B cells use mechanosensing to position in a manner that enhances antibody responses against blood-borne antigens.


Assuntos
Linfócitos B , Tecido Linfoide , Camundongos , Animais , Baço/metabolismo , Transdução de Sinais , Antígenos CD55/metabolismo , Eritrócitos
4.
Annu Rev Immunol ; 32: 659-702, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24655300

RESUMO

Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.


Assuntos
Quimiocinas/metabolismo , Imunidade/fisiologia , Receptores de Quimiocinas/metabolismo , Imunidade Adaptativa/fisiologia , Animais , Movimento Celular/imunologia , Homeostase , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata/fisiologia , Memória Imunológica , Inflamação/imunologia , Inflamação/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012543

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Linfócitos B , Tecido Linfoide , Centro Germinativo , Fatores de Transcrição
6.
Nat Immunol ; 24(8): 1370-1381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460638

RESUMO

Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4+ T cells and functionally active germinal centers, develop during infancy. BALT structures are prevalent around lung airways during the first 3 years of life, and their numbers decline through childhood coincident with the accumulation of memory T cells. Single-cell profiling and repertoire analysis reveals that early life lung B cells undergo differentiation, somatic hypermutation and immunoglobulin class switching and exhibit a more activated profile than lymph node B cells. Moreover, B cells in the lung and lung-associated lymph nodes generate biased antibody responses to multiple respiratory pathogens compared to circulating antibodies, which are mostly specific for vaccine antigens in the early years of life. Together, our findings provide evidence for BALT as an early life adaptation for mobilizing localized immune protection to the diverse respiratory challenges during this formative life stage.


Assuntos
COVID-19 , Tecido Linfoide , Adulto , Lactente , Humanos , Criança , Pré-Escolar , Brônquios/patologia , COVID-19/patologia , Linfócitos B , Linfonodos
7.
Annu Rev Immunol ; 31: 635-674, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23330956

RESUMO

To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies.


Assuntos
Hematopoese/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/transplante , Modelos Animais , Animais , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/tendências , Humanos , Imunofenotipagem , Tecido Linfoide/patologia , Camundongos , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Transplante Heterólogo
8.
Annu Rev Immunol ; 31: 563-604, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516985

RESUMO

Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Animais , Movimento Celular/imunologia , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/fisiologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia
9.
Annu Rev Immunol ; 30: 733-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224762

RESUMO

Regulatory T lymphocytes are essential to maintain homeostasis of the immune system, limiting the magnitude of effector responses and allowing the establishment of immunological tolerance. Two main types of regulatory T cells have been identified--natural and induced (or adaptive)-and both play significant roles in tuning down effector immune responses. Adaptive CD4(+)Foxp3(+) regulatory T (iTreg) cells develop outside the thymus under a variety of conditions. These include not only antigen presentation under subimmunogenic or noninflammatory conditions, but also chronic inflammation and infections. We speculate that the different origin of iTreg cells (noninflammatory versus inflammatory) results in distinct properties, including their stability. iTreg cells are also generated during homeostasis of the gut and in cancer, although some cancers also favor expansion of natural regulatory T (nTreg) cells. Here we review how iTreg cells develop and how they participate in immunological tolerance, contrasting, when possible, iTreg cells with nTreg cells.


Assuntos
Tolerância Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Linfócitos T Reguladores/metabolismo
10.
Annu Rev Immunol ; 30: 69-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22149932

RESUMO

Much has been learned about how cells enter lymphoid tissues. But how do they leave? Sphingosine-1-phosphate (S1P) has emerged over the past decade as a central mediator of lymphocyte egress. In this review, we summarize the current understanding of how S1P promotes exit from the secondary lymphoid organs and thymus. We review what is known about additional requirements for emigration and summarize the mostly distinct requirements for exit from the bone marrow. Egress from lymphoid organs is limited during immune responses, and we examine how this regulation works. There is accumulating evidence for roles of S1P in directing immune cell behavior within lymphoid tissues. How such actions can fit together with the egress-promoting role of S1P is discussed. Finally, we examine current understanding of how FTY720, a drug that targets S1P receptors and is approved for the treatment of multiple sclerosis, causes immune suppression.


Assuntos
Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/metabolismo , Cloridrato de Fingolimode , Humanos , Imunossupressores/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfócitos/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Lisofosfolipídeos/imunologia , Modelos Biológicos , Propilenoglicóis/farmacologia , Esfingosina/imunologia , Esfingosina/metabolismo , Esfingosina/farmacologia , Timo/efeitos dos fármacos , Timo/imunologia , Timo/metabolismo
11.
Nat Immunol ; 22(10): 1245-1255, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556884

RESUMO

Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/imunologia , Imunidade nas Mucosas/imunologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas com Domínio T/imunologia , Fatores de Transcrição/imunologia
12.
Nat Immunol ; 22(10): 1231-1244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556887

RESUMO

The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Linfonodos/imunologia , Linfócitos/imunologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas com Domínio T/imunologia , Animais , Linhagem da Célula/imunologia , Feminino , Tecido Linfoide/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
13.
Annu Rev Immunol ; 29: 621-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21314428

RESUMO

T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).


Assuntos
Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/imunologia , Centro Germinativo/citologia , Humanos , Tecido Linfoide/citologia , Tecido Linfoide/imunologia
14.
Annu Rev Immunol ; 29: 23-43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21073333

RESUMO

Interaction between different types of hematopoietic cells is essential for proper functioning of the immune system. For instance, the cytokines produced by antigen-presenting dendritic cells will determine the type of T cell response that is induced. However, hematopoietic cells are also strongly influenced by the surrounding nonhematopoietic cells. The cells that form these microenvironments are collectively called stromal cells. Here, we focus on the stromal cells present within secondary lymphoid organs and discuss their importance for various aspects of the immune system.


Assuntos
Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Células Estromais/citologia , Células Estromais/imunologia , Animais , Apresentação de Antígeno , Linfócitos B/citologia , Comunicação Celular , Células Dendríticas/imunologia , Humanos , Inflamação , Linfócitos T/citologia
15.
Immunity ; 56(6): 1204-1219.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160119

RESUMO

During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.


Assuntos
Organogênese , Fatores de Transcrição , Diferenciação Celular , Linfonodos , Tecido Linfoide
16.
Immunity ; 56(8): 1699-1701, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557075

RESUMO

Dendritic cells (DCs) are relatively short lived, yet DC frequencies in lymph nodes are stable. In this issue of Immunity, Ugur et al. reveal that type 1 conventional DCs (cDC1s) are maintained in the deep paracortex of the lymph node from a supply of preDCs that proliferate in nearby medullary vessels. Transition from preDC to cDC1 is regulated by Flt3L sensing.


Assuntos
Linfonodos , Tecido Linfoide , Células Dendríticas
17.
Immunity ; 56(8): 1894-1909.e5, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421943

RESUMO

Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.


Assuntos
Tecido Linfoide , Células T de Memória , Criança , Humanos , Lactente , Linfócitos T CD8-Positivos , Memória Imunológica , Tecido Linfoide/metabolismo , Mucosa , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Recém-Nascido , Pré-Escolar
18.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053971

RESUMO

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Assuntos
Autoantígenos/imunologia , Bacteroides/imunologia , Colite/imunologia , Microbioma Gastrointestinal , Glucose-6-Fosfatase/imunologia , Adulto , Animais , Bacteroides/classificação , Bacteroides/enzimologia , Colite/microbiologia , Feminino , Glucose-6-Fosfatase/genética , Humanos , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mimetismo Molecular , Linfócitos T/imunologia
19.
Cell ; 168(6): 1086-1100.e10, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283063

RESUMO

Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.


Assuntos
Linfócitos/citologia , Células-Tronco/citologia , Animais , Antígenos CD34/análise , Diferenciação Celular , Linhagem da Célula , Sangue Fetal/citologia , Feto/citologia , Humanos , Imunidade Inata , Interleucina-17 , Fígado/citologia , Pulmão/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/análise , Transcrição Gênica
20.
Cell ; 168(3): 487-502.e15, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111070

RESUMO

Immune responses involve coordination across cell types and tissues. However, studies in cancer immunotherapy have focused heavily on local immune responses in the tumor microenvironment. To investigate immune activity more broadly, we performed an organism-wide study in genetically engineered cancer models using mass cytometry. We analyzed immune responses in several tissues after immunotherapy by developing intuitive models for visualizing single-cell data with statistical inference. Immune activation was evident in the tumor and systemically shortly after effective therapy was administered. However, during tumor rejection, only peripheral immune cells sustained their proliferation. This systemic response was coordinated across tissues and required for tumor eradication in several immunotherapy models. An emergent population of peripheral CD4 T cells conferred protection against new tumors and was significantly expanded in patients responding to immunotherapy. These studies demonstrate the critical impact of systemic immune responses that drive tumor rejection.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Medula Óssea/imunologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Tolerância Imunológica , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Tecido Linfoide/imunologia , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa