Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Angew Chem Int Ed Engl ; 53(5): 1443-7, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24459061

RESUMO

The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom-transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N-isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein-catalyst conjugate only yielded polymers with PDIs above 1.84.


Assuntos
Chaperoninas/metabolismo , Radicais Livres/química , Nanotecnologia , Termossomos/metabolismo , Acrilamidas/química , Acrilamidas/metabolismo , Catálise , Chaperoninas/química , Cobre/química , Ligantes , Poliaminas/química , Poliaminas/metabolismo , Polimerização , Thermoplasma/metabolismo , Termossomos/química
2.
Biophys J ; 103(6): 1285-95, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995501

RESUMO

Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL, undergo concerted subunit motions within each ring, whereas archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. We study these distinct mechanisms through a comparative normal mode analysis of monomer and double-ring structures of the archaeal chaperonin thermosome and GroEL. We find that thermosome monomers of each type exhibit common low-frequency behavior of normal modes. The observed distinct higher-frequency modes are attributed to functional specialization of these subunit types. The thermosome double-ring structure has larger contribution from higher-frequency modes, as it is found in the GroEL case. We find that long-range intersubunit correlation of amino-acid pairs is weaker in the thermosome ring than in GroEL. Overall, our results indicate that distinct allosteric behavior of the two chaperonin classes originates from different wiring of individual subunits as well as of the intersubunit communications.


Assuntos
Proteínas Arqueais/química , Modelos Moleculares , Termossomos/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas Arqueais/metabolismo , Mathanococcus , Movimento , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Termossomos/metabolismo
3.
J Struct Biol ; 180(1): 249-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22584152

RESUMO

Chemical biotinylation of protein complexes followed by binding to two-dimensional (monolayer) crystals of streptavidin is shown to be an effective way to prepare cryo-EM specimens from samples at low protein concentration. Three different multiprotein complexes are used to demonstrate the generality of this method. In addition, native thermosomes, purified from Sulfolobus solfataricus P2, are used to demonstrate that a uniform distribution of Euler angles is produced, even though this particle is known to adopt a preferred orientation when other methods of cryo-EM specimen preparation are used.


Assuntos
Biotina/química , Microscopia Crioeletrônica/métodos , Estreptavidina/química , Adsorção , Animais , Apoferritinas/química , Apoferritinas/ultraestrutura , Proteínas de Bactérias/química , Biotinilação , Cristalização , Desulfovibrio vulgaris , Cavalos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Sulfolobus solfataricus , Termossomos/química , Termossomos/ultraestrutura
4.
FEBS J ; 289(4): 1080-1104, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34637594

RESUMO

Heat shock proteins maintain protein homeostasis and facilitate the survival of an organism under stress. Archaeal heat shock machinery usually consists of only sHsps, Hsp70, and Hsp60. Moreover, Hsp70 is absent in thermophilic and hyperthermophilic archaea. In the absence of Hsp70, how aggregating protein substrates are transferred to Hsp60 for refolding remains elusive. Here, we investigated the crosstalk in the heat shock response pathway of thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. In the present study, we biophysically and biochemically characterized one of the small heat shock proteins, Hsp14, of S. acidocaldarius. Moreover, we investigated its ability to interact with Hsp20 and Hsp60 to facilitate the substrate proteins' folding under stress conditions. Like Hsp20, we demonstrated that the dimer is the active form of Hsp14, and it forms an oligomeric storage form at a higher temperature. More importantly, the dynamics of the Hsp14 oligomer are maintained by rapid subunit exchange between the dimeric states, and the rate of subunit exchange increases with increasing temperature. We also tested the ability of Hsp14 to form hetero-oligomers via subunit exchange with Hsp20. We observed hetero-oligomer formation only at higher temperatures (50 °C-70 °C). Furthermore, experiments were performed to investigate the interaction between small heat shock proteins and Hsp60. We demonstrated an enthalpy-driven direct physical interaction between Hsp14 and Hsp60. Our results revealed that Hsp14 could transfer sHsp-captured substrate proteins to Hsp60, which then refolds them back to their active form.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Sulfolobus acidocaldarius/genética , Termossomos/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Muramidase/metabolismo , Agregados Proteicos , Sulfolobus acidocaldarius/metabolismo , Temperatura , Termossomos/genética , Termossomos/isolamento & purificação
5.
J Struct Biol ; 173(1): 77-85, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20719249

RESUMO

Classification and averaging of sub-tomograms can improve the fidelity and resolution of structures obtained by electron tomography. Here we present a three-dimensional (3D) maximum likelihood algorithm--MLTOMO--which is characterized by integrating 3D alignment and classification into a single, unified processing step. The novelty of our approach lies in the way we calculate the probability of observing an individual sub-tomogram for a given reference structure. We assume that the reference structure is affected by a 'compound wedge', resulting from the summation of many individual missing wedges in distinct orientations. The distance metric underlying our probability calculations effectively down-weights Fourier components that are observed less frequently. Simulations demonstrate that MLTOMO clearly outperforms the 'constrained correlation' approach and has advantages over existing approaches in cases where the sub-tomograms adopt preferred orientations. Application of our approach to cryo-electron tomographic data of ice-embedded thermosomes revealed distinct conformations that are in good agreement with results obtained by previous single particle studies.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Tomografia com Microscopia Eletrônica/métodos , Tomografia com Microscopia Eletrônica/estatística & dados numéricos , Modelos Moleculares , Termossomos/química , Tomografia com Microscopia Eletrônica/classificação , Funções Verossimilhança
6.
Biochem Soc Trans ; 39(1): 94-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265753

RESUMO

It is now well understood that, although proteins fold spontaneously (in a thermodynamic sense), many nevertheless require the assistance of helpers called molecular chaperones to reach their correct and active folded state in living cells. This is because the pathways of protein folding are full of traps for the unwary: the forces that drive proteins into their folded states can also drive them into insoluble aggregates, and, particularly when cells are stressed, this can lead, without prevention or correction, to cell death. The chaperonins are a family of molecular chaperones, practically ubiquitous in all living organisms, which possess a remarkable structure and mechanism of action. They act as nanoboxes in which proteins can fold, isolated from their environment and from other partners with which they might, with potentially deleterious consequences, interact. The opening and closing of these boxes is timed by the binding and hydrolysis of ATP. The chaperonins which are found in bacteria are extremely well characterized, and, although those found in archaea (also known as thermosomes) and eukaryotes have received less attention, our understanding of these proteins is constantly improving. This short review will summarize what we know about chaperonin function in the cell from studies on the archaeal chaperonins, and show how recent work is improving our understanding of this essential class of molecular chaperones.


Assuntos
Archaea/metabolismo , Chaperoninas/metabolismo , Termossomos/metabolismo , Chaperoninas/química , Chaperoninas/genética , Microscopia Crioeletrônica , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformação Proteica , Dobramento de Proteína , Termossomos/química , Termossomos/genética , Termossomos/ultraestrutura
7.
Chimia (Aarau) ; 65(4): 245-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21678771

RESUMO

Damage self-reporting materials are able to indicate the presence of microscopic damaged regions by easy to detect signals, such as fluorescence. Therefore, these smart materials can reduce the risk of catastrophic failure of load-bearing components, e.g., in aerospace and construction applications. We highlight here our proof-of-concept paper and we present some additional data, which shows that proteins can be used as mechanophores in solid polymeric materials. Macroscopic mechanical forces were transferred from the polymer to the embedded proteins. The biomolecules act as molecular strain sensor, giving the material the desired self-reporting property. Poly(ethylene glycol) and poly(acrylamide) (PAAm) networks were doped with small amounts of thermsosome (THS), a protein cage from the family of chaperonins, that encapsulated a pair of fluorescent proteins. THS acts as a scaffold which brings the two fluorescent proteins into distance suitable for fluorescence resonance energy transfer (FRET). Moreover, THS can be distorted by mechanic forces so that the distance between the fluorescent proteins changes, leading to a change in FRET efficiency. Using the brittle PAAm as a model system, we were able to visualize microcracks in the polymers by FRET microscopy and by fluorescence lifetime imaging. THS also stabilizes the encapsulated guest proteins against thermal denaturation, increasing their half-live at 70 degrees C by a factor of 2.3.


Assuntos
Resinas Acrílicas/química , Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Polietilenoglicóis/química , Termossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência
8.
Mol Microbiol ; 74(5): 1152-68, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843217

RESUMO

Chaperonins are macromolecular machines that assist in protein folding. The archaeon Methanosarcina mazei has acquired numerous bacterial genes by horizontal gene transfer. As a result, both the bacterial group I chaperonin, GroEL, and the archaeal group II chaperonin, thermosome, coexist. A proteome-wide analysis of chaperonin interactors was performed to determine the differential substrate specificity of GroEL and thermosome. At least 13% of soluble M. mazei proteins interact with chaperonins, with the two systems having partially overlapping substrate sets. Remarkably, chaperonin selectivity is independent of phylogenetic origin and is determined by distinct structural and biochemical features of proteins. GroEL prefers well-conserved proteins with complex alpha/beta domains. In contrast, thermosome substrates comprise a group of faster-evolving proteins and contain a much wider range of different domain folds, including small all-alpha and all-beta modules, and a greater number of large multidomain proteins. Thus, the group II chaperonins may have facilitated the evolution of the highly complex proteomes characteristic of eukaryotic cells.


Assuntos
Proteínas Arqueais/metabolismo , Chaperoninas do Grupo I/metabolismo , Chaperoninas do Grupo II/metabolismo , Methanosarcina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/análise , Proteínas Arqueais/química , Proteínas Arqueais/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Células Eucarióticas/metabolismo , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/genética , Methanosarcina/genética , Modelos Moleculares , Filogenia , Ligação Proteica/genética , Dobramento de Proteína , Proteoma/análise , Especificidade por Substrato , Termossomos/química , Termossomos/genética , Termossomos/metabolismo
9.
Biochem Biophys Res Commun ; 393(2): 228-34, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20117082

RESUMO

Recombinant thermosomes from the Acidianus tengchongensis strain S5(T) were purified to homogeneity and assembled in vitro into homo-oligomers (rATcpnalpha or rATcpnbeta) and hetero-oligomers (rATcpnalphabeta). The symmetries of these complexes were determined by electron microscopy and image analysis. The rATcpnalpha homo-oligomer was shown to possess 8-fold symmetry while both rATcpnbeta and rATcpnalphabeta oligomers adopted 9-fold symmetry. rATcpnalphabeta oligomers were shown to contain the alpha and beta subunits in a 1:2 ratio. All of the complexes prevented the irreversible inactivation of yeast alcohol dehydrogenase at 55 degrees C and completely prevented the formation of aggregates during thermal inactivation of citrate synthase at 45 degrees C. All rATcpn complexes showed trace ATP hydrolysis activity. Furthermore, rATcpnbeta sequestered fully chemically denatured substrates (GFP and thermophilic malic dehydrogenase) in vitro without refolding them in an ATP-dependent manner. This property is similar to previously reported properties of chaperonins from Sulfolobus tokodaii and Sulfolobus acidocaldarius. These features are consistent with the slow growth rates of these species of archaea in their native environment.


Assuntos
Acidianus/metabolismo , Peptídeos/metabolismo , Termossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , Microscopia Eletrônica , Peptídeos/química , Peptídeos/genética , Filogenia , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus/metabolismo , Sulfolobus acidocaldarius/metabolismo , Termossomos/química , Termossomos/genética
10.
Arch Biochem Biophys ; 481(1): 45-51, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18976628

RESUMO

The functionality of regions within the equatorial domain of Group II chaperonins is poorly understood. Previously we showed that a 70 amino acid sequence within this domain on the single-subunit recombinant thermosome from Methanocaldococcus jannaschii (rTHS) contains residues directly responsible for refolding protein substrates [L.M. Bergeron, C. Lee, D.S. Clark, Identification of a critical chaperoning region on an archaeal recombinant thermosome, Biochem. Biophys. Res. Commun. 369 (2008) 707-711]. In the present study, 6-aminopenicillanic acid (6-APA) was found to bind to rTHS and inhibit it from refolding proteins. Fluorescence anisotropy was used to measure a 6-APA/rTHS dissociation constant of 17.1 microM and verify that the binding site is within the first 70 amino-terminal rTHS residues. Docking simulations point to a specific loop region at residues 53-57 on rTHS as the most likely binding region. This loop region is located within the oligomeric association sites of the wild-type thermosome. These results implicate a specific equatorial region of Group II chaperonins in the refolding of proteins, and suggest its importance in conformational changes that accompany chaperone function.


Assuntos
Proteínas Arqueais/química , Chaperoninas/química , Methanococcaceae/metabolismo , Chaperonas Moleculares/química , Polarização de Fluorescência , Modelos Moleculares , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Termossomos
11.
Biotechnol Bioeng ; 102(2): 417-24, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18846552

RESUMO

We have previously shown that a single-subunit thermosome from Methanocaldococcus jannaschii (rTHS) can stabilize enzymes in semi-aqueous media (Bergeron et al., 2008b). In the present study, rTHS was used to stabilize penicillin amidase (PGA) in methanol-water mixtures. Including methanol in the reaction medium for amoxicillin synthesis can suppress unwanted hydrolysis reactions but inactivate PGA. Inactivation and reactivation pathways proposed for PGA illustrate the predictability of enzyme stabilization by rTHS in co-solvents. Calcium was necessary for reversible dissociation of the two PGA subunits in methanol-water and the presence of calcium resulted in an enhancement of chaperone-assisted stabilization. rTHS also acted as a stabilizer in the enzymatic synthesis of the beta-lactam antibiotic amoxicillin. rTHS stabilized PGA, increasing its half-life in 35% methanol by fivefold at 37 degrees C. Stabilization by rTHS was enhanced but did not require the presence of ATP. Including rTHS in fed-batch reactions performed in methanol-water resulted in nearly 4 times more amoxicillin than when the reaction was run without rTHS, and over threefold higher selectivity towards amoxicillin synthesis compared to aqueous conditions without rTHS. The thermosome and other thermophilic chaperones may thus be generally useful for stabilizing enzymes in their soluble form and expanding the range of conditions suitable for biocatalysis.


Assuntos
Amoxicilina/metabolismo , Antibacterianos/biossíntese , Proteínas Arqueais/metabolismo , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Penicilina Amidase/metabolismo , Trifosfato de Adenosina/metabolismo , Estabilidade Enzimática , Temperatura Alta , Mathanococcus/metabolismo , Penicilina Amidase/antagonistas & inibidores , Termossomos
12.
Biochem Biophys Res Commun ; 369(2): 707-11, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18313393

RESUMO

Chaperone function in water-miscible organic co-solvents is useful for biocatalytic applications requiring enzyme stability in semi-aqueous media and for understanding chaperone behavior in hydrophobic environments. Previously, we have shown that a recombinant single subunit thermosome (rTHS) from Methanocaldococcus jannaschii functions in multiple co-solvents to hydrolyze ATP, prevent protein aggregation, and refold enzymes following solvent denaturation. For the present study, a truncated analog to the thermosome in which 70 N-terminal amino acids are removed is used to identify important regions within the thermosome for its chaperoning functions in organic co-solvents. Data presented herein indicate that the N-terminal region of rTHS is essential for the chaperone to restore the native state of the enzyme citrate synthase, but it is not a critical region for either binding of unfolded proteins or ATP hydrolysis. This is the first demonstration that direct refolding by a Group II chaperonin requires the N-terminal region of the protein.


Assuntos
Trifosfato de Adenosina/química , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Chaperoninas/química , Chaperoninas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas Arqueais/genética , Chaperoninas/genética , Simulação por Computador , Chaperonas Moleculares/genética , Dobramento de Proteína , Proteínas Recombinantes/química , Termossomos
13.
Curr Biol ; 10(7): 405-8, 2000 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-10753750

RESUMO

Chaperonins are double-ring protein assemblies with a central cavity that provides a sequestered environment for in vivo protein folding. Their reaction cycle is thought to consist of a nucleotide-regulated alternation between an open substrate-acceptor state and a closed folding-active state. The cavity of ATP-charged group I chaperonins, typified by Escherichia coli GroEL [1], is sealed off by a co-chaperonin, whereas group II chaperonins--the archaeal thermosome and eukaryotic TRiC/CCT [2]--possess a built-in lid [3-5]. The mechanism of the lid's rearrangements requires clarification, as even in the absence of nucleotides, thermosomes of Thermoplama acidophilum appear open in vitrified ice [6] and closed in crystals [4]. Here we analyze the conformation of the thermosome at each step of the ATPase cycle by small-angle neutron scattering. The apo-chaperonin is open in solution, and ATP binding induces its further expansion. Closure seems to occur during ATP hydrolysis and before phosphate release, and represents the rate-limiting step of the cycle. The same closure can be triggered by the crystallization buffer. Thus, the allosteric regulation of group II chaperonins appears different from that of their group I counterparts.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/química , Chaperoninas/química , Modelos Teóricos , Nêutrons , Conformação Proteica , Espalhamento de Radiação , Soluções , Thermoplasma , Termossomos
14.
J Mol Biol ; 362(4): 835-43, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16942780

RESUMO

Using a combination of intrinsic fluorescence to report ATP-induced rearrangements, quenched-flow to measure ATP hydrolysis "on-enzyme" and optical methods to probe the kinetics of product release, we have begun to dissect the process of energy transduction in the thermosome, a type II chaperonin from Thermoplasma acidophilum. Stoichiometric measurements of ATP binding reveal the tight association of eight nucleotide molecules per hexa-decamer, implying the filling of only one ring owing to strong negative cooperativity. After binding, we show that these eight ATP molecules are hydrolysed over the next 50 s, after which hydrolysis slows down markedly during the establishment of the steady state in the ATPase reaction, demonstrating that the kinetic system is off-rate limited. Looking in more detail, this rapid first-turnover can be dissected into two phases; the first occurring with a half-time of 0.8 s, the second with a half-time of 14 s, possibly reflecting the differential behaviour of the four alpha and four beta subunits in a single thermosome ring. To investigate the post-hydrolytic events, we used two heat-stable enzyme-linked optical assays to measure the rate of evolution of ADP and of phosphate from the thermosome active site. Neither product showed a rapid dissociation phase prior to the establishment of the steady state, showing that both are released slowly at a rate that limits the cycle. These data highlight the importance of the highly populated thermosome/ADP/Pi complex in the molecular mechanism.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/metabolismo , Chaperoninas/metabolismo , Thermoplasma/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Fluorescência , Hidrólise , Cinética , Fosfatos/metabolismo , Ligação Proteica , Termossomos
15.
FEMS Microbiol Lett ; 266(1): 103-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17092293

RESUMO

The gene encoding for a putative thermosome from the hyperthermophilic crenarchaeon Aeropyrum pernix K1 (ApcpnA) was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (accession no. APE0907) from A. pernix K1 showed some homology with other group II chaperonins from archaea. The recombinant ApcpnA protein has a molecular mass of 60 kDa, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and exhibited ATPase activity with an optimum temperature and pH of 90 degrees C and 5.0, respectively. The ATPase activity was found to be dependent on manganese and potassium ions, but not magnesium ion. The K(m) for ATP at pH 5.0 and 90 degrees C was 10.04 (+/- 1.31) microM, and k(cat) was determined to be 2.21 (+/- 0.11) min(-1) for the ApcpnA monomer. The recombinant ApcpnA prevents thermal aggregation of bovine rhodanese and enhances the thermal stability of alcohol dehydrogenase in vitro, indicating that the protein is suitable as a molecular chaperonin in the high-temperature environment.


Assuntos
Aeropyrum/metabolismo , Proteínas Arqueais/fisiologia , Chaperoninas/fisiologia , Subunidades Proteicas/fisiologia , Temperatura , Aeropyrum/genética , Álcool Desidrogenase/metabolismo , Animais , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Bovinos , Chaperoninas/química , Chaperoninas/metabolismo , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Genes Arqueais , Cinética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Termossomos , Tiossulfato Sulfurtransferase/metabolismo
16.
J Mol Biol ; 348(1): 13-26, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15808850

RESUMO

The thermosome from Thermoplasma acidophilum is a type II chaperonin composed of eight alpha and eight beta subunits. The genes encoding the two types of subunit were co-expressed in Escherichia coli and the alpha8/beta8 complex purified from the cell extract. The isolated complex showed steady-state ATPase properties characteristic of the thermosome purified from the native organism and was capable of enhancing the folding yield of a thermostable enzyme at elevated temperature (55 degrees C). To compare the nucleotide response of this double-ring structure with the type I and more compositionally heterogeneous type II chaperonins, the tryptophan residue within the alpha subunit was used as a fluorescence reporter of the conformational changes within the thermosome induced by the binding of nucleotides. Stopped-flow measurements of indole fluorescence at 55 degrees C showed that there is a fast (approximately 350 s(-1)) and a slow (approximately 0.6 s(-1)) structural rearrangement when ATP binds to the thermosome. Further examination of the fast rearrangement showed that the associated rate constant followed a two-phase saturation profile, as it does for GroEL and for the type II chaperonin from the eukaryotic cytoplasm. This result, in keeping with these precedents, reveals that the thermosome is also a negatively cooperative system with respect to inter-ring communications, i.e. the first ring loads with higher affinity than the second. As in the case of GroEL, the loading of the second ring is weakened by ADP, implying that asymmetric ATP/ADP complexes are favoured over symmetric ones. Despite the difference in co-protein involvement in the type I and II chaperonins, these observations show that negative cooperativity is a common feature of all chaperonins thus far examined. This property results in a strong preference for asymmetry in nucleotide occupancy and implies at least some commonality with the reciprocating encapsulation mechanism shown for the GroE chaperonins.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Thermoplasma/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperoninas/genética , Chaperoninas/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Dobramento de Proteína , Renaturação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Thermoplasma/química , Termossomos
17.
Chem Commun (Camb) ; 52(69): 10537-9, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27491621

RESUMO

The chaperonin thermosome (THS) is a protein cage that lacks binding sites for metal ions and inorganic nanoparticles. However, when poly(amidoamine) (PAMAM) is encapsulated into THS, gold nanoparticles (AuNP) can be prepared in the THS. The polymer binds HAuCl4. Subsequent reduction yields nanoparticles with narrow size distribution in the protein-polymer conjugate.


Assuntos
Cloretos/química , Dendrímeros/química , Compostos de Ouro/química , Ouro/química , Nanopartículas Metálicas/química , Poliaminas/química , Termossomos/química , Tamanho da Partícula , Thermoplasma
18.
J Mol Biol ; 336(3): 717-29, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15095983

RESUMO

Group II chaperonins close their cavity with the help of conserved, helical extensions, the so-called protrusions, which emanate from the apical or substrate-binding domains. A comparison of previously solved crystal structures of the apical domains of the thermosome from Thermoplasma acidophilum showed structural plasticity in the protrusion parts induced by extensive packing interactions. In order to assess the influence of the crystal contacts we investigated both the alpha and beta-apical domains (alpha-ADT and beta-ADT) in solution by NMR spectroscopy. Secondary structure assignments and 15N backbone relaxation measurements showed mostly rigid structural elements in the globular parts of the domains, but revealed intrinsic structural disorder and partial helix fraying in the protrusion regions. On the other hand, a beta-turn-motif conserved in archaeal group II chaperonins might facilitate substrate recognition. Our results help us to specify the idea of the open, substrate-accepting state of the thermosome and may provide an additional jigsaw piece in understanding the mode of substrate binding of group II chaperonins.


Assuntos
Proteínas Arqueais/química , Chaperoninas/química , Estrutura Secundária de Proteína , Proteínas Arqueais/metabolismo , Sítios de Ligação , Chaperoninas/metabolismo , Modelos Moleculares , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Termossomos
19.
J Mol Biol ; 301(1): 19-25, 2000 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-10926489

RESUMO

The crystal structure of the beta-apical domain of the thermosome, an archaeal group II chaperonin from Thermoplasma acidophilum, has been determined at 2.8 A resolution. The structure shows an invariant globular core from which a 25 A long protrusion emanates, composed of an elongated alpha-helix (H10) and a long extended stretch consisting of residues GluB245-ThrB253. A comparison with previous apical domain structures reveals a large segmental displacement of the protruding part of helix H10 via the hinge GluB276-ValB278. The region comprising residues GluB245-ThrB253 adopts an extended beta-like conformation rather than the alpha-helix seen in the alpha-apical domain. Consequently, it appears that the protrusions of the apical domains from group II chaperonins might assume a variety of context-dependent conformations during an open, substrate-accepting state of the chaperonin. Sequence variations in the protrusion regions that are found in the eukaryotic TRiC/CCT subunits may provide different structural propensities and hence serve different roles in substrate recognition.


Assuntos
Chaperoninas/química , Chaperoninas/metabolismo , Thermoplasma/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Maleabilidade , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Termossomos
20.
J Mol Biol ; 301(2): 323-32, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10926512

RESUMO

Three conformations of the thermosome, an archaeal group II chaperonin, have been determined by cryo-electron microscopy (EM). We describe an open form of the double-ring oligomer, a closed form and a bullet-shaped form with one ring open and the other closed. Domain movements have been deduced by docking atomic coordinates into the EM maps. The subunit apical domains, bearing the putative substrate binding sites, rotate about 30 degrees upwards and twist in the plane of the ring from the closed to the open conformation. The closed rings have their nucleotide binding pockets closed by the intermediate domains, but in the open rings, the pocket is accessible.


Assuntos
Archaea/química , Proteínas Arqueais/química , Chaperoninas/química , Proteínas Arqueais/isolamento & purificação , Chaperonina 10/química , Chaperonina 60/química , Chaperoninas/isolamento & purificação , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Termossomos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa