Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sheng Li Xue Bao ; 76(3): 487-495, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939942

RESUMO

Copper is a vital trace metal element necessary for the functioning of living organisms. It serves as a co-factor or structural component in numerous enzymes, participating in crucial biological metabolic processes. Disruptions in copper homeostasis, whether inherited or acquired, such as copper overload, deficiency, or uneven distribution, can contribute to or exacerbate various diseases, including Menkes disease, Wilson's disease, neurodegenerative disorders, anemia, cardiovascular diseases, kidney diseases and cancer. Recent research has highlighted the close correlation between chronic kidney disease and intracellular copper overload. Therefore, renal cells must establish a well-organized and efficient copper regulation network to maintain intracellular copper homeostasis. This review summarizes the processes of copper uptake, intracellular trafficking, storage, and excretion in renal cells, and elucidates the underlying mechanisms involved, aiming to provide a theoretical foundation and potential therapeutic targets for the fundamental investigation and clinical management of kidney-related diseases.


Assuntos
Cobre , Homeostase , Rim , Homeostase/fisiologia , Humanos , Cobre/metabolismo , Rim/metabolismo , Rim/fisiologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Nefropatias/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , ATPases Transportadoras de Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Transportador de Cobre 1/metabolismo
2.
J Biol Chem ; 298(3): 101631, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090891

RESUMO

Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.


Assuntos
Transportador de Cobre 1 , Cobre , Metionina , Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Endocitose , Histidina , Humanos , Metionina/química , Metionina/metabolismo
3.
BMC Cancer ; 23(1): 487, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254056

RESUMO

Organoids are a three-dimensional (3D) culture system that simulate actual organs. Therefore, tumor organoids are expected to predict precise response to chemotherapy in patients. However, to date, few studies have studied the drug responses in organoids of malignant mesothelioma (MM). The poor prognosis of MM emphasizes the importance of establishing a protocol for generating MM-organoid for research and clinical use. Here, we established murine MM organoids from p53+/- or wild-type C57BL/6 strain by intraperitoneal injection either with crocidolite or carbon nanotube. Established MM-organoids proliferated in Matrigel as spheroids. Subcutaneous injection assays revealed that the MM-organoids mimicked actual tissue architecture and maintained the original histological features of the primary MM. RNA sequencing and pathway analyses revealed that the significant expressional differences between the 2D- and 3D-culture systems were observed in receptor tyrosine kinases, including IGF1R and EGFR, glycosylation and cholesterol/steroid metabolism. MM-organoids exhibited a more sensitive response to cisplatin through stable plasma membrane localization of a major cisplatin transporter, copper transporter 1/Slc31A1 (Ctr1) in comparison to 2D-cultures, presumably through glycosylation and lipidation. The Matrigel culture system facilitated the localization of CTR1 on the plasma membrane, which simulated the original MMs and the subcutaneous xenografts. These results suggest that the newly developed protocol for MM-organoids is useful to study strategies to overcome chemotherapy resistance to cisplatin.


Assuntos
Cisplatino , Transportador de Cobre 1 , Mesotelioma Maligno , Animais , Humanos , Camundongos , Cisplatino/farmacologia , Colágeno/metabolismo , Mesotelioma Maligno/metabolismo , Organoides/patologia , Transportador de Cobre 1/metabolismo
4.
Mol Pharm ; 20(8): 4138-4152, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37358225

RESUMO

Lipid nanoparticle (LNP) delivery systems are widely used in the delivery of small-molecule drugs and nucleic acids. In this study, we prepared LNP-miR-155 by lipid nanomaterial technology and investigated the effects of LNP-miR-155 on ß-catenin/transcription factor 4 (TCF4)/solute carrier family 31 member 1/copper transporter 1 (SLC31A1/CTR1) signaling and copper transport in colorectal cancer. For this, we used an LNP-miR-155 cy5 inhibitor and LNP-miR-155 cy5 mimics for the transfection of HT-29/SW480 cells. The transfection efficiency and uptake efficiency were detected by immunofluorescence. Relevant cell assays confirmed that the LNP-miR-155 cy5 inhibitor mediates the regulation of copper transport through the ß-catenin/TCF4/SLC31A1 axis. The LNP-miR-155 cy5 inhibitor reduced cell proliferation, migration, and colony formation and promoted cell apoptosis. We also confirmed that miR-155 downregulates HMG box-containing protein 1 (HBP1) and adenomatous polyposis coli (APC) in cells and activates the function of ß-catenin/TCF4 signaling. In addition, we found that the copper transporter, SLC31A1, is highly expressed in colorectal cancer cells. Furthermore, we also found that the complex ß-catenin/TCF4 promotes the transcription of SLC31A1 by binding to its promoter region, which sustains the transport of copper from the extracellular region to the intracellular region and increases the activities of Cu2+-ATPase and superoxide dismutase (SOD). In summary, the LNP-miR-155 cy5 inhibitor regulates ß-catenin/TCF4 by downregulating SLC31A1-mediated copper transport and intracellular copper homeostasis.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , beta Catenina/metabolismo , Fator de Transcrição 4/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Neoplasias Colorretais/genética , MicroRNAs/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Transportador de Cobre 1/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Repressoras/metabolismo
5.
Protein Expr Purif ; 203: 106213, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36509382

RESUMO

Transition metals such as copper and zinc are essential elements required for the survival of most organisms, from bacteria to humans. Yet, elevated levels of these elements are highly toxic. The Copper TRansporter protein family (CTRs) represents the only identified copper uptake proteins in eukaryotes and hence serves as key components for the maintenance of appropriate levels of the metal. Moreover, CTRs have been proposed to serve as an entry point into cells of certain cancer drugs and to constitute attractive drug-targets for novel antifungals. Nevertheless, the structure, function, and regulation of the CTRs remain elusive, limiting valuable information also for applied sciences. To this end, here we report procedures to isolate a range of CTR members using Saccharomyces cerevisiae as a production host, focusing on three homologs, human CTR1, human CTR2, and Candida albicans CTR. Using forms C-terminally-linked to a protease cleavage sequence, Green Fluorescent Protein (GFP), and a His-tag, assessment of the localization, quantification and purification was facilitated. Cellular accumulation of the proteins was investigated via live-cell imaging. Detergents compatible with acceptable solubilization yields were identified and fluorescence-detection size-exclusion-chromatography (F-SEC) revealed preferred membrane extraction conditions for the targets. For purification purposes, the solubilized CTR members were subjected to affinity chromatography and SEC, reaching near homogeneity. The quality and quantity of the CTRs studied will permit downstream efforts to uncover imperative biophysical aspects of these proteins, paving the way for subsequent drug-discovery studies.


Assuntos
Cobre , Saccharomyces cerevisiae , Humanos , Cobre/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transportador de Cobre 1/metabolismo , Proteínas de Fluorescência Verde/metabolismo
6.
Biophys J ; 121(7): 1194-1204, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202609

RESUMO

Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Transporte de Cobre , Transportador de Cobre 1 , Cobre , Cobre/química , Cobre/metabolismo , Proteínas de Transporte de Cobre/química , Proteínas de Transporte de Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Humanos , Íons/química , Íons/metabolismo
7.
Plant Physiol ; 187(4): 2469-2484, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618061

RESUMO

The endoplasmic reticulum (ER) contains an elaborate protein quality control network that promotes protein folding and prevents accumulation of misfolded proteins. Evolutionarily conserved UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2) is involved in ER-associated protein degradation in metazoans. We have previously reported that two close UBAC2 homologs from Arabidopsis (Arabidopsis thaliana) not only participate in selective autophagy of ER components but also interact with plant-specific PATHOGEN-ASSOCIATED MOLECULAR PATTERN (PAMP)-INDUCED COILED COIL (PICC) protein to increase the accumulation of POWDERY MILDEW-RESISTANT 4 callose synthase. Here, we report that UBAC2s also interacted with COPPER (Cu) TRANSPORTER 1 (COPT1) and plasma membrane-targeted members of the Cu transporter family. The ubac2 mutants were significantly reduced in both the accumulation of COPT proteins and Cu content, and also displayed increased sensitivity to a Cu chelator. Therefore, UBAC2s positively regulate the accumulation of COPT transporters, thereby increasing Cu uptake by plant cells. Unlike with POWDERY MILDEW RESISTANCE 4, however, the positive role of UBAC2s in the accumulation of COPT1 is not dependent on PICC or the UBA domain of UBAC2s. When COPT1 was overexpressed under the CaMV 35S promoter, the increased accumulation of COPT1 was strongly UBAC2-dependent, particularly when a signal peptide was added to the N-terminus of COPT1. Further analysis using inhibitors of protein synthesis and degradation strongly suggested that UBAC2s stabilize newly synthesized COPT proteins against degradation by the proteasome system. These results indicate that plant UBAC2s are multifunctional proteins that regulate the degradation and accumulation of specific ER-synthesized proteins.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Transportador de Cobre 1/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportador de Cobre 1/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(37): 18285-18294, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451653

RESUMO

Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.


Assuntos
Cobre/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Glutationa/metabolismo , Técnicas de Sonda Molecular , Oncogenes/fisiologia , Transportador de Cobre 1/metabolismo , Fluoresceína , Células HEK293 , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias/metabolismo , Oxirredução , Estresse Oxidativo , Rodaminas , Transdução de Sinais
9.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
10.
Cancer Sci ; 112(11): 4655-4668, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533854

RESUMO

Platinum-based regimens are the most widely used chemotherapy regimens, but cancer cells often develop resistance, which impedes therapy outcome for patients. Previous studies have shown that fibroblast growth factor 13 (FGF13) is associated with resistance to platinum drugs in HeLa cells. However, the mechanism and universality of this effect have not been clarified. Here, we found that FGF13 was associated with poor platinum-based chemotherapy outcomes in a variety of cancers, such as lung, endometrial, and cervical cancers, through bioinformatics analysis. We then found that FGF13 simultaneously regulates the expression and distribution of hCTR1 and ATP7A in cancer cells, causes reduced platinum influx, and promotes platinum sequestration and efflux upon cisplatin exposure. We subsequently observed that FGF13-mediated platinum resistance requires the microtubule-stabilizing effect of FGF13. Only overexpression of FGF13 with the -SMIYRQQQ- tubulin-binding domain could induce the platinum resistance effect. This phenomenon was also observed in SK-MES-1 cells, KLE cells, and 5637 cells. Our research reveals the mechanism of FGF13-induced platinum drug resistance and suggests that FGF13 can be a sensibilization target and prognostic biomarker for chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fatores de Crescimento de Fibroblastos/fisiologia , Células A549 , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cisplatino/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Microtúbulos/efeitos dos fármacos , Compostos de Platina/metabolismo , Compostos de Platina/farmacologia , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo
11.
Drug Metab Dispos ; 49(6): 434-441, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33762296

RESUMO

Disulfiram, an antialcoholism drug, could potentially be repurposed as an anticancer drug because of the formation of copper(II) diethyldithiocarbamate (CuET) from dithiocarb (DTC, a reduced metabolite of disulfiram) and Cu2+ CuET exhibited preferential distribution to tumor tissues. This study investigated the mechanism of CuET accumulation in tumor tissues by employing MDA-MB-231 human breast cancer cells. The concentration of CuET in cells treated with DTC and Cu2+ in acidic culture medium (pH 6.8) was significantly higher than that of the control group (pH 7.4). Subsequently, the effects of pH on the uptake of DTC, Cu2+, and CuET were investigated separately. The acidic environment significantly increased the uptake rate of DTC and Cu2+ but had no effect on CuET. MDA-MB-231 cells overexpressing copper transporter hCTR1 were constructed to evaluate its intermediate role in CuET accumulation. After treatment with CuCl2 followed by DTC for 15 minutes, the levels of CuET and Cu2+ in hCTR1-overexpressed cells were 2.5 times as much as those of vector group. In the tumors of cancer xenograft models constructed by hCTR1-MDA-MB-231 cells, the concentrations of CuET and Cu were also significantly higher than those of control group. In conclusion, the acidic microenvironment of tumors can promote the enrichment of CuET in tumors through dual action. On the one hand, it can promote transmembrane transport of DTC by converting ionic DTC into molecular state. On the other hand, it enhances Cu2+ uptake by activating hCTR1, which ultimately leads to the enrichment of CuET. SIGNIFICANCE STATEMENT: Increasing evidence suggests that the antitumor activity of disulfiram is related to the formation of a copper(II) diethyldithiocarbamate (CuET) of its reducing metabolite dithiocarb with copper(II) ion, which is preferentially distributed in tumor tissues. We showed that the acidic microenvironment, a common feature of many solid tumor tissues, could promote intracellular CuET accumulation through dual action without changing CuET uptake. This result is helpful for the formulation of clinical dosage regimens of disulfiram in cancer treatment.


Assuntos
Dissulfiram/farmacologia , Neoplasias , Distribuição Tecidual , Microambiente Tumoral , Inibidores de Acetaldeído Desidrogenases/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cobre/metabolismo , Transportador de Cobre 1/metabolismo , Reposicionamento de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Oligoelementos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
12.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064906

RESUMO

Nerve growth factor (NGF) is a protein essential to neurons survival, which interacts with its receptor as a non-covalent dimer. Peptides belonging to NGF N-terminal domain are able to mimic the activity of the whole protein. Such activity is affected by the presence of copper ions. The metal is released in the synaptic cleft where proteins, not yet identified, may bind and transfer to human copper transporter 1 (hCtr1), for copper uptake in neurons. The measurements of the stability constants of copper complexes formed by amyloid beta and hCtr1 peptide fragments suggest that beta-amyloid (Aß) can perform this task. In this work, the stability constant values of copper complex species formed with the dimeric form of N-terminal domain, sequence 1-15 of the protein, were determined by means of potentiometric measurements. At physiological pH, NGF peptides bind one equivalent of copper ion with higher affinity of Aß and lower than hCtr1 peptide fragments. Therefore, in the synaptic cleft, NGF may act as a potential copper chelating molecule, ionophore or chaperone for hCtr1 for metal uptake. Copper dyshomeostasis and mild acidic environment may modify the balance between metal, NGF, and Aß, with consequences on the metal cellular uptake and therefore be among causes of the Alzheimer's disease onset.


Assuntos
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Fator de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/metabolismo , Sítios de Ligação , Humanos , Ligação Proteica
13.
J Cell Mol Med ; 24(9): 5274-5289, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32207235

RESUMO

Chemoresistance is the main obstacle of treatment in patients with osteosarcoma. RNA-binding protein PTBP1 has been identified as an oncogene in various cancers. However, the role of PTBP1 in osteosarcoma, especially in chemoresistant osteosarcoma, and the underlying mechanism remain unclear. In this study, we aimed to explore the functions of PTBP1 in chemoresistance of osteosarcoma. We found that PTBP1 was significantly increased in chemotherapeutically insensitive osteosarcoma tissues and cisplatin-resistant osteosarcoma cell lines (MG-63CISR and U-2OSCISR ) as compared to chemotherapy-sensitive osteosarcoma tissues and cell lines. Knock-down of PTBP1 can enhance the anti-proliferation and apoptosis-induced effects of cisplatin in MG-63CISR and U-2OSCISR cells. Moreover, PTBP1 knock-down significantly up-regulated the expression of the copper transporter SLC31A1, as indicated by transcriptome sequencing. Through RNA immunoprecipitation, dual-luciferase reporter assay and RNA stability detection, we confirmed that PTBP1 binds to SLC31A1 mRNA and regulates the expression level of SLC31A1 by affecting mRNA stability. Additionally, SLC31A1 silencing abrogated the chemosensitizing effect of PTBP1 knock-down in MG-63CISR and U-2OSCISR cells. Using a nude mouse xenograft model, we further confirmed that PTBP1 knock-down enhanced chemoresistant osteosarcoma responsiveness to cisplatin treatment in vivo. Collectively, the present study suggests that PTBP1 is a crucial determinant of chemoresistance in osteosarcoma.


Assuntos
Cisplatino/uso terapêutico , Transportador de Cobre 1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Adolescente , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Cisplatino/farmacologia , Transportador de Cobre 1/metabolismo , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Inativação Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Masculino , Camundongos Nus , Osteossarcoma/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Adulto Jovem
14.
Curr Genet ; 66(3): 531-548, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31784768

RESUMO

While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Dano ao DNA , Reparo do DNA , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , FMN Redutase/genética , FMN Redutase/metabolismo , Proteínas Nucleares/genética , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
15.
Annu Rev Nutr ; 39: 75-94, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31150593

RESUMO

Many metals have biological functions and play important roles in human health. Copper (Cu) is an essential metal that supports normal cellular physiology. Significant research efforts have focused on identifying the molecules and pathways involved in dietary Cu uptake in the digestive tract. The lack of an adequate in vitro model for assessing Cu transport processes in the gut has led to contradictory data and gaps in our understanding of the mechanisms involved in dietary Cu acquisition. The recent development of organoid technology has provided a tractable model system for assessing the detailed mechanistic processes involved in Cu utilization and transport in the context of nutrition. Enteroid (intestinal epithelial organoid)-based studies have identified new links between intestinal Cu metabolism and dietary fat processing. Evidence for a metabolic coupling between the dietary uptake of Cu and uptake of fat (which were previously thought to be independent) is a new and exciting finding that highlights the utility of these three-dimensional primary culture systems. This review has three goals: (a) to critically discuss the roles of key Cu transport enzymes in dietary Cu uptake; (b) to assess the use, utility, and limitations of organoid technology in research into nutritional Cu transport and Cu-based diseases; and (c) to highlight emerging connections between nutritional Cu homeostasis and fat metabolism.


Assuntos
Cobre/metabolismo , Intestinos/fisiologia , Organoides/metabolismo , Transporte Biológico , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , Humanos
16.
FASEB J ; 33(12): 14325-14336, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31661638

RESUMO

Cisplatin (CP) is one of the most effective chemotherapeutics in the treatment of human cancers. However, the beneficial effects of CP are limited by the toxic effects, especially nephrotoxicity. Fluorofenidone (AKFPD) is a promising multifunctional antifibrosis pyridinone drug discovered by our group. But there is no evidence of its protective effects against acute kidney injury (AKI). Therefore, we investigated the protective effects of AKFPD on CP-induced AKI in vivo and in vitro. Compared with the model group, treatment with AKFPD effectively ameliorated kidney damages. In order to elucidate the mechanisms, we discovered that AKFPD treatment notably alleviated generation of reactive oxygen species, reduced the phosphorylation levels of MAPKs (ERK1 and 2, JNKs, and p38), suppressed inflammatory response, inhibited apoptosis, and abated the expression of CP transporters (organic cation transporter 2 and copper transport protein 1) compared with the model group. Moreover, because renal ischemia reperfusion injury (IRI)-induced AKI and LPS-induced AKI are the major models representative of renal transplantation-correlated AKI and sepsis-related AKI, which are also the main causes of AKI, we have also proved the effectiveness of AKFPD on these models. In conclusion, these findings suggest that AKFPD is a potent drug for CP-, IRI-, and LPS-caused AKI and elucidate the underlying mechanism.-Jiang, Y., Quan, J., Chen, Y., Liao, X., Dai, Q., Lu, R., Yu, Y., Hu, G., Li, Q., Meng, J., Xie, Y., Peng, Z., Tao, L. Fluorofenidone protects against acute kidney injury.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Cisplatino/toxicidade , Piridonas/farmacologia , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Rim/citologia , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/metabolismo , Peroxidase/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão
17.
Inorg Chem ; 59(23): 16952-16966, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33211469

RESUMO

Amyloid beta (Aß) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aß peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aß peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aß1-16 and Aß4-16 peptides as well-established non-aggregating models of major Aß species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aß peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aß1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aß4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aß species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aß model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aß1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aß4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aß peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Peptídeos beta-Amiloides/química , Cobre/química , Transportador de Cobre 1/química , Humanos , Espectrometria de Fluorescência
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(5): 643-649, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-32975078

RESUMO

OBJECTIVE: To examine copper transporter 1 (CTR1) expression in pancreatic carcinoma cells, orthotopic xenograft pancreatic tumor model and clinical samples, and verify the effect of copper chelating agent ammonium tetrathiomolybdate (TM) regulate the expression of CTR1 in pancreatic carcinoma cells and the inhibition of pancreatic carcinoma. METHODS: The expressions of copper transporter CTR1 and antioxidant protein 1 (ATOX1) in 22 clinical pancreatic ductal carcinoma and paracancer tissues 0.5-1 cm away from the tumor were measured by immunohistochemistry (IHC). PANC-1 cells were used to construct 5 orthotopic xenograft pancreatic tumor of nude mice models. Pancreatic cancer tissues and corresponding normal pancreatic tissues were collected, and the expressions of CTR1 and ATOX1 were detected by IHC and compared with clinical tissues. The proliferation of pancreatic carcinoma cells PANC-1 treated with 10, 30, 50, 100 µmol/L TM for 24 h, 48 h, 72 h was measured by CCK8 assay. The migration abilities of PANC-1 cells treated with 50 µmol/L TM for 24 h, 48 h were detected by scratch test. The expressions of CTR1, vascular endothelial growth factor (VEGF) and CyclinD1 proteins in PANC-1 cells treated with 10, 30, 50, 100 µmol/L TM for 48 h were measured by Western blot. Then the subcutaneous tumor-bearing model of nude mice were established with PANC-1 cells, and the growth of tumor was observed after oral administration of 0.3 mg/d and 1.0 mg/d of TM, respectively. RESULTS: The immunohistochemical results indicated that 19 of the 22 clinical pancreatic ductal cancer tissues of carcinoma patients had high expression of CTR1, and the same high expression of CTR1 was found in the orthotopic transplanted tumor tissues of PANC-1 nude mice. The proliferation inhibition of PANC-1 cells increased with the concentration of TM increased and the treatment time prolonged. The expressions of intracellular CTR1, VEGF and CyclinD1 all decreased with the concentration of TM increased. The cell migration ability decreased after the PANC-1 cells treated with TM. The tumor growth of PANC-1 tumor-bearing nude mice was inhibited after different doses of TM were delivered. The reduction in tumor volume and weight was more pronounced in the high-dose TM group (P<0.05). CONCLUSION: The expression of CTR1 is abnormally elevated in pancreatic carcinoma, and treatment with copper chelating agent for this target may help to inhibit pancreatic carcinoma.


Assuntos
Compostos de Amônio , Quelantes , Transportador de Cobre 1 , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Quelantes/farmacologia , Cobre , Transportador de Cobre 1/metabolismo , Transportador de Cobre 1/farmacologia , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Pancreáticas
19.
Biol Reprod ; 100(6): 1505-1520, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30997485

RESUMO

Progressive functional maturation of spermatozoa is completed during the transit of these cells through the epididymis, a tubule structure connecting a testicle to a vas deferens. Epididymal epithelial cells by means of their secretory and absorptive functions determine a highly specialized luminal microenvironment containing multiple organic and inorganic components. The latter include copper ions, which due to their redox properties are indispensable for critical homeostatic processes occurring in spermatozoa floating in different part of epididymis but can be potentially toxic. Main purpose of our study was to determine epididymal region-dependent expression and localization of copper transporters ensuring a tight control of copper concentration in epididymal fluid. We also aimed at identifying proteins responsible for copper uptake by spermatozoa and verifying whether this process is coordinated with copper supply to superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Our study identifies two ATPases-ATP7A, ATP7B and Slc31a1, major copper importers/exporters depending on their differential expression on epididymal polarized epithelial cells of the caput, corpus, and cauda. Next, ceruloplasmin seems to be a chief protein transporting copper in the epididymal fluid and providing this biometal to spermatozoa. The entry of copper to germ cells is mediated by Slc31a1 and is correlated with both expressions of copper chaperone for superoxide dismutase (CCS), copper chaperone directly providing copper ions to SOD1 and with the expression and activity of the latter. Our results outline a network of cooperating copper binding proteins expressed in epididymal epithelium and in spermatozoa that orchestrate bioavailability of this microelement for gametes and protect them against copper toxicity.


Assuntos
Proteínas de Transporte de Cobre/metabolismo , Cobre/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Animais , Animais não Endogâmicos , Transporte Biológico/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cobre/genética , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Maturação do Esperma/fisiologia , Distribuição Tecidual
20.
Protein Expr Purif ; 164: 105477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31419547

RESUMO

His-tagging is commonly used in fusion protein production, but the His-tag is usually prohibited in medicinal proteins and must be removed. A fragment (NCTR25-tag) truncated from the N-terminus of human copper transporter 1 was tested for feasibility as a replacement for the His-tag in fusion proteins. The NCTR25-tag and His-tag were separately fused to the transthyretin (TTR) protein, and the expression, affinity purification, refolding and stability of the two kinds of fusions were compared. NCTR25 fusion produced a 63% higher yield of the recombinant protein, which was purified by metal affinity chromatography with an efficiency similar to that of His-tagged protein. NCTR25-tag fusion had much less impact on the foldability, kinetic and thermodynamic stability of tetrameric TTR than His-tag fusion. When the tags were individually fused to enhanced green fluorescent protein (EGFP), NCTR25 fusion yielded 29-128% more product than His-EGFP. NCTR25-EGFP could be purified by metal affinity chromatography and showed better foldability than His-EGFP. Furthermore, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) fusion with the third disulfide loop of TGF-α (TGF3L-TRAIL) fused with the NCTR25-tag retained the stability and superactivity of His-TGF3L-TRAIL. Therefore, the native tag NCTR25-tag is a feasible alternative to the His-tag in medicinal recombinant proteins.


Assuntos
Cromatografia de Afinidade/métodos , Transportador de Cobre 1/química , Pré-Albumina/química , Proteínas Recombinantes de Fusão/química , Linhagem Celular Tumoral , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , Escherichia coli/genética , Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina/química , Humanos , Plasmídeos/genética , Pré-Albumina/genética , Pré-Albumina/metabolismo , Redobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa