Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(39): e2404395121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292743

RESUMO

Adult central nervous system (CNS) neurons down-regulate growth programs after injury, leading to persistent regeneration failure. Coordinated lipids metabolism is required to synthesize membrane components during axon regeneration. However, lipids also function as cell signaling molecules. Whether lipid signaling contributes to axon regeneration remains unclear. In this study, we showed that lipin1 orchestrates mechanistic target of rapamycin (mTOR) and STAT3 signaling pathways to determine axon regeneration. We established an mTOR-lipin1-phosphatidic acid/lysophosphatidic acid-mTOR loop that acts as a positive feedback inhibitory signaling, contributing to the persistent suppression of CNS axon regeneration following injury. In addition, lipin1 knockdown (KD) enhances corticospinal tract (CST) sprouting after unilateral pyramidotomy and promotes CST regeneration following complete spinal cord injury (SCI). Furthermore, lipin1 KD enhances sensory axon regeneration after SCI. Overall, our research reveals that lipin1 functions as a central regulator to coordinate mTOR and STAT3 signaling pathways in the CNS neurons and highlights the potential of lipin1 as a promising therapeutic target for promoting the regeneration of motor and sensory axons after SCI.


Assuntos
Axônios , Neurônios Motores , Regeneração Nervosa , Fosfatidato Fosfatase , Fator de Transcrição STAT3 , Transdução de Sinais , Traumatismos da Medula Espinal , Serina-Treonina Quinases TOR , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Animais , Axônios/metabolismo , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Camundongos , Ácidos Fosfatídicos/metabolismo , Células Receptoras Sensoriais/metabolismo , Feminino , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia
2.
Nature ; 581(7806): 77-82, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376949

RESUMO

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury1; however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their 'regenerative transcriptome' after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome; deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


Assuntos
Proliferação de Células/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regeneração Nervosa/genética , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Neurônios/patologia , Transcrição Gênica , Animais , Axônios/patologia , Axônios/fisiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Proteína Huntingtina/genética , Camundongos , Células-Tronco Neurais/transplante , Plasticidade Neuronal , Neurônios/citologia , Neurônios/transplante , Biossíntese de Proteínas , Tratos Piramidais/citologia , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , RNA-Seq , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Transcriptoma
3.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38763511

RESUMO

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dinaminas , Dinâmica Mitocondrial , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/genética , Animais , Dinâmica Mitocondrial/fisiologia , Humanos , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Caenorhabditis elegans , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Axônios/patologia , Axônios/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Tratos Piramidais/patologia , Tratos Piramidais/metabolismo , Fragmentos de Peptídeos , GTP Fosfo-Hidrolases
4.
Neuroimage ; 300: 120828, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39293355

RESUMO

The concept of structural reserve in stroke reorganization assumes that the relevance of the contralesional hemisphere strongly depends on the brain tissue spared by the lesion in the affected hemisphere. Recent studies, however, have indicated that the contralesional hemisphere's impact exhibits region-specific variability with concurrently existing maladaptive and supportive influences. This challenges traditional views, necessitating a nuanced investigation of contralesional motor areas and their interaction with ipsilesional networks. Our study focused on the functional role of contralesional key motor areas and lesion-induced connectome disruption early after stroke. Online TMS data of twenty-five stroke patients was analyzed to disentangle interindividual differences in the functional roles of contralesional primary motor cortex (M1), dorsal premotor cortex (dPMC), and anterior interparietal sulcus (aIPS) for motor function. Connectome-based lesion symptom mapping and corticospinal tract lesion quantification were used to investigate how TMS effects depend on ipsilesional structural network properties. At group and individual levels, TMS interference with contralesional M1 and aIPS but not dPMC led to improved performance early after stroke. At the connectome level, a more disturbing role of contralesional M1 was related to a more severe disruption of the structural integrity of ipsilesional M1 in the affected motor network. In contrast, a detrimental influence of contralesional aIPS was linked to less disruption of the ipsilesional M1 connectivity. Our findings indicate that contralesional areas distinctively interfere with motor performance early after stroke depending on ipsilesional structural integrity, extending the concept of structural reserve to regional specificity in recovery of function.


Assuntos
Conectoma , Córtex Motor , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Conectoma/métodos , Idoso , Córtex Motor/fisiopatologia , Córtex Motor/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Lateralidade Funcional/fisiologia , Adulto , Imageamento por Ressonância Magnética , Plasticidade Neuronal/fisiologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiopatologia , Tratos Piramidais/patologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
5.
Eur J Neurosci ; 59(11): 3074-3092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578844

RESUMO

Focal structural damage to white matter tracts can result in functional deficits in stroke patients. Traditional voxel-based lesion-symptom mapping is commonly used to localize brain structures linked to neurological deficits. Emerging evidence suggests that the impact of structural focal damage may extend beyond immediate lesion sites. In this study, we present a disconnectome mapping approach based on support vector regression (SVR) to identify brain structures and white matter pathways associated with functional deficits in stroke patients. For clinical validation, we utilized imaging data from 340 stroke patients exhibiting motor deficits. A disconnectome map was initially derived from lesions for each patient. Bootstrap sampling was then employed to balance the sample size between a minority group of patients exhibiting right or left motor deficits and those without deficits. Subsequently, SVR analysis was used to identify voxels associated with motor deficits (p < .005). Our disconnectome-based analysis significantly outperformed alternative lesion-symptom approaches in identifying major white matter pathways within the corticospinal tracts associated with upper-lower limb motor deficits. Bootstrapping significantly increased the sensitivity (80%-87%) for identifying patients with motor deficits, with a minimum lesion size of 32 and 235 mm3 for the right and left motor deficit, respectively. Overall, the lesion-based methods achieved lower sensitivities compared with those based on disconnection maps. The primary contribution of our approach lies in introducing a bootstrapped disconnectome-based mapping approach to identify lesion-derived white matter disconnections associated with functional deficits, particularly efficient in handling imbalanced data.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia
6.
Hum Brain Mapp ; 45(14): e70002, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39365253

RESUMO

Subtle motor signs are a common feature in children with attention-deficit/hyperactivity disorder (ADHD). It has long been suggested that white matter abnormalities may be involved in their presentation, though no study has directly probed this question. The aim of this study was to investigate the relationship between white matter organization and the severity of subtle motor signs in children with and without ADHD. Participants were 92 children with ADHD aged between 8 and 12 years, and 185 typically developing controls. Subtle motor signs were examined using the Physical and Neurological Examination for Soft Signs (PANESS). Children completed diffusion MRI, and fixel-based analysis was performed after preprocessing. Tracts of interest were delineated using TractSeg including the corpus callosum (CC), the bilateral corticospinal tracts (CST), superior longitudinal fasciculus, and fronto-pontine tracts (FPT). Fiber cross-section (FC) was calculated for each tract. Across all participants, lower FC in the CST was associated with higher PANESS Total score (greater motor deficits). Within the PANESS, similar effects were observed for Timed Left and Right maneuvers of the hands and feet, with lower FC of the CST, CC, and FPT associated with poorer performance. No significant group differences were observed in FC in white matter regions associated with PANESS performance. Our data are consistent with theoretical accounts implicating white matter organization in the expression of motor signs in childhood. However, rather than contributing uniquely to the increased severity of soft motor signs in those with ADHD, white matter appears to contribute to these symptoms in childhood in general.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Branca , Humanos , Criança , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Tratos Piramidais/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia
7.
Radiology ; 312(3): e231630, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39287519

RESUMO

Background Radially sampled averaged magnetization inversion-recovery acquisition (rAMIRA) imaging shows hyperintensity in the lateral corticospinal tract (CST) in patients with motor neuron diseases. Purpose To systematically determine the accuracy of the lateral corticospinal tract sign for detecting patients with amyotrophic lateral sclerosis (ALS) at rAMIRA MRI. Materials and Methods This study included prospectively acquired data from participants in ALS and other motor neuron disease imaging studies at the University Hospital Basel, Switzerland. All participants underwent 3-T axial two-dimensional rAMIRA imaging at four cervical intervertebral disk levels. The lateral CST sign was defined as spinal cord white matter hyperintensity dorsolateral to the anterior horns, with higher signal intensity than in the dorsal columns on axial rAMIRA images. Marker accuracy was assessed in a study data set and in an independent validation data set. Postmortem rAMIRA imaging and histopathologic analysis were performed in one participant who died during the study. Results Participants with ALS (study data set: 38 participants [mean age, 61 years; IQR, 15 years], 22 male participants; validation data set: 10 participants [mean age, 61 years; IQR, 21 years], seven male participants), post-polio syndrome (study data set: 25 participants [mean age, 68 years; IQR, 8 years], 12 male participants), spinal muscular atrophy (study data set: 10 participants [mean age, 43 years; IQR, 14 years], eight male participants; validation data set: five participants [mean age, 38 years; IQR, 19 years], two male participants), and healthy control participants (study data set: 60 participants [mean age, 57 years; IQR, 20 years], 36 male participants; validation data set: 10 participants [mean age, 44 years; IQR, 17 years], seven male participants) were included. The sensitivity and specificity of rAMIRA for ALS were 60% (23 of 38) and 97% (91 of 94) in the study data set and 100% (10 of 10) and 93% (14 of 15) in the validation data set, respectively. Histopathologic analysis showed distinct loss of myelinated axons in the localization of the hyperintensities observed at rAMIRA imaging performed in situ and after organ extraction. Conclusion The recently defined marker at rAMIRA MRI may be a promising tool for assessing upper motor neuron degeneration in the lateral CST in patients with ALS. Clinical trials registration no. NCT03561623, NCT05764434, NCT06137612 © RSNA, 2024 Supplemental material is available for this article.


Assuntos
Esclerose Lateral Amiotrófica , Imageamento por Ressonância Magnética , Tratos Piramidais , Humanos , Masculino , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Feminino , Pessoa de Meia-Idade , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imageamento por Ressonância Magnética/métodos , Idoso , Estudos Prospectivos , Adulto , Sensibilidade e Especificidade
8.
Ann Neurol ; 93(5): 922-933, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36585896

RESUMO

OBJECTIVES: The integrity of cortical motor networks and their descending effector pathway (the corticospinal tract [CST]) is a major determinant motor recovery after stroke. However, this view neglects the importance of ascending tracts and their modulatory effects on cortical physiology. Here, we explore the role of such a tract that connects dopaminergic ventral tegmental midbrain nuclei to the motor cortex (the VTMC tract) for post-stroke recovery. METHODS: Lesion data and diffusivity parameters (fractional anisotropy) of the ipsi- and contralesional VTMC tract and CST were obtained from 133 patients (63.9 ± 13.4 years, 45 women) during the acute and chronic stage after the first ever ischemic stroke in the middle cerebral artery territory. Degeneration of VTMC tract and CST was quantified and related to clinical outcome parameters (National Institute of Health Stroke Scale with motor and cortical symptom subscores; modified Fugl-Meyer upper extremity score; modified Ranking Scale [mRS]). RESULTS: A significant post-stroke degeneration occurred in both tracts, but only VTMC degeneration was associated with lesion size. Using multiple regression models, we dissected the impact of particular tracts on recovery: Changes in VTMC tract integrity were stronger associated with independence in daily activities (mRS), upper limb motor impairment (modified Fugl-Meyer upper extremity score) and cortical symptoms (aphasia, neglect) captured by National Institute of Health Stroke Scale compared to CST. Changes in CST integrity merely were associated with the degree of hemiparesis (National Institute of Health Stroke Scale motor subscale). INTERPRETATION: Post-stroke outcome is influenced by ascending (VTMC) and descending (CST) fiber tracts. Favorable outcome regarding independence (modified Ranking Scale), upper limb motor function (modified Fugl-Meyer upper extremity score), and cortical symptoms (aphasia, neglect) was more strongly related to the ascending than descending tract. ANN NEUROL 2023;93:922-933.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Feminino , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Extremidade Superior , Imagem de Difusão por Ressonância Magnética , Tratos Piramidais/patologia
9.
Neurochem Res ; 49(7): 1838-1850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727984

RESUMO

Menaquinone-4 (MK-4) is an isoform of vitamin K2 that has been shown to exert various biological actions besides its functions in blood coagulation and bone metabolism. Here we examined the effect of MK-4 on a mouse model of intracerebral hemorrhage (ICH). Daily oral administration of 200 mg/kg MK-4 starting from 3 h after induction of ICH by intrastriatal collagenase injection significantly ameliorated neurological deficits. Unexpectedly, MK-4 produced no significant effects on various histopathological parameters, including the decrease of remaining neurons and the increase of infiltrating neutrophils within the hematoma, the increased accumulation of activated microglia/macrophages and astrocytes around the hematoma, as well as the injury volume and brain swelling by hematoma formation. In addition, ICH-induced increases in nitrosative/oxidative stress reflected by changes in the immunoreactivities against nitrotyrosine and heme oxygenase-1 as well as the contents of malondialdehyde and glutathione were not significantly affected by MK-4. In contrast, MK-4 alleviated axon tract injury in the internal capsule as revealed by neurofilament-H immunofluorescence. Enhanced preservation of the corticospinal tract by MK-4 was also confirmed by retrograde labeling of neurons in the primary motor cortex innervating the spinal cord. These results suggest that MK-4 produces therapeutic effect on ICH by protecting structural integrity of the corticospinal tract.


Assuntos
Hemorragia Cerebral , Tratos Piramidais , Vitamina K 2 , Animais , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Masculino , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacologia , Vitamina K 2/uso terapêutico , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/tratamento farmacológico
10.
Eur J Neurol ; 31(4): e16196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258488

RESUMO

BACKGROUND AND PURPOSE: In acute spinal cord injury (SCI), magnetic resonance imaging (MRI) reveals tissue bridges and neurodegeneration for 2 years. This 5-year study aims to track initial lesion changes, subsequent neurodegeneration, and their impact on recovery. METHODS: This prospective longitudinal study enrolled acute SCI patients and healthy controls who were assessed clinically-and by MRI-regularly from 3 days postinjury up to 60 months. We employed histologically cross-validated quantitative MRI sequences sensitive to volume, myelin, and iron changes, thereby reflecting indirectly processes of neurodegeneration and neuroinflammation. General linear models tracked lesion and remote changes in volume, myelin- and iron-sensitive magnetic resonance indices over 5 years. Associations between lesion, degeneration, and recovery (using the Spinal Cord Independence Measure [SCIM] questionnaire and the International Standards for Neurological Classification of Spinal Cord Injury total motor score) were assessed. RESULTS: Patients' motor scores improved by an average of 12.86 (95% confidence interval [CI] = 6.70-19.00) points, and SCIM by 26.08 (95% CI = 17.00-35.20) points. Within 3-28 days post-SCI, lesion size decreased by more than two-thirds (3 days: 302.52 ± 185.80 mm2 , 28 days: 76.77 ± 88.62 mm2 ), revealing tissue bridges. Cervical cord and corticospinal tract volumes transiently increased in SCI patients by 5% and 3%, respectively, accompanied by cervical myelin decreases and iron increases. Over time, progressive atrophy was observed in both regions, which was linked to early lesion dynamics. Tissue bridges, reduced swelling, and myelin content decreases were predictive of long-term motor score recovery and improved SCIM score. CONCLUSIONS: Studying acute changes and their impact on longer follow-up provides insights into SCI trajectory, highlighting the importance of acute intervention while indicating the potential to influence outcomes in the later stages.


Assuntos
Traumatismos da Medula Espinal , Humanos , Estudos Longitudinais , Estudos Prospectivos , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação , Medula Espinal/patologia , Tratos Piramidais/patologia , Imageamento por Ressonância Magnética/métodos , Ferro
11.
Neuroradiology ; 66(5): 785-796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478062

RESUMO

PURPOSE: This study aimed to investigate the diagnostic performance of diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in identifying aberrations in the corticospinal tract (CST), whilst elucidating the relationship between abnormalities of CST and patients' motor function. METHODS: Altogether 21 patients with WHO grade II or grade IV glioma were enrolled and divided into Group 1 and Group 2, according to the presence or absence of preoperative paralysis. DKI and DTI metrics were generated and projected onto the CST. Histograms of the CST along x, y, and z axes were developed based on DKI and DTI metrics, and compared subsequently to determine regions of aberrations on the fibers. The receiver operating characteristic curve was performed to investigate the diagnostic efficacy of DKI and DTI metrics. RESULTS: In Group 1, a significantly lower fractional anisotropy, radial kurtosis and mean kurtosis, and a higher mean diffusivity were found in the ipsilateral CST as compared to the contralateral CST. Significantly higher relative axial diffusivity, relative radial diffusivity, and relative mean diffusivity (rMD) were found in Group 1, as compared to Group 2. The relative volume of ipsilateral CST abnormalities higher than the maximum value of mean kurtosis combined with rMD exhibited the best diagnostic performance in distinguishing dysfunction of CST with an AUC of 0.93. CONCLUSION: DKI is sensitive in detecting subtle changes of CST distal from the tumor. The combination of DKI and DTI is feasible for evaluating the impairment of the CST.


Assuntos
Imagem de Tensor de Difusão , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/patologia , Curva ROC
12.
Eur Arch Psychiatry Clin Neurosci ; 274(5): 1167-1175, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38265467

RESUMO

This study aims to explore the link between Apo-E, brain white matter, and suicide in patients with major depressive disorder (MDD) to investigate the potential neuroimmune mechanisms of Apo-E that may lead to suicide. Thirty-nine patients with MDD (22 patients with suicidality) and 57 age, gender, and education-matched healthy controls participated in this study, provided plasma Apo-E samples, and underwent diffusion tensor imaging scans. Plasma Apo-E levels and white matter microstructure were analyzed among the MDD with suicidality, MDD without suicidality, and HC groups using analysis of variance with post hoc Bonferroni correction and tract-based spatial statistics (TBSS) with threshold-free cluster enhancement correction. Mediation analysis investigated the relationship between Apo-E, brain white matter, and suicidality in MDD. The MDD with suicidality subgroup had higher depressive and suicide scores, longer disease course, and lower plasma Apo-E levels than MDD without suicidality. TBSS revealed that the MDD non-suicide subgroup showed significantly increased mean diffusivity in the left corticospinal tract and body of the left corpus callosum, as well as increased axial diffusivity in the left anterior corona radiata and the right posterior thalamic radiation compared to the suicidal MDD group. The main finding was that the increased MD of the left corticospinal tract contributed to the elevated suicide score, with Apo-E mediating the effect. Preliminary result that Apo-E's mediating role between the left corticospinal tract and the suicide factor suggests the neuroimmune mechanism of suicide in MDD. The study was registered on ClinicalTrials.gov (NCT03790085).


Assuntos
Apolipoproteínas E , Transtorno Depressivo Maior , Imagem de Tensor de Difusão , Tratos Piramidais , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apolipoproteínas E/genética , Apolipoproteínas E/sangue , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/fisiopatologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Tratos Piramidais/fisiopatologia , Ideação Suicida , Suicídio , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos de Casos e Controles
13.
Nature ; 561(7724): 547-550, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209395

RESUMO

Current models of somatosensory perception emphasize transmission from primary sensory neurons to the spinal cord and on to the brain1-4. Mental influence on perception is largely assumed to occur locally within the brain. Here we investigate whether sensory inflow through the spinal cord undergoes direct top-down control by the cortex. Although the corticospinal tract (CST) is traditionally viewed as a primary motor pathway5, a subset of corticospinal neurons (CSNs) originating in the primary and secondary somatosensory cortex directly innervate the spinal dorsal horn via CST axons. Either reduction in somatosensory CSN activity or transection of the CST in mice selectively impairs behavioural responses to light touch without altering responses to noxious stimuli. Moreover, such CSN manipulation greatly attenuates tactile allodynia in a model of peripheral neuropathic pain. Tactile stimulation activates somatosensory CSNs, and their corticospinal projections facilitate light-touch-evoked activity of cholecystokinin interneurons in the deep dorsal horn. This touch-driven feed-forward spinal-cortical-spinal sensitization loop is important for the recruitment of spinal nociceptive neurons under tactile allodynia. These results reveal direct cortical modulation of normal and pathological tactile sensory processing in the spinal cord and open up opportunities for new treatments for neuropathic pain.


Assuntos
Vias Neurais/fisiopatologia , Neuralgia/fisiopatologia , Tratos Piramidais/fisiopatologia , Tato/fisiologia , Animais , Axônios , Colecistocinina/metabolismo , Feminino , Membro Posterior/fisiopatologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Interneurônios/metabolismo , Masculino , Camundongos , Neuralgia/patologia , Nociceptividade/fisiologia , Tratos Piramidais/patologia , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
14.
J Integr Neurosci ; 23(7): 132, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39082301

RESUMO

BACKGROUND: Non-invasive brain mapping using navigated transcranial magnetic stimulation (nTMS) is a valuable tool prior to resection of malignant brain tumors. With nTMS motor mapping, it is additionally possible to analyze the function of the motor system and to evaluate tumor-induced neuroplasticity. Distinct changes in motor cortex excitability induced by certain malignant brain tumors are a focal point of research. METHODS: A retrospective single-center study was conducted involving patients with malignant brain tumors. Clinical data, resting motor threshold (rMT), and nTMS-based tractography were evaluated. The interhemispheric rMT-ratio (rMTTumor/rMTControl) was calculated for each extremity and considered pathological if it was >110% or <90%. Distances between the corticospinal tract and the tumor (lesion-to-tract-distance - LTD) were measured. RESULTS: 49 patients were evaluated. 16 patients (32.7%) had a preoperative motor deficit. The cohort comprised 22 glioblastomas (44.9%), 5 gliomas of Classification of Tumors of the Central Nervous System (CNS WHO) grade 3 (10.2%), 6 gliomas of CNS WHO grade 2 (12.2%) and 16 cerebral metastases (32.7%). 26 (53.1%) had a pathological rMT-ratio for the upper extremity and 35 (71.4%) for the lower extremity. All patients with tumor-induced motor deficits had pathological interhemispheric rMT-ratios, and presence of tumor-induced motor deficits was associated with infiltration of the tumor to the nTMS-positive cortex (p = 0.04) and shorter LTDs (all p < 0.021). Pathological interhemispheric rMT-ratio for the upper extremity was associated with cerebral metastases, but not with gliomas (p = 0.002). CONCLUSIONS: Our study underlines the diagnostic potential of nTMS motor mapping to go beyond surgical risk stratification. Pathological alterations in motor cortex excitability can be measured with nTMS mapping. Pathological cortical excitability was more frequent in cerebral metastases than in gliomas.


Assuntos
Neoplasias Encefálicas , Imagem de Tensor de Difusão , Córtex Motor , Tratos Piramidais , Estimulação Magnética Transcraniana , Humanos , Tratos Piramidais/fisiopatologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Córtex Motor/fisiopatologia , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Idoso , Glioma/fisiopatologia , Glioma/patologia , Glioma/diagnóstico por imagem , Mapeamento Encefálico , Potencial Evocado Motor/fisiologia
15.
Hum Brain Mapp ; 44(17): 6055-6073, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792280

RESUMO

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.


Assuntos
Neoplasias Encefálicas , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/cirurgia
16.
Eur J Neurol ; 30(5): 1220-1231, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692202

RESUMO

BACKGROUND AND PURPOSE: This study sought to evaluate the relationship of progressive corticospinal tract (CST) degeneration with survival in patients with amyotrophic lateral sclerosis (ALS). METHODS: Forty-one ALS patients and 42 healthy controls were prospectively recruited from the Canadian ALS Neuroimaging Consortium. Magnetic resonance imaging scanning and clinical evaluations were performed on participants at three serial visits with 4-month intervals. Texture analysis was performed on T1-weighted magnetic resonance imaging scans and the texture feature 'autocorrelation' was quantified. Whole-brain group-level comparisons were performed between patient subgroups. Linear mixed models were used to evaluate longitudinal progression. Region-of-interest and 3D voxel-wise Cox proportional-hazards regression models were constructed for survival prediction. For all survival analyses, a second independent cohort was used for model validation. RESULTS: Autocorrelation of the bilateral CST was increased at baseline and progressively increased over time at a faster rate in ALS short survivors. Cox proportional-hazards regression analyses revealed autocorrelation of the CST as a significant predictor of survival at 5 years follow-up (hazard ratio 1.28, p = 0.005). Similarly, voxel-wise whole-brain survival analyses revealed that increased autocorrelation of the CST was associated with shorter survival. ALS patients stratified by median autocorrelation in the CST had significantly different survival times using the Kaplan-Meier curve and log-rank tests (χ2  = 7.402, p = 0.007). CONCLUSIONS: Severity of cerebral degeneration is associated with survival in ALS. CST degeneration progresses faster in subgroups of patients with shorter survival. Neuroimaging holds promise as a tool to improve patient management and facilitation of clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Canadá , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
17.
Brain ; 145(10): 3522-3535, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653498

RESUMO

Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex. In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area relate to corticomotor physiology and sensorimotor function of the contralateral hand. Fifty relapse-free patients with relapsing-remitting or secondary-progressive multiple sclerosis and 28 healthy age- and sex-matched participants underwent whole-brain 7 T MRI to map cortical lesions. Brain scans were also used to estimate normalized brain volume, pericentral cortical thickness, white matter lesion fraction of the corticospinal tract, infratentorial lesion volume and the cross-sectional area of the upper cervical spinal cord. We tested sensorimotor hand function and calculated a motor and sensory composite score for each hand. In 37 patients and 20 healthy controls, we measured maximal motor-evoked potential amplitude, resting motor threshold and corticomotor conduction time with transcranial magnetic stimulation and the N20 latency from somatosensory-evoked potentials. Patients showed at least one cortical lesion in the primary sensorimotor hand area in 47 of 100 hemispheres. The presence of a lesion was associated with worse contralateral sensory (P = 0.014) and motor (P = 0.009) composite scores. Transcranial magnetic stimulation of a lesion-positive primary sensorimotor hand area revealed a decreased maximal motor-evoked potential amplitude (P < 0.001) and delayed corticomotor conduction (P = 0.002) relative to a lesion-negative primary sensorimotor hand area. Stepwise mixed linear regressions showed that the presence of a primary sensorimotor hand area lesion, higher white-matter lesion fraction of the corticospinal tract, reduced spinal cord cross-sectional area and higher infratentorial lesion volume were associated with reduced contralateral motor hand function. Cortical lesions in the primary sensorimotor hand area, spinal cord cross-sectional area and normalized brain volume were also associated with smaller maximal motor-evoked potential amplitude and longer corticomotor conduction times. The effect of cortical lesions on sensory function was no longer significant when controlling for MRI-based covariates. Lastly, we found that intracortical and subpial lesions had the largest effect on reduced motor hand function, intracortical lesions on reduced motor-evoked potential amplitude and leucocortical lesions on delayed corticomotor conduction. Together, this comprehensive multilevel assessment of sensorimotor brain damage shows that the presence of a cortical lesion in the primary sensorimotor hand area is associated with impaired corticomotor function of the hand, after accounting for damage at the subcortical level. The results also provide preliminary evidence that cortical lesion types may affect the various facets of corticomotor function differentially.


Assuntos
Esclerose Múltipla , Córtex Sensório-Motor , Humanos , Esclerose Múltipla/patologia , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Potencial Evocado Motor , Tratos Piramidais/patologia , Córtex Sensório-Motor/diagnóstico por imagem
18.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1797-1812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37012463

RESUMO

Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Substância Branca , Humanos , Esquizofrenia/tratamento farmacológico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Transtornos Psicóticos/tratamento farmacológico , Encéfalo/patologia
19.
Proc Natl Acad Sci U S A ; 117(46): 29113-29122, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139574

RESUMO

The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians' increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.


Assuntos
Evolução Biológica , Córtex Cerebral/fisiologia , Mamíferos/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Animais , Corpo Caloso/fisiologia , Eutérios/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Córtex Motor/patologia , Neurônios Motores , Tratos Piramidais/patologia
20.
Acta Neurochir (Wien) ; 165(4): 1041-1051, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36862216

RESUMO

PURPOSE: Fiber tracking (FT) is used in neurosurgical planning for the resection of lesions in proximity to fiber pathways, as it contributes to a substantial amelioration of postoperative neurological impairments. Currently, diffusion-tensor imaging (DTI)-based FT is the most frequently used technique; however, sophisticated techniques such as Q-ball (QBI) for high-resolution FT (HRFT) have suggested favorable results. Little is known about the reproducibility of both techniques in the clinical setting. Therefore, this study aimed to examine the intra- and interrater agreement for the depiction of white matter pathways such as the corticospinal tract (CST) and the optic radiation (OR). METHODS: Nineteen patients with eloquent lesions in the proximity of the OR or CST were prospectively enrolled. Two different raters independently reconstructed the fiber bundles by applying probabilistic DTI- and QBI-FT. Interrater agreement was evaluated from the comparison between results obtained by the two raters on the same data set acquired in two independent iterations at different timepoints using the Dice Similarity Coefficient (DSC) and the Jaccard Coefficient (JC). Likewise, intrarater agreement was determined for each rater comparing individual results. RESULTS: DSC values showed substantial intrarater agreement based on DTI-FT (rater 1: mean 0.77 (0.68-0.85); rater 2: mean 0.75 (0.64-0.81); p = 0.673); while an excellent agreement was observed after the deployment of QBI-based FT (rater 1: mean 0.86 (0.78-0.98); rater 2: mean 0.80 (0.72-0.91); p = 0.693). In contrast, fair agreement was observed between both measures for the repeatability of the OR of each rater based on DTI-FT (rater 1: mean 0.36 (0.26-0.77); rater 2: mean 0.40 (0.27-0.79), p = 0.546). A substantial agreement between the measures was noted by applying QBI-FT (rater 1: mean 0.67 (0.44-0.78); rater 2: mean 0.62 (0.32-0.70), 0.665). The interrater agreement was moderate for the reproducibility of the CST and OR for both DSC and JC based on DTI-FT (DSC and JC ≥ 0.40); while a substantial interrater agreement was noted for DSC after applying QBI-based FT for the delineation of both fiber tracts (DSC > 0.6). CONCLUSIONS: Our findings suggest that QBI-based FT might be a more robust tool for the visualization of the OR and CST adjacent to intracerebral lesions compared with the common standard DTI-FT. For neurosurgical planning during the daily workflow, QBI appears to be feasible and less operator-dependent.


Assuntos
Tratos Piramidais , Substância Branca , Humanos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Reprodutibilidade dos Testes , Imagem de Tensor de Difusão/métodos , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa