Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(3): 108494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820907

RESUMO

BACKGROUND: Fabry disease (FD) is characterized by deficient activity of α-galactosidase A (GLA). Consequently, globotriaosylceramide (Gb3) accumulates in various organs, causing cardiac, renal, and cerebrovascular damage. Gene therapies for FD have been investigated in humans. Strong conditioning is required for hematopoietic stem cell-targeted gene therapy (HSC-GT). However, strong conditioning leads to various side effects and should be avoided. In this study, we tested antibody-based conditioning for HSC-GT in wild-type and FD model mice. METHODS: After preconditioning with an antibody-drug conjugate, HSC-GT using a lentiviral vector was performed in wild-type and Fabry model mice. In the wild-type experiment, the EGFP gene was introduced into HSCs and transplanted into preconditioned mice, and donor chimerism and EGFP expression were analyzed. In the FD mouse model, the GLA gene was introduced into HSCs and transplanted into preconditioned Fabry mice. GLA activity and Gb3 accumulation in the organs were analyzed. RESULTS: In the wild-type mouse experiment, when anti-CD45 antibody-drug conjugate was used, the percentage of donor cells at 6 months was 64.5%, and 69.6% of engrafted donor peripheral blood expressed EGFP. When anti-CD117 antibody-drug conjugate and ATG were used, the percentage of donor cells at 6 months was 80.7%, and 73.4% of engrafted donor peripheral blood expressed EGFP. Although large variations in GLA activity among mice were observed in the FD mouse experiment for both preconditioning regimens, Gb3 was significantly reduced in many organs. CONCLUSIONS: Antibody-based preconditioning may be an alternative preconditioning strategy for HSC-GT for treating FD.


Assuntos
Modelos Animais de Doenças , Doença de Fabry , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Triexosilceramidas , alfa-Galactosidase , Animais , Doença de Fabry/terapia , Doença de Fabry/genética , Camundongos , alfa-Galactosidase/genética , alfa-Galactosidase/imunologia , Células-Tronco Hematopoéticas/metabolismo , Triexosilceramidas/metabolismo , Imunoconjugados/farmacologia , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Lentivirus/genética , Condicionamento Pré-Transplante/métodos
2.
J Inherit Metab Dis ; 47(4): 818-833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623626

RESUMO

Fabry disease (FD) is an X-linked disease characterized by an accumulation of glycosphingolipids, notably of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3) leading to renal failure, cardiomyopathy, and cerebral strokes. Inflammatory processes are involved in the pathophysiology. We investigated the immunological phenotype of peripheral blood mononuclear cells in Fabry patients depending on the clinical phenotype, treatment, Gb3, and lysoGb3 levels and the presence of anti-drug antibodies (ADA). Leucocytes from 41 male patients and 20 controls were analyzed with mass cytometry using both unsupervised and supervised algorithms. FD patients had an increased expression of CD27 and CD28 in memory CD45- and CD45 + CCR7-CD4 T cells (respectively p < 0.014 and p < 0.02). Percentage of CD45RA-CCR7-CD27 + CD28+ cells in CD4 T cells was correlated with plasma lysoGb3 (r = 0.60; p = 0.0036) and phenotype (p < 0.003). The correlation between Gb3 and CD27 in CD4 T cells almost reached significance (r = 0.33; p = 0.058). There was no immune profile associated with the presence of ADA. Treatment with agalsidase beta was associated with an increased proportion of Natural Killer cells. These findings provide valuable insights for understanding FD, linking Gb3 accumulation to inflammation, and proposing new prognostic biomarkers.


Assuntos
Linfócitos T CD4-Positivos , Doença de Fabry , Triexosilceramidas , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Doença de Fabry/imunologia , Masculino , Triexosilceramidas/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Esfingolipídeos/metabolismo , Estudos de Casos e Controles , Antígenos Comuns de Leucócito , Células T de Memória/imunologia , Células T de Memória/metabolismo , Citometria de Fluxo , Antígenos CD28 , Memória Imunológica , Receptores CCR7/metabolismo , Glicolipídeos
3.
J Inherit Metab Dis ; 47(4): 805-817, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38618884

RESUMO

Fabry disease (FD) is an X-linked multiorgan disorder caused by variants in the alpha-galactosidase A gene (GLA). Depending on the variant, disease phenotypes range from benign to life-threatening. More than 1000 GLA variants are known, but a link between genotype and phenotype in FD has not yet been established for all. p.A143T, p.D313Y, and p.S126G are frequent examples of variants of unknown significance (VUS). We have investigated the potential pathogenicity of these VUS combining clinical data with data obtained in human cellular in vitro systems. We have analyzed four different male subject-derived cell types for alpha-galactosidase A enzyme (GLA) activity and intracellular Gb3 load. Additionally, Gb3 load in skin tissue as well as clinical data were studied for correlates of disease manifestations. A reduction of GLA activity was observed in cells carrying p.A143T compared with controls (p < 0.05). In cells carrying the p.D313Y variant, a reduced GLA activity was found only in endothelial cells (p < 0.01) compared with controls. No pathological changes were observed in cells carrying the p.S126G variant. None of the VUS investigated caused intracellular Gb3 accumulation in any cell type. Our data of aberrant GLA activity in cells of p.A143T hemizygotes and overall normal cellular phenotypes in cells of p.D313Y and p.S126G hemizygotes contribute a basic science perspective to the clinically highly relevant discussion on VUS in GLA.


Assuntos
Doença de Fabry , Fenótipo , alfa-Galactosidase , Humanos , Doença de Fabry/genética , Doença de Fabry/patologia , Doença de Fabry/enzimologia , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Masculino , Adulto , Variação Genética , Triexosilceramidas/metabolismo , Pessoa de Meia-Idade , Pele/patologia , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Mutação , Glicolipídeos/metabolismo , Esfingolipídeos
4.
Neuroradiology ; 66(9): 1593-1601, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38771548

RESUMO

PURPOSE: How to measure brain globotriaosylceramide (Gb3) accumulation in Fabry Disease (FD) patients in-vivo is still an open challenge. The objective of this study is to provide a quantitative, non-invasive demonstration of this phenomenon using quantitative MRI (qMRI). METHODS: In this retrospective, monocentric cross-sectional study conducted from November 2015 to July 2018, FD patients and healthy controls (HC) underwent an MRI scan with a relaxometry protocol to compute longitudinal relaxation rate (R1) maps to evaluate gray (GM) and white matter (WM) lipid accumulation. In a subgroup of 22 FD patients, clinical (FAbry STabilization indEX -FASTEX- score) and biochemical (residual α-galactosidase activity) variables were correlated with MRI data. Quantitative maps were analyzed at both global ("bulk" analysis) and regional ("voxel-wise" analysis) levels. RESULTS: Data were obtained from 42 FD patients (mean age = 42.4 ± 12.9, M/F = 16/26) and 49 HC (mean age = 42.3 ± 16.3, M/F = 28/21). Compared to HC, FD patients showed a widespread increase in R1 values encompassing both GM (pFWE = 0.02) and WM (pFWE = 0.02) structures. While no correlations were found between increased R1 values and FASTEX score, a significant negative correlation emerged between residual enzymatic activity levels and R1 values in GM (r = -0.57, p = 0.008) and WM (r = -0.49, p = 0.03). CONCLUSIONS: We demonstrated the feasibility and clinical relevance of non-invasively assessing cerebral Gb3 accumulation in FD using MRI. R1 mapping might be used as an in-vivo quantitative neuroimaging biomarker in FD patients.


Assuntos
Doença de Fabry , Imageamento por Ressonância Magnética , Triexosilceramidas , Humanos , Doença de Fabry/diagnóstico por imagem , Doença de Fabry/metabolismo , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Triexosilceramidas/metabolismo , Estudos Transversais , Estudos Retrospectivos , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
5.
Nat Immunol ; 12(9): 827-33, 2011 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-21804559

RESUMO

The most potent foreign antigens for natural killer T cells (NKT cells) are α-linked glycolipids, whereas NKT cell self-reactivity involves weaker recognition of structurally distinct ß-linked glycolipid antigens. Here we provide the mechanism for the autoreactivity of T cell antigen receptors (TCRs) on NKT cells to the mono- and tri-glycosylated ß-linked agonists ß-galactosylceramide (ß-GalCer) and isoglobotrihexosylceramide (iGb3), respectively. In binding these disparate antigens, the NKT cell TCRs docked onto CD1d similarly, achieving this by flattening the conformation of the ß-linked ligands regardless of the size of the glycosyl head group. Unexpectedly, the antigenicity of iGb3 was attributable to its terminal sugar group making compensatory interactions with CD1d. Thus, the NKT cell TCR molds the ß-linked self ligands to resemble the conformation of foreign α-linked ligands, which shows that induced-fit molecular mimicry can underpin the self-reactivity of NKT cell TCRs to ß-linked antigens.


Assuntos
Antígenos CD1d/imunologia , Autoimunidade , Galactosilceramidas/imunologia , Globosídeos/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta , Triexosilceramidas/imunologia , Sequência de Aminoácidos , Animais , Antígenos CD1d/química , Antígenos CD1d/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citometria de Fluxo , Galactosilceramidas/química , Galactosilceramidas/metabolismo , Globosídeos/química , Globosídeos/metabolismo , Humanos , Hibridomas , Cinética , Camundongos , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Ligação Proteica/imunologia , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Triexosilceramidas/química , Triexosilceramidas/metabolismo
6.
J Inherit Metab Dis ; 46(1): 143-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220782

RESUMO

Fabry disease (FD) is an X-linked inherited lysosomal metabolism disorder in which globotriaosylceramide (Gb3) accumulates in various organs resulting from a deficiency in alpha-galactosidase A. The clinical features of FD include progressive impairments of the renal, cardiac, and peripheral nervous systems. In addition, patients with FD often develop neuropsychiatric symptoms, such as depression and dementia, which are believed to be induced by the cellular injury of cerebrovascular and partially neuronal cells due to Gb3 accumulation. Although the analysis of autopsy brain tissue from patients with FD showed no accumulation of Gb3, abnormal deposits of Gb3 were found in the neurons of several brain areas, including the hippocampus. Therefore, in this study, we generated induced pluripotent stem cells (iPSCs) from patients with FD and differentiated them into neuronal cells to investigate pathological and biological changes in the neurons of FD. Neural stem cells (NSCs) and neurons were successfully differentiated from the iPSCs we generated; however, cellular damage and morphological changes were not found in these cells. Immunostaining revealed no Gb3 accumulation in NSCs and neurons. Transmission electron microscopy did not reveal any zebra body-like structures or inclusion bodies, which are characteristic of FD. These results indicated that neuronal cells derived from FD-iPSCs exhibited normal morphology and no Gb3 accumulation. It is likely that more in vivo environment-like cultures are needed for iPSC-derived neurons to reproduce disease-specific features.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Masculino , Humanos , Doença de Fabry/genética , Células-Tronco Pluripotentes Induzidas/patologia , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Fenótipo , Neurônios/metabolismo , Triexosilceramidas/metabolismo
7.
Ophthalmic Plast Reconstr Surg ; 39(2): e52-e55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36728127

RESUMO

Fabry disease is an X-linked lysosomal storage disease resulting from an error in the glycosphingolipid metabolic pathway, which leads to accumulation of globotriaosylceramide in lysosomes of the skin, kidneys, heart, brain, and other organs. There are no existing reports of histologically proven lacrimal gland involvement in Fabry disease. The authors report the case of a 26-year-old male with Fabry disease who presented with bilateral upper eyelid dermatochalasis, steatoblepharon, and prolapsed lacrimal glands. The patient underwent surgical repair of the upper eyelids and biopsy of the lacrimal glands. The pathologic assessment demonstrated lamellated intracytoplasmic inclusions characteristic of Fabry disease. The prevalence of globotriaosylceramide lacrimal gland deposition in Fabry disease and the effect on lacrimal gland morphology and function have yet to be determined.


Assuntos
Doença de Fabry , Aparelho Lacrimal , Masculino , Humanos , Adulto , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Aparelho Lacrimal/patologia , Triexosilceramidas/metabolismo , Pele/patologia
8.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958836

RESUMO

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Assuntos
Diabetes Mellitus , Doença de Fabry , Nefropatias , Insuficiência Renal , Humanos , Camundongos , Animais , Doença de Fabry/metabolismo , Fatores de Proteção , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Insuficiência Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Triexosilceramidas/metabolismo , alfa-Galactosidase/genética
9.
J Biol Chem ; 296: 100299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460651

RESUMO

The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galß1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.


Assuntos
Galactosiltransferases/química , Globosídeos/química , Toxina Shiga I/química , Triexosilceramidas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animais , Sítios de Ligação , Células CHO , Sequência de Carboidratos , Cricetulus , Escherichia coli Êntero-Hemorrágica/química , Escherichia coli Êntero-Hemorrágica/patogenicidade , Galactose/química , Galactose/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Expressão Gênica , Globosídeos/biossíntese , Globosídeos/metabolismo , Glucose/química , Glucose/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Triexosilceramidas/biossíntese
10.
Kidney Int ; 102(1): 173-182, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483528

RESUMO

While females can suffer serious complications of Fabry disease, most studies are limited to males to avoid confounding by mosaicism. Here, we developed a novel unbiased method for quantifying globotriaosylceramide (GL3) inclusion volume in affected podocytes (F+) in females with Fabry disease independent of mosaicism leading to important new observations. All podocytes in male patients with Fabry are F+. The probability of observing random profiles from F+ podocytes without GL3 inclusions (estimation error) was modeled from electron microscopic studies of 99 glomeruli from 40 treatment-naïve males and this model was applied to 28 treatment-naïve females. Also, podocyte structural parameters were compared in 16 age-matched treatment-naïve males and females with classic Fabry disease and 11 normal individuals. A 4th degree polynomial equation best described the relationship between podocyte GL3 volume density and the estimation error (R2 =0.94) and was confirmed by k-fold cross-validation. In females, this model showed that age related directly to F+ podocyte GL3 volume (correlation coefficient (r = 0.54) and podocyte volume (r = 0.48) and inversely to podocyte number density (r = -0.56), (all significant). F+ podocyte GL3 volume was significantly inversely related to podocyte number density (r = -0.79) and directly to proteinuria. There was no difference in F+ podocyte GL3 volume or volume fraction between age-matched males and females. Thus, in females with Fabry disease GL3 accumulation in F+ podocytes progresses with age in association with podocyte loss and proteinuria, and F+ podocyte GL3 accumulation in females with Fabry is similar to males, consistent with insignificant cross-correction between affected and non-affected podocytes. Hence, these findings have important pathophysiological and clinical implications.


Assuntos
Doença de Fabry , Podócitos , Doença de Fabry/complicações , Feminino , Humanos , Masculino , Proteinúria/etiologia , Triexosilceramidas
11.
Am J Hum Genet ; 104(4): 625-637, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879639

RESUMO

Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human α-Gal A in wild-type (WT) mice, α-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-α-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of α-Gal A in tissues and plasma. Single intravenous administration of h-α-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-α-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.


Assuntos
Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro/uso terapêutico , alfa-Galactosidase/genética , Animais , Modelos Animais de Doenças , Endocitose , Terapia de Reposição de Enzimas , Terapia Genética , Humanos , Lipídeos/química , Lisossomos/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/farmacocinética , Distribuição Tecidual , Triexosilceramidas/metabolismo
12.
J Nanobiotechnology ; 20(1): 125, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264192

RESUMO

BACKGROUND: Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid-polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD. RESULTS: Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved. CONCLUSIONS: PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease.


Assuntos
Doença de Fabry , Nanopartículas , Animais , Autofagia , Modelos Animais de Doenças , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Fabry/patologia , Rim/patologia , Masculino , Camundongos , Triexosilceramidas , Zircônio
13.
Cell Mol Life Sci ; 78(7): 3637-3656, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33555391

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


Assuntos
Antígenos CD59/metabolismo , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Triexosilceramidas/metabolismo , Transporte Biológico , Antígenos CD59/genética , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Proteínas de Membrana/genética , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais
14.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163813

RESUMO

Fabry disease is an X-linked lysosomal multisystem storage disorder induced by a mutation in the alpha-galactosidase A (GLA) gene. Reduced activity or deficiency of alpha-galactosidase A (AGAL) leads to escalating storage of intracellular globotriaosylceramide (GL-3) in numerous organs, including the kidneys, heart and nerve system. The established treatment for 20 years is intravenous enzyme replacement therapy. Lately, oral chaperone therapy was introduced and is a therapeutic alternative in patients with amenable mutations. Early starting of therapy is essential for long-term improvement. This review describes chaperone therapy in Fabry disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/genética , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Doença de Fabry/genética , Doença de Fabry/metabolismo , Humanos , Masculino , Mutação , Tempo para o Tratamento , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo
15.
J Biol Chem ; 295(17): 5577-5587, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32179651

RESUMO

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(-2) containing the lyso-Gb3(-2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(-2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.


Assuntos
Doença de Fabry/patologia , Triexosilceramidas/análise , Acilação , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Humanos , Rim/patologia , Fígado/patologia , Masculino , Camundongos , Miocárdio/patologia , Baço/patologia , Espectrometria de Massas em Tandem
16.
J Biol Chem ; 295(13): 4341-4349, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32029474

RESUMO

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Resistência à Doença/genética , Globosídeos/genética , Receptores de Hidrocarboneto Arílico/genética , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Triexosilceramidas/genética , Animais , Sistemas CRISPR-Cas/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Genoma Humano/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Lipídeos/genética , Camundongos , Camundongos Knockout , Toxina Shiga/farmacologia , Transdução de Sinais/genética , Esfingolipídeos/genética
17.
Glycobiology ; 31(9): 1145-1162, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33978735

RESUMO

N-glycosylation is a ubiquitous posttranslational modification that may influence folding, subcellular localization, secretion, solubility and oligomerization of proteins. In this study, we examined the effects of N-glycans on the activity of human Gb3/CD77 synthase, which catalyzes the synthesis of glycosphingolipids with terminal Galα1→4Gal (Gb3 and the P1 antigen) and Galα1→4GalNAc disaccharides (the NOR antigen). The human Gb3/CD77 synthase contains two occupied N-glycosylation sites at positions N121 and N203. Intriguingly, we found that while the N-glycan at N203 is essential for activity and correct subcellular localization, the N-glycan at N121 is dispensable and its absence did not reduce, but, surprisingly, even increased the activity of the enzyme. The fully N-glycosylated human Gb3/CD77 synthase and its glycoform missing the N121 glycan correctly localized in the Golgi, whereas a glycoform without the N203 site partially mislocalized in the endoplasmic reticulum. A double mutein missing both N-glycans was inactive and accumulated in the endoplasmic reticulum. Our results suggest that the decreased specific activity of human Gb3/CD77 synthase glycovariants resulted from their improper subcellular localization and, to a smaller degree, a decrease in enzyme solubility. Taken together, our findings show that the two N-glycans of human Gb3/CD77 synthase have opposing effects on its properties, revealing a dual nature of N-glycosylation and potentially a novel regulatory mechanism controlling the biological activity of proteins.


Assuntos
Galactosiltransferases , Glicoesfingolipídeos , Galactosiltransferases/metabolismo , Glicosilação , Humanos , Polissacarídeos , Triexosilceramidas
18.
Biochem Biophys Res Commun ; 557: 247-253, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33894410

RESUMO

Accumulation of amyloid-ß peptide (Aß) in neuronal cells and in the extracellular regions in the brain is a major cause of Alzheimer's disease (AD); therefore, inhibition of Aß accumulation offers a promising approach for therapeutic strategies against AD. Aß is produced by sequential proteolysis of amyloid precursor protein (APP) in late/recycling endosomes after endocytosis of APP located in the plasma membrane. Aß is then released from cells in a free form or in an exosome-bound form. Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli. Recently, we found that one of the Stx subtypes, Stx2a, has a unique intracellular transport route after endocytosis through its receptor-binding B-subunit. A part of Stx2a can be transported to late/recycling endosomes and then degraded in a lysosomal acidic compartment, although in general Stx is transported to the Golgi and then to the endoplasmic reticulum in a retrograde manner. In this study, we found that treatment of APP-expressing cells with a mutant Stx2a (mStx2a), lacking cytotoxic activity because of mutations in the catalytic A-subunit, stimulated the transport of APP to the acidic compartment, which led to degradation of APP and a reduction in the amount of Aß. mStx2a-treatment also inhibited the extracellular release of Aß. Therefore, mStx2a may provide a new strategy to inhibit the production of Aß by modulating the intracellular transport of APP.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/efeitos dos fármacos , Endossomos/metabolismo , Lisossomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Toxina Shiga II/farmacologia , Animais , Células CHO , Domínio Catalítico/genética , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Globosídeos/química , Humanos , Mutação , Fosfatidilcolinas/química , Proteínas Recombinantes , Toxina Shiga II/química , Toxina Shiga II/genética , Triexosilceramidas/química
19.
Mol Genet Metab ; 132(4): 234-243, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33642210

RESUMO

BACKGROUND: Recent years have witnessed a considerable increase in clinical trials of new investigational agents for Fabry disease (FD). Several trials investigating different agents are currently in progress; however, lack of standardisation results in challenges to interpretation and comparison. To facilitate the standardisation of investigational programs, we have developed a common framework for future clinical trials in FD. METHODS AND FINDINGS: A broad consensus regarding clinical outcomes and ways to measure them was obtained via the Delphi methodology. 35 FD clinical experts from 4 continents, representing 3389 FD patients, participated in 3 rounds of Delphi procedure. The aim was to reach a consensus regarding clinical trial design, best treatment comparator, clinical outcomes, measurement of those clinical outcomes and inclusion and exclusion criteria. Consensus results of this initiative included: the selection of the adaptative clinical trial as the ideal study design and agalsidase beta as ideal comparator treatment due to its longstanding use in FD. Renal and cardiac outcomes, such as glomerular filtration rate, proteinuria and left ventricular mass index, were prioritised, whereas neurological outcomes including cerebrovascular and white matter lesions were dismissed as a primary or secondary outcome measure. Besides, there was a consensus regarding the importance of patient-related outcomes such as general quality of life, pain, and gastrointestinal symptoms. Also, unity about lysoGb3 and Gb3 tissue deposits as useful surrogate markers of the disease was obtained. The group recognised that cardiac T1 mapping still has potential but requires further development before its widespread introduction in clinical trials. Finally, patients with end-stage renal disease or renal transplant should be excluded unless a particular group for them is created inside the clinical trial. CONCLUSION: This consensus will help to shape the future of clinical trials in FD. We note that the FDA has, coincidentally, recently published draft guidelines on clinical trials in FD and welcome this contribution.


Assuntos
Ensaios Clínicos como Assunto , Terapia de Reposição de Enzimas , Doença de Fabry/tratamento farmacológico , Rim/metabolismo , Adulto , Consenso , Técnica Delphi , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Feminino , Globosídeos/uso terapêutico , Glicolipídeos/uso terapêutico , Humanos , Isoenzimas/genética , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Esfingolipídeos/uso terapêutico , Resultado do Tratamento , Triexosilceramidas/uso terapêutico , alfa-Galactosidase/genética
20.
Anal Biochem ; 628: 114287, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119486

RESUMO

Fabry disease is caused by reduced α-GAL A activity and accumulation of globotriaosylceramide (Gb3). Here, we describe a microplate Gb3 assay using fluorophore-tagged antibody and crude cellular lipid extracts. The assay is able to detect higher Gb3 concentrations in human Fabry cells compared to non-diseased cells. This result was verified by immunofluorescence staining that revealed large amounts of Gb3 deposits in Fabry cell lines, demonstrating the accuracy of this method. This assay may provide the basis for detecting Fabry disease by quantifying Gb3 deposits from human biological samples, for example, from urine and blood.


Assuntos
Doença de Fabry/diagnóstico , Imunofluorescência , Triexosilceramidas/sangue , Triexosilceramidas/urina , Doença de Fabry/imunologia , Humanos , Triexosilceramidas/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa