Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Genomics ; 25(1): 390, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649807

RESUMO

Medicinal plants are rich sources for treating various diseases due their bioactive secondary metabolites. Fenugreek (Trigonella foenum-graecum) is one of the medicinal plants traditionally used in human nutrition and medicine which contains an active substance, called diosgenin, with anticancer properties. Biosynthesis of this important anticancer compound in fenugreek can be enhanced using eliciting agents which involves in manipulation of metabolite and biochemical pathways stimulating defense responses. Methyl jasmonate elicitor was used to increase diosgenin biosynthesis in fenugreek plants. However, the molecular mechanism and gene expression profiles underlying diosgening accumulation remain unexplored. In the current study we performed an extensive analysis of publicly available RNA-sequencing datasets to elucidate the biosynthesis and expression profile of fenugreek plants treated with methyl jasmonate. For this purpose, seven read datasets of methyl jasmonate treated plants were obtained that were covering several post-treatment time points (6-120 h). Transcriptomics analysis revealed upregulation of several key genes involved in diosgenein biosynthetic pathway including Squalene synthase (SQS) as the first committed step in diosgenin biosynthesis as well as Squalene Epoxidase (SEP) and Cycloartenol Synthase (CAS) upon methyl jasmonate application. Bioinformatics analysis, including gene ontology enrichment and pathway analysis, further supported the involvement of these genes in diosgenin biosynthesis. The bioinformatics analysis led to a comprehensive validation, with expression profiling across three different fenugreek populations treated with the same methyl jasmonate application. Initially, key genes like SQS, SEP, and CAS showed upregulation, followed by later upregulation of Δ24, suggesting dynamic pathway regulation. Real-time PCR confirmed consistent upregulation of SQS and SEP, peaking at 72 h. Additionally, candidate genes Δ24 and SMT1 highlighted roles in directing metabolic flux towards diosgenin biosynthesis. This integrated approach validates the bioinformatics findings and elucidates fenugreek's molecular response to methyl jasmonate elicitation, offering insights for enhancing diosgenin yield. The assembled transcripts and gene expression profiles are deposited in the Zenodo open repository at https://doi.org/10.5281/zenodo.8155183 .


Assuntos
Vias Biossintéticas , Perfilação da Expressão Gênica , Oxilipinas , Terpenos , Transcriptoma , Trigonella , Trigonella/metabolismo , Trigonella/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Terpenos/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 161, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429697

RESUMO

BACKGROUND: Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS: Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION: Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.


Assuntos
Melatonina , Saponinas , Trigonella , Humanos , Melatonina/metabolismo , Trigonella/genética , Trigonella/metabolismo , Secas , Antioxidantes/metabolismo
3.
Mol Biol Rep ; 51(1): 489, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578370

RESUMO

BACKGROUND: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging. METHODS AND RESULTS: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus. CONCLUSIONS: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.


Assuntos
Trigonella , Animais , Trigonella/genética , Trigonella/química , Tamanho do Genoma , Citometria de Fluxo , Extratos Vegetais , Evolução Biológica
4.
BMC Genomics ; 24(1): 756, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066419

RESUMO

BACKGROUND: Trigonella foenum-graecum L. is a Leguminosae plant, and the stems, leaves, and seeds of this plant are rich in chemical components that are of high research value. The chloroplast (cp) genome of T. foenum-graecum has been reported, but the mitochondrial (mt) genome remains unexplored. RESULTS: In this study, we used second- and third-generation sequencing methods, which have the dual advantage of combining high accuracy and longer read length. The results showed that the mt genome of T. foenum-graecum was 345,604 bp in length and 45.28% in GC content. There were 59 genes, including: 33 protein-coding genes (PCGs), 21 tRNA genes, 4 rRNA genes and 1 pseudo gene. Among them, 11 genes contained introns. The mt genome codons of T. foenum-graecum had a significant A/T preference. A total of 202 dispersed repetitive sequences, 96 simple repetitive sequences (SSRs) and 19 tandem repetitive sequences were detected. Nucleotide diversity (Pi) analysis counted the variation in each gene, with atp6 being the most notable. Both synteny and phylogenetic analyses showed close genetic relationship among Trifolium pratense, Trifolium meduseum, Trifolium grandiflorum, Trifolium aureum, Medicago truncatula and T. foenum-graecum. Notably, in the phylogenetic tree, Medicago truncatula demonstrated the highest level of genetic relatedness to T. foenum-graecum, with a strong support value of 100%. The interspecies non-synonymous substitutions (Ka)/synonymous substitutions (Ks) results showed that 23 PCGs had Ka/Ks < 1, indicating that these genes would continue to evolve under purifying selection pressure. In addition, setting the similarity at 70%, 23 homologous sequences were found in the mt genome of T. foenum-graecum. CONCLUSIONS: This study explores the mt genome sequence information of T. foenum-graecum and complements our knowledge of the phylogenetic diversity of Leguminosae plants.


Assuntos
Genoma Mitocondrial , Trigonella , Extratos Vegetais , Trigonella/genética , Trigonella/química , Filogenia
5.
Mol Biol Rep ; 50(11): 9203-9211, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776416

RESUMO

BACKGROUND: Fenugreek (Trigonella foenum-graecum L.) is an annual medicinal and spice crop belonging to the family Fabaceae. The occurrence of a yellow vein disease was recorded in fenugreek in Jodhpur (India) in 2022. The infection of begomoviruses in legume crops results in significant yield loss and major economic loss. The current study reports an association of a novel begomovirus species associated with yellow vein disease in Fenugreek. METHODS AND RESULTS: In symptomatic fenugreek plants, geminivirus-like particles were visible under a transmission electron microscope. Further, nucleotide sequence analysis of the rolling circle amplified product revealed 2743 nucleotide DNA-A genome with close relatedness to French bean leaf curl virus (88.21%) and Senna leaf curl virus (87.63%). It was proposed as a new begomovirus species, Fenugreek yellow vein Rajasthan virus. The genome organization suggested the presence of a typical nonanucleotide sequence along with 7 ORFs in DNA-A. A possible recombination event took place in the coat protein (V1) region with Pedilanthus leaf curl virus and Chilli leaf curl virus as major and minor parents. The recombinant virus poses possible threats to several other legume crops. To the best of our knowledge, this is the first report of the association of FeYVRaV with fenugreek yellow vein disease from northwestern India. CONCLUSIONS: In conclusion, the presence of a novel begomovirus species associated with yellow vein disease in fenugreek is alarming and needs further studies on its infectivity to prevent its spread to legume crops.


Assuntos
Begomovirus , Fabaceae , Trigonella , Begomovirus/genética , Filogenia , Trigonella/genética , DNA Viral/genética , Análise de Sequência de DNA , Índia , Doenças das Plantas , Fabaceae/genética
6.
Molecules ; 24(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609669

RESUMO

Trigonella foenum-graecum L. (fenugreek) is a valuable resource of producing diosgenin which serves as a substrate for synthesizing more than two hundred kinds of steroidal drugs. Phytochemical analysis indicated that methyl jasmonate (MeJA) efficiently induced diosgenin biosynthesis in fenugreek seedlings. Though early steps up to cholesterol have recently been elucidated in plants, cytochrome P450 (CYP)- and glycosyltransferase (GT)-encoding genes involved in the late steps from cholesterol to diosgenin remain unknown. This study established comparative fenugreek transcriptome datasets from the MeJA-treated seedlings and the corresponding control lines. Differential gene expression analysis identified a number of MeJA-induced CYP and GT candidate genes. Further gene expression pattern analysis across a different MeJA-treating time points, together with a phylogenetic analysis, suggested specific family members of CYPs and GTs that may participate in the late steps during diosgenin biosynthesis. MeJA-induced transcription factors (TFs) that may play regulatory roles in diosgenin biosynthesis were also discussed. This study provided a valuable genetic resource to functionally characterize the genes involved in diosgenin biosynthesis, which will push forward the production of diosgenin in microbial organisms using a promising synthetic biology strategy.


Assuntos
Diosgenina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Trigonella/genética , Trigonella/metabolismo , Biologia Computacional/métodos , Ontologia Genética , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Filogenia , Fatores de Transcrição , Trigonella/classificação
7.
Planta ; 245(5): 977-991, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161815

RESUMO

MAIN CONCLUSION: Representational difference analysis of cDNA was performed and differential products were sequenced and annotated. Candidate genes involved in biosynthesis of diosgenin in fenugreek were identified. Detailed mechanism of diosgenin synthesis was proposed. Fenugreek (Trigonella foenum-graecum L.) is a valuable medicinal and crop plant. It belongs to Fabaceae family and has a unique potential to synthesize valuable steroidal saponins, e.g., diosgenin. Elicitation (methyl jasmonate) and precursor feeding (cholesterol and squalene) were used to enhance the content of sterols and steroidal sapogenins in in vitro grown plants for representational difference analysis of cDNA (cDNA-RDA). To identify candidate genes involved in diosgenin biosynthesis, differential, factor-specific libraries were subject to the next-generation sequencing. Approximately 9.9 million reads were obtained, trimmed, and assembled into 31,491 unigenes with an average length of 291 bp. Then, functional annotation and gene ontogeny enrichment analysis was performed by aligning all-unigenes with public databases. Within the transcripts related to sterol and steroidal saponin biosynthesis, we discovered novel candidate genes of diosgenin biosynthesis and validated their expression using quantitative RT-PCR analysis. Based on these findings, we supported the idea that diosgenin is biosynthesized from cycloartenol via cholesterol. This is the first report on the next-generation sequencing of cDNA-RDA products. Analysis of the transcriptomes enriched in low copy sequences contributed substantially to our understanding of the biochemical pathways of steroid synthesis in fenugreek.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Diosgenina/metabolismo , Oxilipinas/metabolismo , Fitosteróis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Trigonella/genética , DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Trigonella/metabolismo
8.
Plant Cell Rep ; 35(5): 1189-203, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26956134

RESUMO

KEY MESSAGE: Coexpression of two antifungal genes ( NPR1 and defensin ) in transgenic peanut results in the development of resistance to two major fungal pathogens, Aspergillus flavus and Cercospora arachidicola. Fungal diseases have been one of the principal causes of crop losses with no exception to peanut (Arachis hypogeae L.), a major oilseed crop in Asia and Africa. To address this problem, breeding for fungal disease resistance has been successful to some extent against specific pathogens. However, combating more than one fungal pathogen via breeding is a major limitation in peanut. In the present study, we demonstrated the potential use of co-overexpression of two genes, NPR1 and defensin isolated from Brassica juncea and Trigonella foenum-graecum respectively; that offered resistance towards Aspergillus flavus in peanut. The transgenic plants not only resisted the mycelial growth but also did not accumulate aflatoxin in the seeds. Resistance was also demonstrated against another pathogen, Cercospora arachidicola at varied levels; the transgenic plants showed both reduction in the number of spots and delay in the onset of disease. PCR, Southern and Western blot analysis confirmed stable integration and expression of the transgenes in the transgenic plants. The combinatorial use of the two pathogen resistance genes presents a novel approach to mitigate two important fungal pathogens of peanut.


Assuntos
Arachis/imunologia , Resistência à Doença/genética , Mostardeira/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Trigonella/genética , Arachis/genética , Arachis/microbiologia , Ascomicetos/fisiologia , Aspergillus flavus/fisiologia , Defensinas/genética , Defensinas/metabolismo , Expressão Gênica , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Sementes/genética , Sementes/imunologia , Sementes/microbiologia , Transformação Genética , Transgenes
9.
Int J Mol Sci ; 16(12): 29889-99, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694357

RESUMO

The effects of methyl jasmonate (MeJA), an elicitor of plant defense mechanisms, on the biosynthesis of diosgenin, a steroidal saponin, were investigated in six fenugreek (Trigonella foenum-graecum) varieties (Gujarat Methi-2, Kasuri-1, Kasuri-2, Pusa Early Branching, Rajasthan Methi and Maharashtra Methi-5). Treatment with 0.01% MeJA increased diosgenin levels, in 12 days old seedlings, from 0.5%-0.9% to 1.1%-1.8%. In addition, MeJA upregulated the expression of two pivotal genes of the mevalonate pathway, the metabolic route leading to diosgenin: 3-hydroxy-3-methylglutaryl-CoA reductase (HMG) and sterol-3-ß-glucosyl transferase (STRL). In particular, MeJA increased the expression of HMG and STRL genes by 3.2- and 22.2-fold, respectively, in the Gujarat Methi-2 variety, and by 25.4- and 28.4-fold, respectively, in the Kasuri-2 variety. Therefore, MeJA may be considered a promising elicitor for diosgenin production by fenugreek plants.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Diosgenina/metabolismo , Oxilipinas/farmacologia , Plântula/metabolismo , Trigonella/metabolismo , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Eletroforese em Gel de Ágar , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Essenciais , Genes de Plantas , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Trigonella/efeitos dos fármacos , Trigonella/genética
10.
Genet Mol Res ; 13(4): 10464-81, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25511030

RESUMO

In this study, we analyzed the correlation between genetic variation based on random amplified polymorphic DNA (RAPD), acid phosphatase, and glutamate-oxaloacetate transaminase isozymes, and amino acid composition with the antioxidant potential status of 7 wild Trigonella foenum-graecum L. accessions collected from diverse ecogeographical regions. RAPD revealed that 90 DNA products had highly polymorphism value (94.12%) based on band numbers, with sizes ranging from 50-2100 base pairs, and band intensity. Of 49 DNA polymorphic bands, 31 unique and 3 monomorphic bands were scored. Acid phosphatase and glutamate-oxaloacetate transaminase showed total polymorphism values of 90.00 and 93.75%, respectively, based on zymogram number, relative front (Rf), and optical intensity. Because isozymes are composed of amino acids, they were analyzed using high-performance liquid chromatography, which revealed the presences of 16 amino acids of variable content ranging from 13.21-15.35%, 9 of which are essential amino acids in humans. RAPD and isozymes showed similarly high estimates of genetic variability. Genetic relationships revealed by unweighted pair group method with arithmetic mean clustering analysis based on data obtained from all primers of RAPD and each isozyme were very similar. The antioxidant potential based on free radical scavenging, 2, 2-diphenyl-1-picrylhydrazyl, b-carotene-linoleate, total phenolic, and flavonoid contents values were variable among accessions. We found that fenugreek is a valuable genetic resource with high antioxidant activity. Their genotypes, based on data and clustering of RAPD, isozymes, and variable amino acid contents, combined with their antioxidant potential statues are important in fenugreek breeding and improvement programs.


Assuntos
Fosfatase Ácida/genética , Aspartato Aminotransferase Citoplasmática/genética , Polimorfismo Genético , Trigonella/genética , Fosfatase Ácida/metabolismo , Antioxidantes/metabolismo , Aspartato Aminotransferase Citoplasmática/metabolismo , Sequestradores de Radicais Livres/metabolismo , Genótipo , Oxirredução , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Trigonella/metabolismo
11.
Genes (Basel) ; 15(3)2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540402

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a traditional medicinal plant for treating human diseases that is widely cultivated in many countries. However, the component and related metabolic pathways are still unclear. To understand the changes in expression of the component and related genes during seed development, this study employed metabolomic and transcriptomic analyses and integrative analysis to explore the metabolites and pathways involved in the growth of fenugreek. The antifungal activity of the fenugreek seeds was also analyzed. A total of 9499 metabolites were identified in the positive ion mode, and 8043 metabolites were identified in the negative ion mode. Among them, the main components were fatty acyls, prenol lipids, steroids, steroid derivatives, flavonoids, and isoflavonoids. Among these enriched pathways, the top 20 pathways were "flavone and flavonol biosynthesis", "isoflavonoid biosynthesis", and "flavonoid biosynthesis". 3,7-Di-O-methylquercetin, flavonoids, pseudobaptigenin, isoflavonoids, methylecgonine, alkaloids, and derivatives were the most significantly upregulated metabolites. There were 38,137 differentially expressed genes (DEGs) identified via transcriptomic analysis. According to the KEGG pathway enrichment analysis, 147 DEGs were significantly enriched in "flavonoid biosynthesis". Ten DEGs of the six key enzymes were found to be involved in three pathways related to flavonoid and alkaloid synthesis in fenugreek. The antifungal activity test revealed the inhibitory effect of the ethanol extract of fenugreek seeds on Alternaria tenuissima (Kunze)Wiltshire and Magnaporthe oryzae. These findings further prove that the use of botanical pesticides in fenugreek fruit has research value.


Assuntos
Trigonella , Humanos , Trigonella/genética , Antifúngicos/metabolismo , Extratos Vegetais/metabolismo , Flavonoides/metabolismo , Sementes/genética , Sementes/química
12.
PLoS One ; 19(7): e0305691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074097

RESUMO

Trigonella, commonly known as Fenugreek, is among the most promising medicinal herbs consumed worldwide due its protein rich dietary contributions. This study involved induced mutagenesis on two Trigonella species (Trigonella foenum-graecum var. PEB and Trigonella corniculata var. Pusa kasuri) using caffeine and sodium azide as mutagens, resulting in the identification of nine high-yielding mutant lines in the M3 generation. Molecular characterization using SCoT markers revealed a high polymorphism of 28.3% and 46.7% in PEB and Pusa kasuri, respectively, facilitating the investigation of genetic divergence among the control and mutant lines. Similarity correlation analysis indicated a high similarity between mutant A and mutant C (0.97) and between mutant J and mutant O (0.88), while the lowest similarity was observed between mutant B and mutant F (0.74) and between control and mutant L (0.58). Mutant F and Mutant J displayed the highest seed yield and its attributing traits, and seed protein content in PEB and Pusa kasuri, respectively. Physiological parameters, including chlorophyll content (Mutants A and N) and carotenoids (mutant A and J), exhibited improvements. Assessment of stomatal and seed characteristics using scanning electron microscopy may lead to improved physiological processes and distinction at the interspecific level, respectively. Methanolic extracts of the control and the mutant lines of both species were subjected to GC-MS analysis, revealing 24 major phytocompounds known for their pharmacological activities (antioxidant, anti-inflammatory, anticancer, etc.). Statistical methods such as Pearson correlation heatmap and pairwise scatter plot matrix provided insights into the correlations and linear associations among parameters for both PEB and Pusa kasuri. The strong correlation between iron content and seeds per pod in the mutant lines suggests a promising avenue for further research. Continued research and breeding efforts using these mutants can lead to significant advancements in agriculture and medicine, benefiting farmers, consumers, and industries alike.


Assuntos
Mutação , Sementes , Trigonella , Trigonella/genética , Trigonella/química , Trigonella/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/química , Mutagênese , Carotenoides/metabolismo , Cafeína/farmacologia , Clorofila/metabolismo , Azida Sódica/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Funct Integr Genomics ; 13(4): 435-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24022215

RESUMO

Plant defensins are small (45 to 54 amino acids) positively charged antimicrobial peptides produced by the plant species, which can inhibit the growth of a broad range of fungi at micro-molar concentrations. These basic peptides share a common characteristic three-dimensional folding pattern with one α-helix and three ß-sheets that are stabilized by eight disulfide-linked cysteine residues. Instead of using two single-gene constructs, it is beneficial when two effective genes are made into a single fusion gene with one promoter and terminator. In this approach, we have linked two plant defensins namely Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) genes by a linker peptide sequence (occurring in the seeds of Impatiens balsamina) and made into a single-fusion gene construct. We used pET-32a+ vector system to express Tfgd2-RsAFP2 fusion gene with hexahistidine tag in Escherichia coli BL21 (DE3) pLysS cells. Induction of these cells with 1 mM IPTG achieved expression of the fusion protein. The solubilized His6-tagged recombinant fusion protein was purified by immobilized-metal (Ni2+) affinity column chromatography. The final yield of the fusion protein was 500 ng/µL. This method produced biologically active recombinant His6-tagged fusion protein, which exhibited potent antifungal action towards the plant pathogenic fungi (Botrytis cinerea, Fusarium moniliforme, Fusarium oxysporum, Phaeoisariopsis personata and Rhizoctonia solani along with an oomycete pathogen Phytophthora parasitica var nicotianae) at lower concentrations under in vitro conditions. This strategy of combining activity of two defensin genes into a single-fusion gene will definitely be a promising utility for biotechnological applications.


Assuntos
Defensinas/toxicidade , Proteínas de Plantas/toxicidade , Raphanus/genética , Proteínas Recombinantes de Fusão/toxicidade , Trigonella/genética , Sequência de Aminoácidos , Sequência de Bases , Defensinas/genética , Fungicidas Industriais/toxicidade , Fusarium/efeitos dos fármacos , Dados de Sequência Molecular , Phytophthora/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/genética
14.
Genet Mol Res ; 12(4): 6284-98, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24338424

RESUMO

Protein and DNA polymorphismswere surveyed among seven accessions of wild fenugreek (Trigonellafoenum-graecum L.) to estimate their genetic diversity and relationships. Samples were obtained from diverse ecogeographical areas in Saudi Arabia and Yemen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of seed storage protein showed genetic variations among fenugreek germplasms, both quantitatively and qualitatively, generating a total of 168 polypeptide bands with different molecular weights ranging from 4.5 to 300 kDa. Twenty-six of these bands were polymorphic, with a considerable polymorphism value (80.00%). Furthermore, restriction fragment length polymorphism (RFLP) analysis was also employed, which was based on the ability of four restriction enzymes (EagI, EcoRI, FspI, and HindIII) to cleave genomic DNA of the plant materials at specific target nucleotide sequences into different numbers of DNA fragments. RFLP analysis revealed 166 fragments with known sequences and variable lengths ranging from 80 to 4000 bp with a highly degree of polymorphism (88.71%). Data derived from SDS-PAGE or RFLP analyses were used to produce dendrograms, which clustered the studied fenugreek accessions into different groups based on the unweighted pair group method with arithmetic mean (UPGMA). The resulting relationships indicated that these two marker techniques were nearly equivalent, but not identical, with respect to phylogenetic information. In conclusion, SDS-PAGE analysis of seed proteins should be augmented with RFLP analysis of DNA for reliable estimates of genetic diversity among fenugreek germplasms.


Assuntos
Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Trigonella/genética , Análise por Conglomerados , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Filogenia , Polimorfismo de Fragmento de Restrição , Proteínas de Armazenamento de Sementes/genética , Sementes/metabolismo , Trigonella/metabolismo
15.
PLoS One ; 18(9): e0291527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729256

RESUMO

Distinctness, uniformity, and stability (DUS) test is the legal requirement in crop breeding to grant the intellectual property right for new varieties by evaluating their morphological characteristics across environments. On the other hand, molecular markers accurately identify genetic variations and validate the purity of the cultivars. Therefore, genomic DUS can improve the efficiency of traditional DUS testing. In this study, 112 Egyptian fenugreek genotypes were grown in Egypt at two locations: Wadi El-Natrun (Wadi), El-Beheira Governorate, with salty and sandy soil, and Giza, Giza governorate, with loamy clay soil. Twelve traits were measured, of which four showed a high correlation above 0.94 over the two locations. We observed significant genotype-by-location interactions (GxL) for seed yield, as it was superior in Wadi, with few overlapping genotypes with Giza. We attribute this superiority in Wadi to the maternal habitat, as most genotypes grew in governorates with newly reclaimed salty and sandy soil. As a first step toward genomic DUS, we performed an association study, and out of 38,142 SNPs, we identified 39 SNPs demonstrating conditional neutrality and four showing pleiotropic effects. Forty additional SNPs overlapped between both locations, each showing a similar impact on the associated trait. Our findings highlight the importance of GxL in validating the effect of each SNP to make better decisions about its suitability in the marker-assisted breeding program and demonstrate its potential use in registering new plant varieties.


Assuntos
Trigonella , Trigonella/genética , Egito , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Genótipo , Areia , Solo
16.
J Biomol Struct Dyn ; 41(19): 9297-9312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369783

RESUMO

α-Amylase catalyses the hydrolysis of glucosidic bonds in polysaccharides such as starch, glycogen and their degradation products. In the present study, the three-dimensional structure of fenugreek (Trigonella foenum-graecum) α-amylase was determined using a homology modeling-based technique. The best predicted model was deposited in PMDB server with PMDB ID PM0084364. The phylogenetic tree was created using the UPGMA method with 8 homologous protein sequences, Trigonella foenum-graecum was utilized as the target protein. Alignment of the phylogenetic tree identified two primary functional groupings (A and B). α-Amylase from the target genome Trigonella foenum-graecum (Acc. No: GHNA01022531.1) was clustered with Medicago truncatula (Acc. No: XP003589186.1), Cicer arietinum (Acc. No: XP004499059.1), Cajanus cajan (Acc. No: XP020231823.1), Vigna angularis (Acc. No: NP001316768.1) and Vigna mungo (Acc. No: P17859.1), in group A cluster, while Hordeum vulgare (Acc. No: Q40015) and Oryza sativa (PDB ID: 3WN6) were in cluster B. The molecular dynamics simulations were performed to understand the molecular basis and mode of action of Trigonella foenum-graecum α-amylase. Additionally, a geometry-based molecular docking technique was used to evaluate potential binding interactions between the modeled structure of α-amylase and maltose. The results show that Trp228, Glu226, Arg199, His308, Tyr165, Asp309, Phe202 and Asp201 from Trigonella foenum-graecum α-amylase enzyme is involved in the binding to the substrate maltose. Our study provides a 3D model of Trigonella foenum-graecum α-amylase and aids in understanding the atomic level molecular underpinnings of the mechanism of α-amylase interaction with substrate maltose. Ca2+ are essential for the stability of domain B since they are connected to it. Ca2+ site ligands are Asp139, Glu130, Thr133, Asp135 and Gly131 residues. HIGHLIGHTSIn silico analysis, gene prediction of α-amylase was carried from Trigonella foenum-graecum.Analysis of the structure of α-amylase was carried out using homology modelling.Calcium binding sites and their interactions with α-amylase were visualised using BIOVIA DISCOVERY STUDIO 2019.The molecular interaction between Trigonella foenum-graecum α-amylase and maltose was studied in silico using a molecular docking-based method.To give the required simulation parameters, RMSD, RMSF, and Total Energy were calculated using BIOVIA DISCOVERY STUDIO 2019.[Figure: see text]Communicated by Ramaswamy H. Sarma.


Assuntos
Trigonella , Trigonella/química , Trigonella/genética , Simulação de Acoplamento Molecular , alfa-Amilases , Filogenia , Maltose , Extratos Vegetais/farmacologia
17.
Plant Mol Biol ; 79(3): 243-58, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22527750

RESUMO

Galactomannans are hemicellulosic polysaccharides composed of a (1 â†’ 4)-linked ß-D-mannan backbone substituted with single-unit (1 â†’ 6)-α-linked D-galactosyl residues. Developing fenugreek (Trigonella foenum-graecum) seeds are known to accumulate large quantities of galactomannans in the endosperm, and were thus used here as a model system to better understand galactomannan biosynthesis and its regulation. We first verified the specific deposition of galactomannans in developing endosperms and determined that active accumulation occurred from 25 to 38 days post anthesis (DPA) under our growth conditions. We then examined the expression levels during seed development of ManS and GMGT, two genes encoding backbone and side chain synthetic enzymes. Based on transcript accumulation dynamics for ManS and GMGT, cDNA libraries were constructed using RNA isolated from endosperms at four ages corresponding to before, at the beginning of, and during active galactomannan deposition. DNA from these libraries was sequenced using the 454 sequencing technology to yield a total of 1.5 million expressed sequence tags (ESTs). Through analysis of the EST profiling data, we identified genes known to be involved in galactomannan biosynthesis, as well as new genes that may be involved in this process, and proposed a model for the flow of carbon from sucrose to galactomannans. Measurement of in vitro ManS and GMGT activities and analysis of sugar phosphate and nucleotide sugar levels in the endosperms of developing fenugreek seeds provided data consistent with this model. In vitro enzymatic assays also revealed that the ManS enzyme from fenugreek endosperm preferentially used GDP-mannose as the substrate for the backbone synthesis.


Assuntos
Endosperma/metabolismo , Etiquetas de Sequências Expressas , Mananas/biossíntese , Trigonella/embriologia , Trigonella/metabolismo , Northern Blotting , Galactose/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo , Trigonella/genética
18.
Ann Bot ; 109(4): 773-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22186276

RESUMO

BACKGROUND AND AIMS: Satellite DNA is a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNA is an important element in genome organization and evolution in plants. Here we assess the presence and physical distribution of the repetitive DNA E180 family in Medicago and allied genera. Our goals were to gain insight into the karyotype evolution of Medicago using satellite DNA markers, and to evaluate the taxonomic and phylogenetic signal of a satellite DNA family in a genus hypothesized to have a complex evolutionary history. METHODS: Seventy accessions from Medicago, Trigonella, Melilotus and Trifolium were analysed by PCR to assess the presence of the repetitive E180 family, and fluorescence in situ hybridization (FISH) was used for physical mapping in somatic chromosomes. KEY RESULTS: The E180 repeat unit was PCR-amplified in 37 of 40 taxa in Medicago, eight of 12 species of Trigonella, six of seven species of Melilotus and in two of 11 Trifolium species. Examination of the mitotic chromosomes revealed that only 13 Medicago and two Trigonella species showed FISH signals using the E180 probe. Stronger hybridization signals were observed in subtelomeric and interstitial loci than in the pericentromeric loci, suggesting this satellite family has a preferential genomic location. Not all 13 Medicago species that showed FISH localization of the E180 repeat were phylogenetically related. However, nine of these species belong to the phylogenetically derived clade including the M. sativa and M. arborea complexes. CONCLUSIONS: The use of the E180 family as a phylogenetic marker in Medicago should be viewed with caution. Its amplification appears to have been produced through recurrent and independent evolutionary episodes in both annual and perennial Medicago species as well as in basal and derived clades.


Assuntos
DNA de Plantas/genética , DNA Satélite/genética , Evolução Molecular , Medicago/genética , Fluxo Gênico , Marcadores Genéticos , Melilotus/genética , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie , Trifolium/genética , Trigonella/genética
19.
Bull Environ Contam Toxicol ; 88(5): 659-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22392005

RESUMO

In the present study effects of herbicides glyphosate (GP), alachlor (AL) and maleic hydrazide (MH) is studied on mitotic cells of Trigonella foenum-graecum L. Seeds of T. foenum-graecum L. treated with a series of concentrations ranging from 0.1%, 0.2%, 0.3%, 0.4% and 0.5% for 1, 2 and 6 h and their effect on mitotic index and chromosomal aberrations was studied. The results indicate that these herbicides reduced mitotic index in dose-dependent manner. In addition, increase in the percentage of abnormal mitotic plates was observed in herbicide treated groups which was both concentration and time dependent. Commonly observed abnormalities were c-mitosis, laggards, bridges, stickiness, c-anaphase, precocious separation, un-equal distribution and fragments. The result of the present investigation indicates that commonly used herbicides GP, AL and MH have significant genotoxic effect on T. foenum-graecum plant.


Assuntos
Acetamidas/toxicidade , Glicina/análogos & derivados , Herbicidas/toxicidade , Hidrazida Maleica/toxicidade , Mutagênicos/toxicidade , Trigonella/efeitos dos fármacos , Aberrações Cromossômicas/induzido quimicamente , Glicina/toxicidade , Mitose/efeitos dos fármacos , Trigonella/genética , Trigonella/crescimento & desenvolvimento , Glifosato
20.
FEMS Microbiol Lett ; 369(1)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604871

RESUMO

The diversity of fenugreek (Trigonella foenum-graecum L.) microsymbionts has been barely studied even though it is of great interest for being a spice and a medicinal plant. Here, we analyzed 59 bacterial strains isolated from fenugreek nodules originating from different geographic and climatic areas of Iran. Most of these strains exhibit phenotypic characteristics compatible with rhizobia and they nodulate fenugreek. Analysis of the recA and atpD genes shows that representative strains of ERIC-BOX-PCR groups cluster with the type strains of Ensifer meliloti and E. kummerowiae as well as with strains capable of nodulating different Trigonella species found in other countries. The closeness of E. meliloti and E. kummerowiae suggests there is a need to revise the taxonomic status of the latter species. The nodC gene analysis shows that most Trigonella-nodulating strains belong to the symbiovar meliloti except those nodulating Trigonella arcuata in China, which belong to the symbiovar rigiduloides. This analysis shows that the type strains of E. kummerowiae, E. meliloti, and E. medicae belonged to three well-defined groups within the symbiovar meliloti, with the Iranian strains belonging to the E. kummerowiae subgroup. The small group of strains unable to nodulate fenugreek isolated in this study belong to Enterobacter cloacae, reported for the first time as being a possible endophyte of fenugreek nodules.


Assuntos
Trigonella , DNA Bacteriano/genética , Irã (Geográfico) , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Trigonella/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa