Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.378
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
Mol Cell ; 81(20): 4258-4270.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453891

RESUMO

Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.


Assuntos
Troca Genética , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/genética , DNA Fúngico/genética , Meiose , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , DNA Cruciforme/metabolismo , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
2.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32755595

RESUMO

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/ultraestrutura , DNA/ultraestrutura , Troca de Cromátide Irmã/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Microscopia Crioeletrônica , DNA/genética , Conformação de Ácido Nucleico , Conformação Proteica , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Coesinas
3.
Mol Cell ; 74(4): 664-673.e5, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30922844

RESUMO

Cohesin is a conserved, ring-shaped protein complex that topologically embraces DNA. Its central role in genome organization includes functions in sister chromatid cohesion, DNA repair, and transcriptional regulation. Cohesin loading onto chromosomes requires the Scc2-Scc4 cohesin loader, whose presence on chromatin in budding yeast depends on the RSC chromatin remodeling complex. Here we reveal a dual role of RSC in cohesin loading. RSC acts as a chromatin receptor that recruits Scc2-Scc4 by a direct protein interaction independent of chromatin remodeling. In addition, chromatin remodeling is required to generate a nucleosome-free region that is the substrate for cohesin loading. An engineered cohesin loading module can be created by fusing the Scc2 C terminus to RSC or to other chromatin remodelers, but not to unrelated DNA binding proteins. These observations demonstrate the importance of nucleosome-free DNA for cohesin loading and provide insight into how cohesin accesses DNA during its varied chromosomal activities.


Assuntos
Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Saccharomyces cerevisiae/genética , Segregação de Cromossomos/genética , Cromossomos/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , Transcrição Gênica , Coesinas
4.
Mol Cell ; 75(2): 224-237.e5, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31201089

RESUMO

Cohesin entraps sister DNAs within tripartite rings created by pairwise interactions between Smc1, Smc3, and Scc1. Because Smc1/3 ATPase heads can also interact with each other, cohesin rings have the potential to form a variety of sub-compartments. Using in vivo cysteine cross-linking, we show that when Smc1 and Smc3 ATPases are engaged in the presence of ATP (E heads), cohesin rings generate a "SMC (S) compartment" between hinge and E heads and a "kleisin (K) compartment" between E heads and their associated kleisin subunit. Upon ATP hydrolysis, cohesin's heads associate in a different mode, in which their signature motifs and their coiled coils are closely juxtaposed (J heads), creating alternative S and K compartments. We show that K compartments of either E or J type can entrap single DNAs, that acetylation of Smc3 during S phase is associated with J heads, and that sister DNAs are entrapped in J-K compartments.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Cromátides/genética , DNA/química , Dimerização , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã/genética , Coesinas
5.
PLoS Genet ; 20(5): e1011136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758955

RESUMO

Ribosomal DNA (rDNA), which encodes ribosomal RNA, is an essential but unstable genomic element due to its tandemly repeated nature. rDNA's repetitive nature causes spontaneous intrachromatid recombination, leading to copy number (CN) reduction, which must be counteracted by a mechanism that recovers CN to sustain cells' viability. Akin to telomere maintenance, rDNA maintenance is particularly important in cell types that proliferate for an extended time period, most notably in the germline that passes the genome through generations. In Drosophila, the process of rDNA CN recovery, known as 'rDNA magnification', has been studied extensively. rDNA magnification is mediated by unequal sister chromatid exchange (USCE), which generates a sister chromatid that gains the rDNA CN by stealing copies from its sister. However, much remains elusive regarding how germ cells sense rDNA CN to decide when to initiate magnification, and how germ cells balance between the need to generate DNA double-strand breaks (DSBs) to trigger USCE vs. avoiding harmful DSBs. Recently, we identified an rDNA-binding Zinc-finger protein Indra as a factor required for rDNA magnification, however, the underlying mechanism of action remains unknown. Here we show that Indra is a negative regulator of rDNA magnification, balancing the need of rDNA magnification and repression of dangerous DSBs. Mechanistically, we show that Indra is a repressor of RNA polymerase II (Pol II)-dependent transcription of rDNA: Under low rDNA CN conditions, Indra protein amount is downregulated, leading to Pol II-mediated transcription of rDNA. This results in the expression of rDNA-specific retrotransposon, R2, which we have shown to facilitate rDNA magnification via generation of DBSs at rDNA. We propose that differential use of Pol I and Pol II plays a critical role in regulating rDNA CN expansion only when it is necessary.


Assuntos
DNA Ribossômico , RNA Polimerase II , Transcrição Gênica , Animais , DNA Ribossômico/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/genética , Troca de Cromátide Irmã/genética , Células Germinativas/metabolismo , Variações do Número de Cópias de DNA
6.
Nature ; 582(7812): 426-431, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32461690

RESUMO

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Regiões Pseudoautossômicas/genética , Regiões Pseudoautossômicas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Pareamento Cromossômico/genética , Proteínas de Ligação a DNA , Feminino , Heterocromatina/genética , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Cinética , Masculino , Meiose/genética , Camundongos , Repetições Minissatélites/genética , Oócitos/metabolismo , Recombinação Genética/genética , Caracteres Sexuais , Troca de Cromátide Irmã , Espermatócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Nature ; 583(7815): 265-270, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581361

RESUMO

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Assuntos
Segregação de Cromossomos/genética , Evolução Molecular , Genoma/genética , Neoplasias/genética , Alelos , Animais , Reparo do DNA , Replicação do DNA , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Mutação , Neoplasias/patologia , Seleção Genética , Transdução de Sinais , Troca de Cromátide Irmã , Transcrição Gênica , Quinases raf/metabolismo , Proteínas ras/metabolismo
8.
Mol Cell ; 71(1): 11-24.e7, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29937341

RESUMO

ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Troca de Cromátide Irmã , Proteína Nuclear Ligada ao X/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Correpressoras , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Proteína Nuclear Ligada ao X/genética
9.
Nucleic Acids Res ; 52(9): 5088-5106, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412240

RESUMO

Exploring the connection between ubiquitin-like modifiers (ULMs) and the DNA damage response (DDR), we employed several advanced DNA damage and repair assay techniques and identified a crucial role for LC3B. Notably, its RNA recognition motif (RRM) plays a pivotal role in the context of transcription-associated homologous recombination (HR) repair (TA-HRR), a particular subset of HRR pathways. Surprisingly, independent of autophagy flux, LC3B interacts directly with R-loops at DNA lesions within transcriptionally active sites via its RRM, promoting TA-HRR. Using native RNA immunoprecipitation (nRIP) coupled with high-throughput sequencing (nRIP-seq), we discovered that LC3B also directly interacts with the 3'UTR AU-rich elements (AREs) of BRCA1 via its RRM, influencing its stability. This suggests that LC3B regulates TA-HRR both proximal to and distal from DNA lesions. Data from our LC3B depletion experiments showed that LC3B knockdown disrupts end-resection for TA-HRR, redirecting it towards the non-homologous end joining (NHEJ) pathway and leading to chromosomal instability, as evidenced by alterations in sister chromatid exchange (SCE) and interchromosomal fusion (ICF). Thus, our findings unveil autophagy-independent functions of LC3B in DNA damage and repair pathways, highlighting its importance. This could reshape our understanding of TA-HRR and the interaction between autophagy and DDR.


Assuntos
Proteína BRCA1 , Proteínas Associadas aos Microtúbulos , Estruturas R-Loop , Reparo de DNA por Recombinação , Transcrição Gênica , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Regiões 3' não Traduzidas , Recombinação Homóloga , Linhagem Celular Tumoral , Troca de Cromátide Irmã
10.
Nucleic Acids Res ; 52(11): 6472-6489, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38752489

RESUMO

Orphan nuclear receptors (NRs), such as COUP-TF1, COUP-TF2, EAR2, TR2 and TR4, are implicated in telomerase-negative cancers that maintain their telomeres through the alternative lengthening of telomeres (ALT) mechanism. However, how telomere association of orphan NRs is involved in ALT activation remains unclear. Here, we demonstrate that telomeric tethering of orphan NRs in human fibroblasts initiates formation of ALT-associated PML bodies (APBs) and features of ALT activity, including ALT telomere DNA synthesis, telomere sister chromatid exchange, and telomeric C-circle generation, suggesting de novo ALT induction. Overexpression of orphan NRs exacerbates ALT phenotypes in ALT cells, while their depletion limits ALT. Orphan NRs initiate ALT via the zinc finger protein 827, suggesting the involvement of chromatin structure alterations for ALT activation. Furthermore, we found that orphan NRs and deficiency of the ALT suppressor ATRX-DAXX complex operate in concert to promote ALT activation. Moreover, PML depletion by gene knockout or arsenic trioxide treatment inhibited ALT induction in fibroblasts and ALT cancer cells, suggesting that APB formation underlies the orphan NR-induced ALT activation. Importantly, arsenic trioxide administration abolished APB formation and features of ALT activity in ALT cancer cell line-derived mouse xenografts, suggesting its potential for further therapeutic development to treat ALT cancers.


Assuntos
Fibroblastos , Proteína da Leucemia Promielocítica , Homeostase do Telômero , Humanos , Animais , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Camundongos , Fibroblastos/metabolismo , Telômero/metabolismo , Telômero/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Troca de Cromátide Irmã , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Trióxido de Arsênio/farmacologia , Chaperonas Moleculares
11.
Cell ; 143(6): 924-37, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145459

RESUMO

Meiotic double-strand break (DSB)-initiated recombination must occur between homologous maternal and paternal chromosomes ("homolog bias"), even though sister chromatids are present. Through physical recombination analyses, we show that sister cohesion, normally mediated by meiotic cohesin Rec8, promotes "sister bias"; that meiosis-specific axis components Red1/Mek1kinase counteract this effect, thereby satisfying an essential precondition for homolog bias; and that other components, probably recombinosome-related, directly ensure homolog partner selection. Later, Rec8 acts positively to ensure maintenance of bias. These complexities mirror opposing dictates for global sister cohesion versus local separation and differentiation of sisters at recombination sites. Our findings support DSB formation within axis-tethered recombinosomes containing both sisters and ensuing programmed sequential release of "first" and "second" DSB ends. First-end release would create a homology-searching "tentacle." Rec8 and Red1/Mek1 also independently license recombinational progression and abundantly localize to different domains. These domains could comprise complementary environments that integrate inputs from DSB repair and mitotic chromosome morphogenesis into the complete meiotic program.


Assuntos
Troca Genética , Meiose , Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , MAP Quinase Quinase 1/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã
12.
Mol Cell ; 66(3): 398-410.e4, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475874

RESUMO

Replication stress and mitotic abnormalities are key features of cancer cells. Temporarily paused forks are stabilized by the intra-S phase checkpoint and protected by the association of Rad51, which prevents Mre11-dependent resection. However, if a fork becomes dysfunctional and cannot resume, this terminally arrested fork is rescued by a converging fork to avoid unreplicated parental DNA during mitosis. Alternatively, dysfunctional forks are restarted by homologous recombination. Using fission yeast, we report that Rad52 and the DNA binding activity of Rad51, but not its strand-exchange activity, act to protect terminally arrested forks from unrestrained Exo1-nucleolytic activity. In the absence of recombination proteins, large ssDNA gaps, up to 3 kb long, occur behind terminally arrested forks, preventing efficient fork merging and leading to mitotic sister chromatid bridging. Thus, Rad52 and Rad51 prevent temporarily and terminally arrested forks from degrading and, despite the availability of converging forks, converting to anaphase bridges causing aneuploidy and cell death.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , DNA de Cadeia Simples/biossíntese , Mitose/fisiologia , Origem de Replicação , Schizosaccharomyces/metabolismo , Troca de Cromátide Irmã , Aneuploidia , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Simples , DNA Fúngico/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Viabilidade Microbiana , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Tempo
13.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36864547

RESUMO

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Assuntos
Cromátides , Hordeum , Metáfase , Cromátides/química , Cromatina/genética , Cromossomos , Microscopia , Troca de Cromátide Irmã , Cromossomos de Plantas , Hordeum/citologia
14.
Proc Natl Acad Sci U S A ; 119(10): e2123363119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235450

RESUMO

During mitosis, from late prophase onward, sister chromatids are connected along their entire lengths by axis-linking chromatin/structure bridges. During prometaphase/metaphase, these bridges ensure that sister chromatids retain a parallel, paranemic relationship, without helical coiling, as they undergo compaction. Bridges must then be removed during anaphase. Motivated by these findings, the present study has further investigated the process of anaphase sister separation. Morphological and functional analyses of mammalian mitoses reveal a three-stage pathway in which interaxis bridges play a prominent role. First, sister chromatid axes globally separate in parallel along their lengths, with concomitant bridge elongation, due to intersister chromatin pushing forces. Sister chromatids then peel apart progressively from a centromere to telomere region(s), step-by-step. During this stage, poleward spindle forces dramatically elongate centromere-proximal bridges, which are then removed by a topoisomerase IIα­dependent step. Finally, in telomere regions, widely separated chromatids remain invisibly linked, presumably by catenation, with final separation during anaphase B. During this stage increased separation of poles and/or chromatin compaction appear to be the driving force(s). Cohesin cleavage licenses these events, likely by allowing bridges to respond to imposed forces. We propose that bridges are not simply removed during anaphase but, in addition, play an active role in ensuring smooth and synchronous microtubule-mediated sister separation. Bridges would thereby be the topological gatekeepers of sister chromatid relationships throughout all stages of mitosis.


Assuntos
Anáfase , Cromátides , Troca de Cromátide Irmã , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Humanos , Coesinas
15.
Genes Dev ; 31(5): 511-523, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360182

RESUMO

To understand mammalian active DNA demethylation, various methods have been developed to map the genomic distribution of the demethylation intermediates 5-formylcysotine (5fC) and 5-carboxylcytosine (5caC). However, the majority of these methods requires a large number of cells to begin with. In this study, we describe low-input methylase-assisted bisulfite sequencing (liMAB-seq ) and single-cell MAB-seq (scMAB-seq), capable of profiling 5fC and 5caC at genome scale using ∼100 cells and single cells, respectively. liMAB-seq analysis of preimplantation embryos reveals the oxidation of 5mC to 5fC/5caC and the positive correlation between chromatin accessibility and processivity of ten-eleven translocation (TET) enzymes. scMAB-seq captures the cell-to-cell heterogeneity of 5fC and 5caC and reveals the strand-biased distribution of 5fC and 5caC. scMAB-seq also allows the simultaneous high-resolution mapping of sister chromatid exchange (SCE), facilitating the study of this type of genomic rearrangement. Therefore, our study not only establishes new methods for the genomic mapping of active DNA demethylation using limited numbers of cells or single cells but also demonstrates the utilities of the methods in different biological contexts.


Assuntos
Mapeamento Cromossômico/métodos , Metilação de DNA , Genômica/métodos , Análise de Célula Única/métodos , Troca de Cromátide Irmã , Animais , Blastômeros/metabolismo , Replicação do DNA , Embrião de Mamíferos , Camundongos
16.
PLoS Genet ; 17(7): e1009663, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252074

RESUMO

Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis.


Assuntos
Proteínas Cromossômicas não Histona/genética , Troca Genética/genética , Meiose/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cromossomos/metabolismo , Troca Genética/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Meiose/fisiologia , Troca de Cromátide Irmã/genética
17.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38347751

RESUMO

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Assuntos
Sobrevivência Celular , Ensaio Cometa , Frutose , Xarope de Milho Rico em Frutose , Edulcorantes , Humanos , Edulcorantes/toxicidade , Xarope de Milho Rico em Frutose/toxicidade , Xarope de Milho Rico em Frutose/efeitos adversos , Frutose/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Dano ao DNA/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Aberrações Cromossômicas/induzido quimicamente , Testes para Micronúcleos , Relação Dose-Resposta a Droga , Mutagênicos/toxicidade , Masculino , Medição de Risco
18.
Mutagenesis ; 38(3): 151-159, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36882025

RESUMO

Several antioxidant food additives are added to oils, soups, sauces, chewing gum, potato chips, and so on. One of them is octyl gallate. The purpose of this study was to evaluate the potential genotoxicity of octyl gallate in human lymphocytes, using in vitro chromosomal abnormalities (CA), sister chromatid exchange (SCE), cytokinesis block micronucleus cytome (CBMN-Cyt), micronucleus-FISH (MN-FISH), and comet tests. Different concentrations (0.031, 0.063, 0.125, 0.25, and 0.50 µg/ml) of octyl gallate were used. A negative (distilled water), a positive (0.20 µg/ml Mitomycin-C), and a solvent control (8.77 µl/ml ethanol) were also applied for each treatment. Octyl gallate did not cause changes in chromosomal abnormalities, micronucleus, nuclear bud (NBUD), and nucleoplasmic bridge (NPB) frequency. Similarly, there was no significant difference in DNA damage (comet assay), percentage of centromere positive and negative cells (MN-FISH test) compared to the solvent control. Moreover, octyl gallate did not affect replication and nuclear division index. On the other hand, it significantly increased the SCE/cell ratio in three highest concentrations compared to solvent control at 24 h treatment. Similarly, at 48 h treatment, the frequency of SCE raised significantly compared to solvent controls at all the concentrations (except 0.031 µg/ml). An important reduction was detected in mitotic index values in the highest concentration at 24 h treatment and almost all concentrations (except 0.031 and 0.063 µg/ml) at 48 h treatment. The results obtained suggest that octyl gallate has no important genotoxicological action on human peripheral lymphocytes at the concentrations applied in this study.


Assuntos
Antioxidantes , Aditivos Alimentares , Humanos , Antioxidantes/farmacologia , Aditivos Alimentares/toxicidade , Dano ao DNA , Testes para Micronúcleos/métodos , Aberrações Cromossômicas/induzido quimicamente , Troca de Cromátide Irmã , Linfócitos , Técnicas In Vitro
19.
PLoS Biol ; 18(3): e3000635, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32155147

RESUMO

The role of proteins often changes during evolution, but we do not know how cells adapt when a protein is asked to participate in a different biological function. We forced the budding yeast, Saccharomyces cerevisiae, to use the meiosis-specific kleisin, recombination 8 (Rec8), during the mitotic cell cycle, instead of its paralog, Scc1. This perturbation impairs sister chromosome linkage, advances the timing of genome replication, and reduces reproductive fitness by 45%. We evolved 15 parallel populations for 1,750 generations, substantially increasing their fitness, and analyzed the genotypes and phenotypes of the evolved cells. Only one population contained a mutation in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and delay genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow cells to use an existing protein to participate in new biological functions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Evolução Molecular Direcionada , Evolução Molecular , Genoma Fúngico , Meiose , Mutação , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , Coesinas
20.
PLoS Biol ; 18(1): e3000594, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895940

RESUMO

Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.


Assuntos
Proteínas Correpressoras/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Chaperonas Moleculares/fisiologia , Troca de Cromátide Irmã/genética , Telômero/genética , Proteína Nuclear Ligada ao X/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Células HeLa , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Talassemia alfa/genética , Talassemia alfa/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa