RESUMO
BACKGROUND AND AIMS: We previously identified subsets of patients with NAFLD with different metabolic phenotypes. Here we align metabolomic signatures with cardiovascular disease (CVD) and genetic risk factors. APPROACH AND RESULTS: We analyzed serum metabolome from 1154 individuals with biopsy-proven NAFLD, and from four mouse models of NAFLD with impaired VLDL-triglyceride (TG) secretion, and one with normal VLDL-TG secretion. We identified three metabolic subtypes: A (47%), B (27%), and C (26%). Subtype A phenocopied the metabolome of mice with impaired VLDL-TG secretion; subtype C phenocopied the metabolome of mice with normal VLDL-TG; and subtype B showed an intermediate signature. The percent of patients with NASH and fibrosis was comparable among subtypes, although subtypes B and C exhibited higher liver enzymes. Serum VLDL-TG levels and secretion rate were lower among subtype A compared with subtypes B and C. Subtype A VLDL-TG and VLDL-apolipoprotein B concentrations were independent of steatosis, whereas subtypes B and C showed an association with these parameters. Serum TG, cholesterol, VLDL, small dense LDL5,6 , and remnant lipoprotein cholesterol were lower among subtype A compared with subtypes B and C. The 10-year high risk of CVD, measured with the Framingham risk score, and the frequency of patatin-like phospholipase domain-containing protein 3 NAFLD risk allele were lower in subtype A. CONCLUSIONS: Metabolomic signatures identify three NAFLD subgroups, independent of histological disease severity. These signatures align with known CVD and genetic risk factors, with subtype A exhibiting a lower CVD risk profile. This may account for the variation in hepatic versus cardiovascular outcomes, offering clinically relevant risk stratification.
Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Animais , Apolipoproteínas B , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , VLDL-Colesterol/metabolismo , Fatores de Risco de Doenças Cardíacas , Lipoproteínas VLDL , Fígado/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipases/metabolismo , Fatores de Risco , Triglicerídeos/metabolismoRESUMO
Cholesterol is a major nutrient required for fetal growth. It is also a precursor for the synthesis of steroid hormones and essential for the development and maturation of fetal organs. During pregnancy, the placenta controls the transport of cholesterol from the mother to the fetus and vice versa. Cholesterol originating from the maternal circulation has to cross two main membrane barriers to reach the fetal circulation: Firstly, cholesterol is acquired by the apical side of the syncytiotrophoblast (STB) from the maternal circulation as high-density lipoprotein (HDL)-, low-density lipoprotein (LDL)- or very-low-density lipoprotein (VLDL)-cholesterol and secreted at the basal side facing the villous stroma. Secondly, from the villous stroma cholesterol is taken up by the endothelium of the fetal vasculature and transported to the fetal vessels. The proteins involved in the uptake of HDL-, LDL-, VLDL- or unesterified-cholesterol are scavenger receptor type B class 1 (SR-B1), cubulin, megalin, LDL receptor (LDLR) or Niemann-Pick-C1 (NPC1) which are localized at the apical and/or basal side of the STB or at the fetal endothelium. Through interaction with apolipoproteins (e.g. apoA1) cholesterol is effluxed either to the maternal or fetal circulation via the ATP-binding-cassette (ABC)-transporter A1 and ABCG1 localized at the apical/basal side of the STB or the endothelium. In this mini-review, we summarize the transport mechanisms of cholesterol across the human placenta, the expression and localization of proteins involved in the uptake and efflux of cholesterol, and the expression pattern of cholesterol transport proteins in pregnancy pathologies such as pre-eclampsia, gestational diabetes mellitus and intrauterine growth retardation.
Assuntos
Transporte Biológico , Colesterol/metabolismo , Troca Materno-Fetal , Placenta/metabolismo , Aborto Espontâneo , Animais , Apolipoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , HDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Técnicas de Cocultura , Feminino , Humanos , Gravidez , Trofoblastos/metabolismoRESUMO
Breast cancer as one of the most prevalent cancers has high morbidity and mortality. Very low-density lipoprotein receptor (VLDLR) is a multifunctional receptor which plays a principal role in the tumor development through affecting cell metastasis and proliferation. The VLDLR as a target for miRNA-4465 and miRNA-1297 was predicted using bioinformatics analysis. Tissue specimens of malignant (n = 50), benign (n = 35) and corresponding normal breast (n = 20) were considered to evaluate the expression of VLDLR using RT-qPCR and western blotting. The VLDL cholesterol (VLDL-C) levels were quantified using a colorimetric assay. The relative VLDLR expression was found in the malignant tumors, which was significantly lower than that in the normal tissues (P<0.05). The expression levels of VLDLR had no significant difference between malignant and benign tissues (P>0.05). Correlation analysis revealed that the VLDLR expression level had a direct correlation with miRNA-1297 (R=0.566, P<0.05), but a reverse one with miRNA-4465 (R = -0.663, P<0.0001). The VLDL-C level in the malignant and normal tissues was lower than that in the benign tumors, which was not significant (P>0.05). The expression levels of VLDLR in E+P-H- (ER+,PR-,HER2-) tumors were higher than those in other subtypes (P<0.05). Furthermore, a negative correlation was found between the VLDLR expression level and the Ki 67% score. These data revealed that the lower expression of VLDLR mediated by the high expression levels of miRNA-4465 may be involved in the development of breast cancer. These results might provide some evidence for the effect of VLDLR on the breast cancer.
Assuntos
Neoplasias da Mama/genética , VLDL-Colesterol/metabolismo , MicroRNAs/genética , Receptores de LDL/genética , Adulto , Neoplasias da Mama/metabolismo , VLDL-Colesterol/sangue , Diagnóstico Diferencial , Regulação para Baixo , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Receptores de LDL/metabolismoRESUMO
Atherosclerosis is a complex disease that involves alterations in lipoprotein metabolism and inflammation. Protein and lipid glycosylation events, such as sialylation, contribute to the development of atherosclerosis and are regulated by specific glycosidases, including sialidases. To evaluate the effect of the sialidase neuraminidase 1 (NEU1) on atherogenesis, here we generated apolipoprotein E (ApoE)-deficient mice that express hypomorphic levels of NEU1 (Neu1hypoApoe-/-). We found that the hypomorphic NEU1 expression in male Apoe-/- mice reduces serum levels of very-low-density lipoprotein (VLDL) and LDL cholesterol, diminishes infiltration of inflammatory cells into lesions, and decreases aortic sinus atherosclerosis. Transplantation of Apoe-/- bone marrow (BM) into Neu1hypoApoe-/- mice significantly increased atherosclerotic lesion development and had no effect on serum lipoprotein levels. Moreover, Neu1hypoApoe-/- mice exhibited a reduction in circulating monocyte and neutrophil levels and had reduced hyaluronic acid and P-selectin adhesion capability on monocytes/neutrophils and T cells. Consistent with these findings, administration of a sialidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, had a significant anti-atherogenic effect in the Apoe-/- mice. In summary, the reduction in NEU1 expression or function decreases atherosclerosis in mice via its significant effects on lipid metabolism and inflammatory processes. We conclude that NEU1 may represent a promising target for managing atherosclerosis.
Assuntos
Apolipoproteínas E/genética , Aterosclerose/metabolismo , Quimiotaxia de Leucócito , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Regulação para Baixo , Neuraminidase/metabolismo , Animais , Aorta/patologia , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Ácido Hialurônico/metabolismo , Fígado/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Músculo Liso Vascular/citologia , Selectina-P/metabolismo , Linfócitos T/citologia , Triglicerídeos/metabolismoRESUMO
Long-chain acyl-CoA synthetase 4 (ACSL4) has a unique substrate specificity for arachidonic acid. Hepatic ACSL4 is coregulated with the phospholipid (PL)-remodeling enzyme lysophosphatidylcholine (LPC) acyltransferase 3 by peroxisome proliferator-activated receptor δ to modulate the plasma triglyceride (TG) metabolism. In this study, we investigated the acute effects of hepatic ACSL4 deficiency on lipid metabolism in adult mice fed a high-fat diet (HFD). Adenovirus-mediated expression of a mouse ACSL4 shRNA (Ad-shAcsl4) in the liver of HFD-fed mice led to a 43% reduction of hepatic arachidonoyl-CoA synthetase activity and a 53% decrease in ACSL4 protein levels compared with mice receiving control adenovirus (Ad-shLacZ). Attenuated ACSL4 expression resulted in a substantial decrease in circulating VLDL-TG levels without affecting plasma cholesterol. Lipidomics profiling revealed that knocking down ACSL4 altered liver PL compositions, with the greatest impact on accumulation of abundant LPC species (LPC 16:0 and LPC 18:0) and lysophosphatidylethanolamine (LPE) species (LPE 16:0 and LPE 18:0). In addition, fasting glucose and insulin levels were higher in Ad-shAcsl4-transduced mice versus control (Ad-shLacZ). Glucose tolerance testing further indicated an insulin-resistant phenotype upon knockdown of ACSL4. These results provide the first in vivo evidence that ACSL4 plays a role in plasma TG and glucose metabolism and hepatic PL synthesis of hyperlipidemic mice.
Assuntos
Glicemia/metabolismo , Coenzima A Ligases/genética , Resistência à Insulina/genética , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Fosfolipídeos/biossíntese , Triglicerídeos/metabolismo , Animais , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Teste de Tolerância a Glucose , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Lipidômica , Lisofosfolipídeos/metabolismo , Camundongos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Higher physical activity is associated with a reduced hazard for a plethora of diseases. It has remained unknown how the two primary physical activity-associated health effects, improved physical performance and change in body composition, independently modulate metabolic profiles toward a reduced risk for adverse outcomes. Here, we utilized a prospective cohort of 664 young men undergoing military service. We studied the metabolic associations of changes in muscle performance and body composition during military service (range 6-12 mo). We subsequently replicated our results for body composition change in 234 population-based samples with a 7-yr follow-up. We found that increased physical performance was associated with reduced very-low-density lipoprotein (VLDL)-related measures [change in VLDL cholesterol: beta = -0.135; 95% confidence interval (CI) = -0.217, -0.054, P = 1.2 × 10-3] and lower inflammation (change in glycoprotein acetyls: beta = -0.138, 95% CI = -0.217, -0.059, P = 6.5 × 10-4), independent of change in body composition. Lower body fat percentage, independent of change in muscle performance, was associated with metabolic changes including lower low-density lipoprotein (LDL) cholesterol measures (change in LDL cholesterol: beta = -0.193, 95% CI = -0.295, -0.090; P = 2.5 × 10-4), increased high-density lipoprotein (HDL) cholesterol measures (change in large HDL cholesterol: beta = 0.316, 95% CI = 0.205, 0.427; P = 3.7 × 10-8), and decreased concentrations of amino acids (change in leucine concentration: beta = -0.236, 95% CI = -0.341, -0.132; P = 1.0 × 10-5) that are type 2 diabetes biomarkers. Importantly, all body fat percentage associations were replicated in a general population-based cohort. Our findings indicate that improved muscle performance showed weaker associations on the metabolic profiles than change in body composition and reduction in body fat percentage reduces cardiometabolic risk mediated by atherogenic lipoprotein particles and branched-chain and aromatic amino acid concentrations.
Assuntos
Composição Corporal , Diabetes Mellitus Tipo 2/metabolismo , Cardiopatias/metabolismo , Músculo Esquelético/fisiologia , Desempenho Físico Funcional , Tecido Adiposo , Adolescente , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Impedância Elétrica , Finlândia , Cardiopatias/epidemiologia , Humanos , Inflamação , Leucina/metabolismo , Masculino , Militares , Estudos Prospectivos , Risco , Adulto JovemRESUMO
BACKGROUND & AIMS: In the sera of infected patients, hepatitis C virus (HCV) particles display heterogeneous forms with low-buoyant densities (<1.08), underscoring their lipidation via association with apoB-containing lipoproteins, which was proposed to occur during assembly or secretion from infected hepatocytes. However, the mechanisms inducing this association remain poorly-defined and most cell culture grown HCV (HCVcc) particles exhibit higher density (>1.08) and poor/no association with apoB. We aimed to elucidate the mechanisms of lipidation and to produce HCVcc particles resembling those in infected sera. METHODS: We produced HCVcc particles of Jc1 or H77 strains from Huh-7.5 hepatoma cells cultured in standard conditions (10%-fetal calf serum) vs. in serum-free or human serum conditions before comparing their density profiles to patient-derived virus. We also characterized wild-type and Jc1/H77 hypervariable region 1 (HVR1)-swapped mutant HCVcc particles produced in serum-free media and incubated with different serum types or with purified lipoproteins. RESULTS: Compared to serum-free or fetal calf serum conditions, production with human serum redistributed most HCVcc infectious particles to low density (<1.08) or very-low density (<1.04) ranges. In addition, short-time incubation with human serum was sufficient to shift HCVcc physical particles to low-density fractions, in time- and dose-dependent manners, which increased their specific infectivity, promoted apoB-association and induced neutralization-resistance. Moreover, compared to Jc1, we detected higher levels of H77 HCVcc infectious particles in very-low-density fractions, which could unambiguously be attributed to strain-specific features of the HVR1 sequence. Finally, all 3 lipoprotein classes, i.e., very-low-density, low-density and high-density lipoproteins, could synergistically induce low-density shift of HCV particles; yet, this required additional non-lipid serum factor(s) that include albumin. CONCLUSIONS: The association of HCV particles with lipids may occur in the extracellular milieu. The lipidation level depends on serum composition as well as on HVR1-specific properties. These simple culture conditions allow production of infectious HCV particles resembling those of chronically-infected patients. LAY SUMMARY: Hepatitis C virus (HCV) particles may associate with apoB and acquire neutral lipids after exiting cells, giving them low-buoyant density. The hypervariable region 1 (HVR1) is a majorviral determinant of E2 that controls this process. Besides lipoproteins, specific serum factors including albumin promote extracellular maturation of HCV virions. HCV particle production in vitro, with media of defined serum conditions, enables production of infectious particles resembling those of chronically infected patients.
Assuntos
Apolipoproteína B-100/metabolismo , Líquido Extracelular/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Albumina Sérica Humana/metabolismo , Vírion/metabolismo , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Proteínas do Envelope Viral/química , Proteínas Virais/metabolismo , Montagem de VírusRESUMO
RATIONALE: Inflammation is a key contributor to atherosclerosis. MicroRNA-146a (miR-146a) has been identified as a critical brake on proinflammatory nuclear factor κ light chain enhancer of activated B cells signaling in several cell types, including endothelial cells and bone marrow (BM)-derived cells. Importantly, miR-146a expression is elevated in human atherosclerotic plaques, and polymorphisms in the miR-146a precursor have been associated with risk of coronary artery disease. OBJECTIVE: To define the role of endogenous miR-146a during atherogenesis. METHODS AND RESULTS: Paradoxically, Ldlr-/- (low-density lipoprotein receptor null) mice deficient in miR-146a develop less atherosclerosis, despite having highly elevated levels of circulating proinflammatory cytokines. In contrast, cytokine levels are normalized in Ldlr-/-;miR-146a-/- mice receiving wild-type BM transplantation, and these mice have enhanced endothelial cell activation and elevated atherosclerotic plaque burden compared with Ldlr-/- mice receiving wild-type BM, demonstrating the atheroprotective role of miR-146a in the endothelium. We find that deficiency of miR-146a in BM-derived cells precipitates defects in hematopoietic stem cell function, contributing to extramedullary hematopoiesis, splenomegaly, BM failure, and decreased levels of circulating proatherogenic cells in mice fed an atherogenic diet. These hematopoietic phenotypes seem to be driven by unrestrained inflammatory signaling that leads to the expansion and eventual exhaustion of hematopoietic cells, and this occurs in the face of lower levels of circulating low-density lipoprotein cholesterol in mice lacking miR-146a in BM-derived cells. Furthermore, we identify sortilin-1(Sort1), a known regulator of circulating low-density lipoprotein levels in humans, as a novel target of miR-146a. CONCLUSIONS: Our study reveals that miR-146a regulates cholesterol metabolism and tempers chronic inflammatory responses to atherogenic diet by restraining proinflammatory signaling in endothelial cells and BM-derived cells.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , MicroRNAs/metabolismo , Animais , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Bovinos , VLDL-Colesterol/metabolismo , Dieta Aterogênica/efeitos adversos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Receptores de LDL/metabolismoRESUMO
This investigation was designed to determine the effect of melatonin supplementation on mental health parameters, metabolic and genetic profiles in patients under methadone maintenance treatment (MMT). This randomized, double-blind, placebo-controlled, clinical trial was conducted among 54 patients under MMT. Participants were randomly allocated to receive either 10 mg melatonin (2 melatonin capsules, 5 mg each) (n = 26) or placebo (n = 28) once a day, 1 hour before bedtime for 12 weeks. Melatonin supplementation significantly decreased Pittsburgh Sleep Quality Index (ß -4.08; 95 percent CI, -5.51, -2.65; P < 0.001), Beck Depression Inventory index (ß -5.46; 95% CI, -8.92, -2.00; P = 0.003) and Beck Anxiety Inventory index (ß -3.87; 95% CI, -5.96, -1.77; P = 0.001) and significantly increased International Index of Erectile Functions (ß 5.59; 95% CI, 1.76, 9.42; P = 0.005) compared with the placebo. Subjects who received melatonin supplements had significantly lower serum insulin levels (ß -2.53; 95% CI, -4.48, -0.59; P = 0.01), homeostasis model of assessment-insulin resistance (ß -0.56; 95% CI, -1.03, -0.09; P = 0.01) and higher quantitative insulin sensitivity check index (ß 0.01; 95% CI, 0.004, 0.02; P = 0.009) and HDL-cholesterol levels (ß 3.71; 95% CI, 1.77, 5.64; P = 0.002) compared to placebo. Additionally, melatonin intake resulted in a significant reduction in serum high sensitivity C-reactive protein (ß -0.15; 95% CI, -0.27, -0.02; P = 0.02), malondialdehyde (ß -0.31; 95% CI, -0.57, -0.05; P = 0.02) and protein carbonyl (ß -0.06; 95% CI, -0.09, -0.04; P < 0.001). This trial indicated that taking melatonin supplements for 12 weeks by patients under MMT had beneficial effects on their mental health metabolic profiles.
Assuntos
Antioxidantes/uso terapêutico , Ansiedade/psicologia , Depressão/psicologia , Melatonina/uso terapêutico , Tratamento de Substituição de Opiáceos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Sono , Adulto , Analgésicos Opioides/uso terapêutico , Glicemia/metabolismo , Proteína C-Reativa/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Método Duplo-Cego , Expressão Gênica , Glutationa/metabolismo , Humanos , Resistência à Insulina , Interleucina-1/genética , Masculino , Malondialdeído/metabolismo , Saúde Mental , Metadona/uso terapêutico , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , PPAR gama/genética , Ereção Peniana , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/genéticaRESUMO
BACKGROUND: Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. METHODS: Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. RESULTS: The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. CONCLUSION: The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.
Assuntos
Curcumina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Substâncias Protetoras/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Adenina/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Colesterol/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Creatinina/sangue , Creatinina/urina , Ingestão de Líquidos , Ingestão de Alimentos , Ácidos Graxos não Esterificados/metabolismo , Testes de Função Renal , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/induzido quimicamente , Triglicerídeos/metabolismoRESUMO
Dietary fat absorption takes place in the intestine, and the liver mobilizes endogenous fat to other tissues by synthesizing lipoproteins that require apoB and microsomal triglyceride transfer protein (MTP). Dietary fat triggers the synthesis of oleoylethanolamide (OEA), a regulatory fatty acid that signals satiety to reduce food intake mainly by enhancing neural PPARα activity, in enterocytes. We explored OEA's roles in the assembly of lipoproteins in WT and Ppara-/- mouse enterocytes and hepatocytes, Caco-2 cells, and human liver-derived cells. In differentiated Caco-2 cells, OEA increased synthesis and secretion of triacylglycerols, apoB secretion in chylomicrons, and MTP expression in a dose-dependent manner. OEA also increased MTP activity and triacylglycerol secretion in WT and knockout primary enterocytes. In contrast to its intestinal cell effects, OEA reduced synthesis and secretion of triacylglycerols, apoB secretion, and MTP expression and activity in human hepatoma Huh-7 and HepG2 cells. Also, OEA reduced MTP expression and triacylglycerol secretion in WT, but not knockout, primary hepatocytes. These studies indicate differential effects of OEA on lipid synthesis and lipoprotein assembly: in enterocytes, OEA augments glycerolipid synthesis and lipoprotein assembly independent of PPARα. Conversely, in hepatocytes, OEA reduces MTP expression, glycerolipid synthesis, and lipoprotein secretion through PPARα-dependent mechanisms.
Assuntos
Endocanabinoides/farmacologia , Intestinos/efeitos dos fármacos , Lipoproteínas/metabolismo , Fígado/metabolismo , Ácidos Oleicos/farmacologia , Animais , Células CACO-2 , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , VLDL-Colesterol/metabolismo , Gorduras na Dieta/efeitos adversos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , PPAR alfa/metabolismoRESUMO
Blocking hepatic very low-density lipoprotein secretion through genetic or pharmacologic inhibition of microsomal triglyceride transfer protein (Mttp) causes hepatic steatosis, yet the risks for developing hepatic fibrosis are poorly understood. We report that liver-specific Mttp knockout mice (Mttp-LKO) exhibit both steatosis and fibrosis, which is exacerbated by a high-transfat/fructose diet. When crossed into germline liver fatty acid (FA) binding protein null mice (Mttp-LKO, i.e., double knockout mice) hepatic steatosis was greatly diminished and fibrosis prevented, on both low-fat and high-fat diets. The mechanisms underlying protection include reduced long chain FA uptake, shifts in FA distribution (lipidomic profiling), and metabolic turnover, specifically decreased hepatic 18:2 FA and triglyceride species and a shift in 18:2 FA use for oxidation versus incorporation into newly synthesized triglyceride. Double knockout mice were protected against fasting-induced hepatic steatosis (a model of enhanced exogenous FA delivery) yet developed steatosis upon induction of hepatic de novo lipogenesis with fructose feeding. Mttp-LKO mice, on either the liver FA binding protein null or Apobec-1 null background (i.e., apolipoprotein B100 only) exhibited only subtle increases in endoplasmic reticulum stress, suggesting that an altered unfolded protein response is unlikely to account for the attenuated phenotype in double knockout mice. Acute, antisense-mediated liver FA binding protein knockdown in Mttp-LKO mice also reduced FA uptake, increased oxidation versus incorporation of 18:2 species with complete reversal of hepatic steatosis, increased hepatic injury, and worsened fibrosis. CONCLUSION: Perturbing exogenous hepatic FA use modulates both hepatic steatosis and fibrosis in the setting of hepatic Mttp deletion, adding new insight into the pathophysiological mechanisms and consequences of defective very low-density lipoprotein secretion. (Hepatology 2017;65:836-852).
Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/genética , Cirrose Hepática/prevenção & controle , Animais , Biópsia por Agulha , Células Cultivadas , VLDL-Colesterol/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Imuno-Histoquímica , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Distribuição Aleatória , Valores de ReferênciaRESUMO
Lipoprotein lipase (LPL) is responsible for the hydrolysis of triglycerides from circulating lipoproteins. Whereas most identified mutations in the LPL gene are deleterious, one mutation, LPLS447X, causes a gain of function. This mutation truncates two amino acids from LPL's C-terminus. Carriers of LPLS447X have decreased VLDL levels and increased HDL levels, a cardioprotective phenotype. LPLS447X is used in Alipogene tiparvovec, the gene therapy product for individuals with familial LPL deficiency. It is unclear why LPLS447X results in a serum lipid profile more favorable than that of LPL. In vitro reports vary as to whether LPLS447X is more active than LPL. We report a comprehensive, biochemical comparison of purified LPLS447X and LPL dimers. We found no difference in specific activity on synthetic and natural substrates. We also did not observe a difference in the Ki for ANGPTL4 inhibition of LPLS447X relative to that of LPL. Finally, we analyzed LPL-mediated uptake of fluorescently labeled lipoprotein particles and found that LPLS447X enhanced lipoprotein uptake to a greater degree than LPL did. An LPL structural model suggests that the LPLS447X truncation exposes residues implicated in LPL binding to uptake receptors.
Assuntos
HDL-Colesterol/química , LDL-Colesterol/química , Lipase Lipoproteica/química , Mutação , Receptores de Lipoproteínas/química , Triglicerídeos/química , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/química , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Transporte Biológico , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/química , VLDL-Colesterol/metabolismo , Expressão Gênica , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Especificidade por Substrato , Triglicerídeos/metabolismoRESUMO
AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply.
Assuntos
VLDL-Colesterol/metabolismo , Resistência à Insulina/fisiologia , Esterol Esterase/metabolismo , Animais , VLDL-Colesterol/genética , Feminino , Glucose/metabolismo , Resistência à Insulina/genética , Lipólise/genética , Lipólise/fisiologia , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Esterol Esterase/deficiência , Esterol Esterase/genética , Triglicerídeos/metabolismoRESUMO
BACKGROUND: Plasma levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for cardiovascular disease and are influenced by both heredity and dietary habits. The Niemann-Pick C1 like 1 (NPC1L1) protein mediates efficient dietary cholesterol absorption and contributes to variations in human LDL-C levels. METHODS: In the present study, using high throughput sequencing we identified three non-synonymous (NS) variations and 64 synonymous variations in the NPC1L1 gene from subsets of Chinese Han, Uygur and Kazakh populations with high or low LDL-C. Subsequently, three NS variations encoding R174H, V177I and V1284L substitutions were observed only in Uygur and Kazakh individuals with limited maximal plasma LDL-C levels. RESULTS: In further experiments, we investigated cholesterol-regulated recycling and glycosylation and stability of these NS NPC1L1 variants. However, no significant differences between WT and variant NPC1L1 proteins were observed using in vivo assays in mouse livers with adenovirus-mediated expression, demonstrating that none of the three NPC1L1 NS variants caused decreased uptake of biliary cholesterol. CONCLUSIONS: Simultaneously, these data indicate that R174H, V177I and V1284L NPC1L1 variations in high or low LDL-C individuals may not directly influence cholesterol absorption by NPC1L1.
Assuntos
VLDL-Colesterol/sangue , Etnicidade/genética , Variação Genética , Hipercolesterolemia/genética , Proteínas de Membrana/genética , Adulto , Animais , Linhagem Celular Tumoral , China/etnologia , VLDL-Colesterol/genética , VLDL-Colesterol/metabolismo , Feminino , Humanos , Hipercolesterolemia/sangue , Reabsorção Intestinal/genética , Cazaquistão/etnologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , RatosRESUMO
BACKGROUND: Experimental data suggest that apolipoprotein (apo) C-II and C-III regulate triglyceride-rich lipoprotein (TRL) metabolism, but there are limited studies in humans. We investigated the metabolic associations of TRLs with apoC-II and apoC-III concentrations and kinetics in women. MATERIAL AND METHODS: The kinetics of plasma apoC-II, apoC-III and very low-density lipoprotein (VLDL) apoB-100 and triglycerides were measured in the postabsorptive state using stable isotopic techniques and compartmental modelling in 60 women with wide-ranging body mass index (19·5-32·9 kg/m(2) ). RESULTS: Plasma apoC-II and apoC-III concentrations were positively associated with the concentrations of plasma triglycerides, VLDL1 - and VLDL2 -apoB-100 and triglyceride (all P < 0·05). ApoC-II production rate (PR) was positively associated with VLDL1 -apoB-100 concentration, VLDL1 triglyceride concentration and VLDL1 triglyceride PR, while apoC-II fractional catabolic rate (FCR) was positively associated with VLDL1 triglyceride FCR (all P < 0·05). No significant associations were observed between apoC-II and VLDL2 apoB-100 or triglyceride kinetics. ApoC-III PR, but not FCR, was positively associated with VLDL1 triglyceride, and VLDL2 -apoB-100 and triglyceride concentrations (all P < 0·05). No significant associations were observed between apoC-III and VLDL-apoB-100 and triglyceride kinetics. In multivariable analysis, including homoeostasis model assessment score, menopausal status and obesity, apoC-II concentration was significantly associated with plasma triglyceride, VLDL1 -apoB-100 and VLDL1 triglyceride concentrations and PR. Using the same multivariable analysis, apoC-III was significantly associated with plasma triglyceride and VLDL1 - and VLDL2 -apoB-100 and triglyceride concentrations and FCR. CONCLUSIONS: In women, plasma apoC-II and apoC-III concentrations are regulated by their respective PR and are significant, independent determinants of the kinetics and plasma concentrations of TRLs.
Assuntos
Apolipoproteína C-III/metabolismo , Apolipoproteína C-II/metabolismo , Resistência à Insulina/fisiologia , Lipoproteínas/metabolismo , Obesidade/metabolismo , Triglicerídeos/metabolismo , Adulto , VLDL-Colesterol/metabolismo , Feminino , Humanos , Menopausa/metabolismo , Pessoa de Meia-Idade , Análise de RegressãoRESUMO
The bile acid analogue obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist in development for treatment of several chronic liver diseases. FXR activation regulates lipoprotein homeostasis. The effects of OCA on cholesterol and lipoprotein metabolism in healthy individuals were assessed. Two phase I studies were conducted to evaluate the effects of repeated oral doses of 5, 10 or 25 mg OCA on lipid variables after 14 or 20 days of consecutive administration in 68 healthy adults. Changes in HDL and LDL cholesterol levels were examined, in addition to nuclear magnetic resonance analysis of particle sizes and sub-fraction concentrations. OCA elicited changes in circulating cholesterol and particle size of LDL and HDL. OCA decreased HDL cholesterol and increased LDL cholesterol, independently of dose. HDL particle concentrations declined as a result of a reduction in medium and small HDL. Total LDL particle concentrations increased because of an increase in large LDL particles. Changes in lipoprotein metabolism attributable to OCA in healthy individuals were found to be consistent with previously reported changes in patients receiving OCA with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis.
Assuntos
Apolipoproteína A-I/efeitos dos fármacos , Apolipoproteínas B/efeitos dos fármacos , Ácido Quenodesoxicólico/análogos & derivados , HDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Adulto , Apolipoproteína A-I/metabolismo , Apolipoproteínas B/metabolismo , Ácido Quenodesoxicólico/administração & dosagem , Ácido Quenodesoxicólico/farmacologia , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/efeitos dos fármacos , VLDL-Colesterol/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Lipoproteínas/efeitos dos fármacos , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Triglicerídeos/metabolismoRESUMO
OBJECTIVE: To examine infiltration of blood foamy monocytes, containing intracellular lipid droplets, into early atherosclerotic lesions and its contribution to development of nascent atherosclerosis. APPROACH AND RESULTS: In apoE(-/-) mice fed Western high-fat diet (WD), >10% of circulating monocytes became foamy monocytes at 3 days on WD and >20% of monocytes at 1 week. Foamy monocytes also formed early in blood of Ldlr(-/-)Apobec1(-/-) (LDb) mice on WD. Based on CD11c and CD36, mouse monocytes were categorized as CD11c(-)CD36(-), CD11c(-)CD36(+), and CD11c(+)CD36(+). The majority of foamy monocytes were CD11c(+)CD36(+), whereas most nonfoamy monocytes were CD11c(-)CD36(-) or CD11c(-)CD36(+) in apoE(-/-) mice on WD. In wild-type mice, CD11c(+)CD36(+) and CD11c(-)CD36(+), but few CD11c(-)CD36(-), monocytes took up cholesteryl ester-rich very low-density lipoproteins (CE-VLDLs) isolated from apoE(-/-) mice on WD, and CE-VLDL uptake accelerated CD11c(-)CD36(+) to CD11c(+)CD36(+) monocyte differentiation. Ablation of CD36 decreased monocyte uptake of CE-VLDLs. Intravenous injection of DiI-CE-VLDLs in apoE(-/-) mice on WD specifically labeled CD11c(+)CD36(+) foamy monocytes, which infiltrated into nascent atherosclerotic lesions and became CD11c(+) cells that were selectively localized in atherosclerotic lesions. CD11c deficiency reduced foamy monocyte infiltration into atherosclerotic lesions. Specific and consistent depletion of foamy monocytes (for 3 weeks) by daily intravenous injections of low-dose clodrosome reduced development of nascent atherosclerosis. CONCLUSIONS: Foamy monocytes, which form early in blood of mice with hypercholesterolemia, infiltrate into early atherosclerotic lesions in a CD11c-dependent manner and play crucial roles in nascent atherosclerosis development.
Assuntos
Aorta/patologia , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , VLDL-Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Monócitos/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Antígeno CD11c/genética , Antígenos CD36/deficiência , Antígenos CD36/genética , Linhagem Celular , Colesterol na Dieta , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genéticaRESUMO
AIMS: To evaluate the efficacy and safety of extended dosing with mipomersen in patients with familial hypercholesterolaemia (HC) taking maximally tolerated lipid-lowering therapy. METHODS AND RESULTS: A planned interim analysis of an ongoing, open-label extension trial in patients (n = 141) with familial HC receiving a subcutaneous injection of 200 mg mipomersen weekly plus maximally tolerated lipid-lowering therapy for up to 104 weeks. The mean changes in low-density lipoprotein cholesterol (LDL-C) from baseline to weeks 26 (n = 130), 52 (n = 111), 76 (n = 66), and 104 (n = 53) were -28, -27, -27, and -28%; and in apolipoprotein B -29, -28, -30, and -31%, respectively. Reductions in total cholesterol, non-high-density lipoprotein-cholesterol, and lipoprotein(a) were comparable with decreases in LDL-C and apolipoprotein B levels. Mean high-density lipoprotein cholesterol increased from baseline by 7 and 6% at weeks 26 and 52, respectively. The long-term safety profile of mipomersen was similar to that reported in the associated randomized placebo-controlled Phase 3 trials. Adverse events included injection site reactions and flu-like symptoms. There was an incremental increase in the median liver fat during the initial 6-12 months that appeared to diminish with continued mipomersen exposure beyond 1 year and returned towards baseline 24 weeks after last drug dose suggestive of adaptation. The median alanine aminotransferase level showed a similar trend over time. CONCLUSION: Long-term treatment with mipomersen for up to 104 weeks provided sustained reductions in all atherosclerotic lipoproteins measured and a safety profile consistent with prior controlled trials in these high-risk patient populations. CLINICALTRIALS.GOV: NCT00694109.
Assuntos
Anticolesterolemiantes/administração & dosagem , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Oligonucleotídeos/administração & dosagem , Administração Cutânea , Anticolesterolemiantes/efeitos adversos , Anticolesterolemiantes/farmacocinética , Apolipoproteína A-I/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Substituição de Medicamentos , Feminino , Cardiopatias/etiologia , Humanos , Lipoproteína(a)/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/farmacocinética , Medição de Risco , Resultado do Tratamento , Triglicerídeos/metabolismoRESUMO
It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase. In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist. Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5±7.3mg/g liver and 47.9±4.6mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent. In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion.