Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Anal Biochem ; 540-541: 15-19, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108883

RESUMO

ADP-ribosyltransferase activities have been observed in many prokaryotic and eukaryotic species and viruses and are involved in many cellular processes, including cell signalling, DNA repair, gene regulation and apoptosis. In a number of bacterial toxins, mono ADP-ribosyltransferase is the main cause of host cell cytotoxicity. Several approaches have been used to analyse this biological system from measuring its enzyme products to its functions. By using a mono ADP-ribose binding protein we have now developed an ELISA method to estimate native pertussis toxin mono ADP-ribosyltransferase activity and its residual activities in pertussis vaccines as an example. This new approach is easy to perform and adaptable in most laboratories. In theory, this assay system is also very versatile and could measure the enzyme activity in other bacteria such as Cholera, Clostridium, E. coli, Diphtheria, Pertussis, Pseudomonas, Salmonella and Staphylococcus by just switching to their respective peptide substrates. Furthermore, this mono ADP-ribose binding protein could also be used for staining mono ADP-ribosyl products resolved on gels or membranes.


Assuntos
ADP Ribose Transferases/análise , ADP Ribose Transferases/metabolismo , Ensaios Enzimáticos/métodos , Ensaio de Imunoadsorção Enzimática , Toxina Pertussis/metabolismo , Vacinas Conjugadas/metabolismo , ADP Ribose Transferases/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Clostridium/enzimologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Toxina Pertussis/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Vacinas Conjugadas/análise
2.
J Immunol ; 190(8): 4116-28, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23514738

RESUMO

In a previous attempt to generate a protective vaccine against Candida albicans, a ß-mannan tetanus toxoid conjugate showed poor immunogenicity in mice. To improve the specific activation toward the fungal pathogen, we aimed to target Dectin-1, a pattern-recognition receptor expressed on monocytes, macrophages, and dendritic cells. Laminarin, a ß-glucan ligand of Dectin-1, was incorporated into the original ß-mannan tetanus toxoid conjugate providing a tricomponent conjugate vaccine. A macrophage cell line expressing Dectin-1 was employed to show binding and activation of Dectin-1 signal transduction pathway by the ß-glucan-containing vaccine. Ligand binding to Dectin-1 resulted in the following: 1) activation of Src family kinases and Syk revealed by their recruitment and phosphorylation in the vicinity of bound conjugate and 2) translocation of NF-κB to the nucleus. Treatment of immature bone marrow-derived dendritic cells (BMDCs) with tricomponent or control vaccine confirmed that the ß-glucan-containing vaccine exerted its enhanced activity by virtue of dendritic cell targeting and uptake. Immature primary cells stimulated by the tricomponent vaccine, but not the ß-mannan tetanus toxoid vaccine, showed activation of BMDCs. Moreover, treated BMDCs secreted increased levels of several cytokines, including TGF-ß and IL-6, which are known activators of Th17 cells. Immunization of mice with the novel type of vaccine resulted in improved immune response manifested by high titers of Ab recognizing C. albicans ß-mannan Ag. Vaccine containing laminarin also affected distribution of IgG subclasses, showing that vaccine targeting to Dectin-1 receptor can benefit from augmentation and immunomodulation of the immune response.


Assuntos
Células Dendríticas/metabolismo , Sistemas de Liberação de Medicamentos , Lectinas Tipo C/administração & dosagem , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/imunologia , beta-Glucanas/metabolismo , Animais , Sítios de Ligação/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos/métodos , Epitopos/imunologia , Epitopos/metabolismo , Glucanos , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Toxoide Tetânico/metabolismo , Trissacarídeos/administração & dosagem , Trissacarídeos/imunologia , Trissacarídeos/metabolismo , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo , beta-Glucanas/imunologia
3.
ACS Synth Biol ; 12(1): 95-107, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36548479

RESUMO

Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.


Assuntos
Escherichia coli , Camundongos , Animais , Vacinas Conjugadas/metabolismo , Escherichia coli/metabolismo , Composição de Medicamentos
4.
Microbiol Spectr ; 11(6): e0184023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930013

RESUMO

From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the ß-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly ß-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.


Assuntos
Amoxicilina , Infecções Pneumocócicas , Humanos , Amoxicilina/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Meropeném , Espanha/epidemiologia , Ceftriaxona , Taiwan/epidemiologia , Vacinas Conjugadas/metabolismo , Streptococcus pneumoniae , Infecções Pneumocócicas/epidemiologia , Sorogrupo , beta-Lactamas , Testes de Sensibilidade Microbiana , Genômica , Recombinação Genética , Polissacarídeos/metabolismo
5.
Rapid Commun Mass Spectrom ; 26(7): 749-58, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22368054

RESUMO

RATIONALE: Neoglycoconjugate vaccines synthesized by the squaric acid spacer method allow single point attachment of the carbohydrate antigen to the protein carrier. However, the localization of the carbohydrate antigen sites of conjugation on the protein carrier has been an elusive task difficult to achieve. METHOD: Covalent attachment of the lactose antigen to the bovine serum albumin (BSA) was prepared by the squaric acid method using a hapten:BSA ratio of 20:1. Different reaction times were used during the conjugation reaction and two different lactose-BSA glycoconjugate vaccines were obtained. The carbohydrate antigen hapten:BSA ratios of these lactose-BSA glycoconjugate vaccines were determined by MALDI-TOF/RTOF-MS and the glycation sites in the neoglycoconjugates were determined using nano-LC/ESI-QqTOF-MS/MS analysis of the trypsin and GluC V8 digests of the conjugates. RESULTS: We have identified a total of 15 glycation sites located on the BSA lysine residues for the neoglycoconjugate vaccine formed with a hapten:BSA ratio of 5.1:1, However, the tryptic and GluC V8 digests of the hapten-BSA glycoconjugate with a hapten:BSA ratio of 19.0:1 allowed identification of 30 glycation sites located on the BSA. These last results seem to indicate that this conjugation results in formation of various glycoforms. CONCLUSIONS: It was observed that the number of identified glycation sites increased when the hapten:BSA ratio of glycoconjugate formation increased, and that the location of the glycation sites appears to be mainly on the outer surface of the BSA carrier molecule which is in line with the assumption that the sterically more accessible lysine residues, namely those located on the outer surface of the BSA, would be conjugated preferentially.


Assuntos
Lactose/química , Soroalbumina Bovina/química , Espectrometria de Massas em Tandem/métodos , Vacinas Conjugadas/química , Vacinas de Subunidades Antigênicas/química , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida , Glicosilação , Haptenos/química , Haptenos/metabolismo , Lactose/imunologia , Lactose/metabolismo , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Soroalbumina Bovina/imunologia , Soroalbumina Bovina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/metabolismo
6.
J Immunol ; 181(12): 8258-66, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050242

RESUMO

Polysaccharide (PS)- and protein-specific murine IgG responses to intact Streptococcus pneumoniae (Pn) are both dependent on CD4(+) T cell help, B7-dependent costimulation, and CD40/CD40 ligand interactions. However, the primary PS-specific, relative to protein-specific, IgG response terminates more rapidly, requires a shorter period of T cell help and B7-dependent costimulation, and fails to generate memory. In light of the critical role for ICOS/ICOS ligand interactions in sustaining T cell-dependent Ig responses and promoting germinal center reactions, we hypothesized that this interaction was nonessential for PS-specific IgG responses to Pn. We now demonstrate that ICOS(-/-), relative to wild-type, mice elicit a normal PS-specific IgG isotype response to Pn, despite marked inhibition of both the primary and secondary IgG anti-protein (i.e., PspA, PspC, and PsaA) response. A blocking anti-ICOS ligand mAb injected during primary Pn immunization inhibits both the primary anti-protein response and the generation of protein-specific memory, but has no effect when injected during secondary immunization. In contrast to Pn, both PS- and protein-specific IgG responses to a pneumococcal conjugate vaccine are inhibited in ICOS(-/-) mice. ICOS(-/-) mice immunized with intact Pn or conjugate exhibit nearly complete abrogation in germinal center formation. Finally, although mice that lack the adaptor molecule SAP (SLAM-associated protein) resemble ICOS(-/-) mice (and can exhibit decreased ICOS expression), we observe that the PS-specific, as well as protein-specific, IgG responses to both Pn and conjugate are markedly defective in SAP(-/-) mice. These data define a novel T cell-, SAP-, and B7-dependent, but ICOS-independent, extrafollicular pathway of Ig induction.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Diferenciação de Linfócitos T/fisiologia , Antígenos CD28/fisiologia , Linfócitos T CD4-Positivos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Transdução de Sinais/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/metabolismo , Anticorpos Antibacterianos/fisiologia , Antígenos de Diferenciação de Linfócitos T/genética , Cápsulas Bacterianas/administração & dosagem , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação de Anticorpos , Antígenos CD28/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Proteína Coestimuladora de Linfócitos T Induzíveis , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilcolina/metabolismo , Transdução de Sinais/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/metabolismo , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo
7.
J Korean Med Sci ; 25(1): 90-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20052353

RESUMO

A meta-analysis was performed on the immunogenicity of Haemophilus influenzae type b (Hib) conjugate vaccines after 2 (2 and 4 months) and 3 doses (2, 4, and 6 months) in Korean infants. A database search of MEDLINE, KoreaMed, and Korean Medical Database was done. The primary outcome measure was the proportion of infants with anti-polyribosylribitol phosphate (PRP) concentrations > or =1.0 microg/mL. Eight studies including eleven trials were retrieved. One trial reported on the diphtheria toxoid conjugate vaccine (PRP-D) and 2 trials each on the mutant diphtheria toxin (PRP-CRM) and Neisseria meningitidis outer-membrane protein (PRP-OMP) conjugate vaccine. Heterogeneity in study designs between trials on PRP-CRM was noted and one trial reported on a monovalent and another on a combination PRP-OMP vaccine. Thus, a meta-analysis was conducted only on the tetanus toxoid conjugate vaccine (PRP-T). After a primary series of 2 doses and 3 doses, 80.6% (95% confidence interval [CI]; 76.0-85.1%) and 95.7% (95% CI; 94.0-98.0%) of infants achieved an antibody level > or =1.0 microg/mL, respectively. The immunogenic response to the PRP-T vaccine was acceptable after a primary series of 3 doses and also 2 doses. A reduced number of doses as a primary series could be carefully considered in Korean infants.


Assuntos
Cápsulas Bacterianas/imunologia , Vacinas Anti-Haemophilus/imunologia , Anticorpos/análise , Cápsulas Bacterianas/metabolismo , Vacinas Anti-Haemophilus/metabolismo , Humanos , Lactente , República da Coreia , Toxoide Tetânico/química , Toxoide Tetânico/metabolismo , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo
8.
ACS Chem Biol ; 15(3): 789-798, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32109354

RESUMO

The high mannose patch (HMP) of the HIV envelope protein (Env) is the structure most frequently targeted by broadly neutralizing antibodies; therefore, many researchers have attempted to use mimics of this region as a vaccine immunogen. In our previous efforts, vaccinating rabbits with evolved HMP mimic glycopeptides containing Man9 resulted in an overall antibody response targeting the glycan core and linker rather than the full glycan or Manα1→2Man tips of Man9 glycans. A possible reason could be processing of our immunogen by host serum mannosidases. We sought to test whether more prolonged dosing could increase the antibody response to intact glycans, possibly by increasing the availability of intact Man9 to germinal centers. Here, we describe a study investigating the impact of immunization regimen on antibody response by testing immunogen delivery through bolus, an exponential series of mini doses, or a continuously infusing mini-osmotic pump. Our results indicate that, with our glycopeptide immunogens, standard bolus immunization elicited the strongest HIV Env-binding antibody response, even though higher overall titers to the glycopeptide were elicited by the exponential and pump regimens. Antibody selectivity for intact glycan was, if anything, slightly better in the bolus-immunized animals.


Assuntos
Vacinas contra a AIDS/metabolismo , Glicopeptídeos/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Oligossacarídeos/química , Vacinas Conjugadas/metabolismo , Animais , Anticorpos Neutralizantes , Formação de Anticorpos , Sítios de Ligação , Glicosilação , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/urina , Infecções por HIV/prevenção & controle , Humanos , Imunização , Manosidases/metabolismo , Oligossacarídeos/urina , Ligação Proteica , Conformação Proteica , Coelhos , Bibliotecas de Moléculas Pequenas/química , Vacinação
9.
ACS Chem Biol ; 15(3): 728-739, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32045202

RESUMO

Dendritic cells (DCs) are armed with a multitude of Pattern Recognition Receptors (PRRs) to recognize pathogens and initiate pathogen-tailored T cell responses. In these responses, the maturation of DCs is key, as well as the production of cytokines that help to accomplish T cell responses. DC-SIGN is a frequently exploited PRR that can effectively be targeted with mannosylated antigens to enhance the induction of antigen-specific T cells. The natural O-mannosidic linkage is susceptible to enzymatic degradation, and its chemical sensitivity complicates the synthesis of mannosylated antigens. For this reason, (oligo)mannosides are generally introduced in a late stage of the antigen synthesis, requiring orthogonal conjugation handles for their attachment. To increase the stability of the mannosides and streamline the synthesis of mannosylated peptide antigens, we here describe the development of an acid-stable C-mannosyl lysine, which allows for the inline introduction of mannosides during solid-phase peptide synthesis (SPPS). The developed amino acid has been successfully used for the assembly of both small ligands and peptide antigen conjugates comprising an epitope of the gp100 melanoma-associated antigen and a TLR7 agonist for DC activation. The ligands showed similar internalization capacities and binding affinities as the O-mannosyl analogs. Moreover, the antigen conjugates were capable of inducing maturation, stimulating the secretion of pro-inflammatory cytokines, and providing enhanced gp100 presentation to CD8+ and CD4+ T cells, similar to their O-mannosyl counterparts. Our results demonstrate that the C-mannose lysine is a valuable building block for the generation of anticancer peptide-conjugate vaccine modalities.


Assuntos
Antineoplásicos/síntese química , Vacinas Anticâncer/síntese química , Glicopeptídeos/química , Lisina/química , Manose/química , Vacinas Conjugadas/química , Antígenos de Neoplasias/metabolismo , Antineoplásicos/metabolismo , Vacinas Anticâncer/metabolismo , Técnicas de Cultura de Células , Citocinas/metabolismo , Células Dendríticas , Epitopos/química , Epitopos/metabolismo , Corantes Fluorescentes/química , Humanos , Imagem Óptica , Linfócitos T , Receptor 7 Toll-Like/metabolismo , Vacinas Conjugadas/metabolismo , Vacinas Sintéticas/química , Antígeno gp100 de Melanoma/metabolismo
10.
Tuberculosis (Edinb) ; 116S: S34-S41, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31064713

RESUMO

Among the various strategies to improve vaccines against infectious diseases, targeting of antigens to dendritic cells (DCs), which are professional antigen presenting cells (APCs), has received increased attention in recent years. Here, we investigated whether a synthetic peptide region named RVG, originated from Rabies Virus Glycoprotein that binds to the α-7 subunit of the nicotinic acetylcholine receptors (AchR-α7) of APCs, could be used for the delivery of Mycobacterium tuberculosis (Mtb) peptide antigens to DCs and macrophages. Mouse bone marrow derived DCs (BMDCs) and human THP-1 macrophages stimulated with RVG fused peptide epitopes 85B241 and 85B96 (represent Ag85B241-256 and Ag85B96-111, respectively) from antigen 85B (Ag85B) of Mtb showed enhanced antigen presentation as compared to unfused peptide epitopes and BCG. Further, BMDCs stimulated with RVG fused 85B241 showed higher levels of IL-12 positive cells. Consistent with in vitro data, splenocytes of mice immunized with RVG-85B241 showed increased number of antigen specific IFN-γ, IL-2, and TNF-α producing cells in relation to splenocytes from mice immunized with 85B241 alone. These results suggest that RVG may be a promising tool to develop effective alternate vaccines against tuberculosis (TB).


Assuntos
Aciltransferases/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Macrófagos/metabolismo , Fragmentos de Peptídeos/metabolismo , Vacinas contra a Tuberculose/metabolismo , Tuberculose/prevenção & controle , Proteínas Virais/metabolismo , Aciltransferases/administração & dosagem , Aciltransferases/genética , Aciltransferases/imunologia , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Epitopos , Glicoproteínas/genética , Humanos , Imunização , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Células THP-1 , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo , Proteínas Virais/genética
11.
Methods Mol Biol ; 1674: 183-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28921437

RESUMO

The bacterial expression of glycoproteins has experienced significant progress in recent years, particularly in regard to the production of conjugate vaccines against pathogens. In this case, a protein carrier conjugated with glycosides is used to produce intense stimulation of the immune system. Glycoconjugate vaccines account for 35% of the global vaccine market, and consequently, several biotechnological companies have developed products for the purification of glycosylated proteins to attain homogeneity. In this chapter we present a general process for glycoprotein production in Escherichia coli and a practice method for purification of glycosylated proteins, using affinity chromatography.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicoconjugados/metabolismo , Glicoproteínas/metabolismo , Vacinas Conjugadas/metabolismo , Cromatografia de Afinidade/métodos , Glicosilação
12.
Sci Rep ; 6: 20488, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26841683

RESUMO

Production of glycoconjugate vaccines involves the chemical conjugation of glycans to an immunogenic carrier protein such as Cross-Reactive-Material-197 (CRM197). Instead of using glycans from natural sources recent vaccine development has been focusing on the use of synthetically defined minimal epitopes. While the glycan is structurally defined, the attachment sites on the protein are not. Fully characterized conjugates and batch-to-batch comparisons are the key to eventually create completely defined conjugates. A variety of glycoconjugates consisting of CRM197 and synthetic oligosaccharide epitopes was characterised using mass spectrometry techniques. The primary structure was assessed by combining intact protein MALDI-TOF-MS, LC-MALDI-TOF-MS middle-down and LC-ESI-MS bottom-up approaches. The middle-down approach on CNBr cleaved glycopeptides provided almost complete sequence coverage, facilitating rapid batch-to-batch comparisons, resolving glycan loading and identification of side products. Regions close to the N- and C-termini were most efficiently conjugated.


Assuntos
Proteínas de Bactérias/química , Polissacarídeos/metabolismo , Vacinas Conjugadas/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cromatografia Líquida , Epitopos/metabolismo , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vacinas Conjugadas/metabolismo
13.
mBio ; 7(2): e00443-16, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118590

RESUMO

UNLABELLED: Conjugate vaccines are known to be one of the most effective and safest types of vaccines against bacterial pathogens. Previously, vaccine biosynthesis has been performed by using N-linked glycosylation systems. However, the structural specificity of these systems for sugar substrates has hindered their application. Here, we report a novel protein glycosylation system (O-linked glycosylation via Neisseria meningitidis) that can transfer virtually any glycan to produce a conjugate vaccine. We successfully established this system in Shigella spp., avoiding the construction of an expression vector for polysaccharide synthesis. We further found that different protein substrates can be glycosylated using this system and that the O-linked glycosylation system can also effectively function in other Gram-negative bacteria, including some strains whose polysaccharide structure was not suitable for conjugation using the N-linked glycosylation system. The results from a series of animal experiments show that the conjugate vaccine produced by this O-linked glycosylation system offered a potentially protective antibody response. Furthermore, we elucidated and optimized the recognition motif, named MOOR, for the O-glycosyltransferase PglL. Finally, we demonstrated that the fusion of other peptides recognized by major histocompatibility complex class II around MOOR had no adverse effects on substrate glycosylation, suggesting that this optimized system will be useful for future vaccine development. Our results expand the glycoengineering toolbox and provide a simpler and more robust strategy for producing bioconjugate vaccines against a variety of pathogens. IMPORTANCE: Recently, the rapid development of synthetic biology has allowed bioconjugate vaccines with N-linked protein glycosylation to become a reality. However, the difficulty of reestablishing the exogenous polysaccharide synthetic pathway in Escherichia coli hinders their application. Here, we show that an O-linked protein glycosylation system from Neisseria meningitidis, which has a lower structure specificity for sugar substrates, could be engineered directly in attenuated pathogens to produce effective conjugate vaccines. To facilitate the further design of next-generation bioconjugate vaccines, we optimized a novel short motif consisting of 8 amino acids that is sufficient for glycosylation. Our results expand the application potential of O-linked protein glycosylation and demonstrate a simpler and more robust strategy for producing bioconjugate vaccines against different pathogens. In the future, bacterial antigenic polysaccharides could be attached to major histocompatibility complex binding peptides to improve immunological memory or attached to protein subunit vaccine candidates to provide double immune stimulation.


Assuntos
Vacinas Bacterianas/metabolismo , Neisseria meningitidis/imunologia , Vacinas Conjugadas/metabolismo , Motivos de Aminoácidos , Animais , Vacinas Bacterianas/química , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Feminino , Glicosilação , Humanos , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Neisseria meningitidis/química , Neisseria meningitidis/genética , Shigella flexneri/genética , Shigella flexneri/metabolismo , Vacinas Conjugadas/química , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia
14.
J Drug Target ; 12(5): 289-96, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15512780

RESUMO

An oral vaccine formulation comprised of starch microparticles with conjugated antigens is being developed. In this report we have examined the uptake of such microparticles by the intestinal mucosa and examined whether the conjugated antigen can influence the uptake. Two model antigens were used: recombinant cholera toxin B subunit (rCTB), which is known to bind to the ubiquitous GM1-receptor, and human serum albumin (HSA) which is not known to have any specific binding properties. The uptake was studied in mouse ligated intestinal loops into which the microparticles were injected. The intestinal loops were excised, fixed in ice-cold 95% ethanol. Entire specimens were mounted, exposed to fluorescence-labeled reagents staining the cytoskeleton, the particles and/or M cells and examined in a confocal laser-scanning microscope. A qualitative difference in the uptake of the rCTB- and HSA-conjugated microparticles was seen. The rCTB-conjugated microparticles were found both in villi and in the follicles of the Peyer's patches. HSA-conjugated microparticles could only be detected in the follicles of the Peyer's patches and not in villi. The rCTB conjugated to the microparticles did not lose its ability to bind the GM1-receptor, as shown with a GM1-ELISA, and the uptake of rCTB-conjugated microparticles in villi is most probably facilitated by the rCTB binding to the GM1-receptor. The qualitative difference in uptake could be of importance for the development of an immune response as the cytokine and chemokine microenvironment during antigen presentation will decide the differentiation of the immune response induced.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Mucosa Intestinal/metabolismo , Amido/administração & dosagem , Amido/farmacocinética , Administração Oral , Animais , Toxina da Cólera/administração & dosagem , Toxina da Cólera/farmacocinética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Albumina Sérica/administração & dosagem , Albumina Sérica/farmacocinética , Vacinas Conjugadas/metabolismo
15.
PLoS Negl Trop Dis ; 8(2): e2683, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516685

RESUMO

BACKGROUND: Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. METHODOLOGY: Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide-core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. PRINCIPAL FINDINGS: We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. CONCLUSION: We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens.


Assuntos
Vacinas contra Cólera/imunologia , Cólera/prevenção & controle , Antígenos O/imunologia , Vacinas Conjugadas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Cólera/imunologia , Cólera/mortalidade , Vacinas contra Cólera/química , Vacinas contra Cólera/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Antígenos O/química , Antígenos O/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Vacinas Conjugadas/química , Vacinas Conjugadas/metabolismo
16.
Hum Vaccin Immunother ; 9(3): 488-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23249976

RESUMO

Vaccine development for Group A streptococcal (GAS) infection has been extensively focused on the N-terminal hypervariable or the C-terminal conserved regions of the M protein, a major virulence factor of GAS. We evaluated the immunogenicity and functional activity of the conserved C-terminal peptide vaccine candidate, J8, conjugated to CRM197, in two mouse strains: C3H (H2(k)) and Balb/c (H2(d)), and in rhesus macaques. Mice were immunized with J8-CRM197 formulated with Amorphous Aluminum Hydroxyphosphate Sulfate Adjuvant (AAHSA), and non-human primates were immunized with J8-CRM197 formulated with AAHSA, ISCOMATRIX (TM) adjuvant, or AAHSA/ISCOMATRIX adjuvant. J8-CRM197 was immunogenic in mice from both H2(k) and H2(d) backgrounds, and the antibodies generated bound to the surface of four different GAS serotypes and had functional bacterial opsonic activity. Mice immunized with J8-CRM197/AAHSA demonstrated varying degrees of protection from lethal challenge. We also demonstrated that J8-CRM197 is immunogenic in non-human primates. Our data confirm the utility of J8 as a potential GAS vaccine candidate and demonstrate that CRM197 is an acceptable protein carrier for this peptide.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , Macaca mulatta , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/genética , Vacinas Estreptocócicas/metabolismo , Streptococcus pyogenes/genética , Análise de Sobrevida , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo
17.
Nat Protoc ; 7(12): 2180-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23196974

RESUMO

Here we describe how to isolate carbohydrate-specific T cell clones (for which we propose the designation 'Tcarbs') after stimulation by two glycoconjugate vaccines. We describe how to prepare, purify and characterize two model glycoconjugate vaccines that can be used to generate Tcarbs. These glycoconjugate vaccines (GBSIII-OVA and GBSIII-TT) are synthesized by conjugation of type III group B streptococcal polysaccharide (GBSIII) to ovalbumin (OVA) or tetanus toxoid (TT). Upon immunization of mice with GBSIII-OVA, carbohydrate epitopes are presented to and recognized by CD4(+) T cells. Subsequently, polysaccharide-recognizing CD4(+) T cells are expanded in vitro by stimulating splenic CD4(+) T cells with GBSIII-TT. The sequential use of two distinct glycoconjugate vaccines containing the same polysaccharide conjugated to heterologous carrier proteins selects for and expands carbohydrate-specific T cells. This protocol can readily be adapted to study the stimulation of the immune system by alternative glycoconjugate vaccines. This protocol takes 1-2 years to complete.


Assuntos
Linfócitos T CD4-Positivos/citologia , Separação Celular/métodos , Ovalbumina/metabolismo , Polissacarídeos Bacterianos/metabolismo , Toxina Tetânica/metabolismo , Vacinas Conjugadas/farmacologia , Animais , Linfócitos T CD4-Positivos/imunologia , Camundongos , Vacinas Conjugadas/metabolismo
18.
Vaccine ; 30(5): 853-61, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22172503

RESUMO

A conjugate vaccine for Salmonella enterica serovar Typhi was produced by chemically linking Vi, purified from Citrobacter, to the non-toxic mutant diphtheria toxin CRM(197) via an adipic dihydrazide spacer using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide coupling chemistry. The polysaccharide purification process was developed based on Vi precipitation from culture supernatant with cetyl trimethylammonium bromide (CTAB), solubilization of the CTA-polysaccharide salt with ethanol followed by exchange of the CTA(+) counter ion with Na(+). The purified Vi polysaccharide was fully O-acetylated and with high purity. The conjugation process was optimized to obtain a scalable process that has been used for GMP production at pilot scale of vaccine currently in clinical trials.


Assuntos
Citrobacter/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Vacinas Tíficas-Paratíficas/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citrobacter/química , Humanos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Tecnologia Farmacêutica/métodos , Vacinas Tíficas-Paratíficas/química , Vacinas Tíficas-Paratíficas/metabolismo , Vacinas Conjugadas/química , Vacinas Conjugadas/metabolismo
19.
PLoS One ; 7(5): e38329, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666501

RESUMO

The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142-51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15-56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Benzo(a)pireno/metabolismo , Epitopos de Linfócito T/química , Haptenos/imunologia , Peptídeos/metabolismo , Vacinas Conjugadas/imunologia , Sequência de Aminoácidos , Animais , Benzo(a)pireno/farmacocinética , Poluentes Ambientais/imunologia , Poluentes Ambientais/farmacocinética , Ensaio de Imunoadsorção Enzimática , Feminino , Imunização , Camundongos , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Toxoide Tetânico/imunologia , Fatores de Tempo , Vacinas Conjugadas/metabolismo
20.
J Mol Biol ; 415(1): 118-27, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22079050

RESUMO

Nicotine is the principal addictive component of tobacco. Blocking its passage from the lung to the brain with nicotine-specific antibodies is a promising approach for the treatment of smoking addiction. We have determined the crystal structure of nicotine bound to the Fab fragment of a fully human monoclonal antibody (mAb) at 1.85 Å resolution. Nicotine is almost completely (>99%) buried in the interface between the variable domains of heavy and light chains. The high affinity of the mAb is the result of a charge-charge interaction, a hydrogen bond, and several hydrophobic contacts. Additionally, similarly to nicotinic acetylcholine receptors in the brain, two cation-π interactions are present between the pyrrolidine charge and nearby aromatic side chains. The selectivity of the mAb for nicotine versus cotinine, which is the major metabolite of nicotine and differs in only one oxygen atom, is caused by steric constraints in the binding site. The mAb was isolated from B cells of an individual immunized with a nicotine-carrier protein conjugate vaccine. Surprisingly, the nicotine was bound to the Fab fragment in an orientation that was not compatible with binding to the nicotine-carrier protein conjugate. The structure of the Fab fragment in complex with the nicotine-linker derivative that was used for the production of the conjugate vaccine revealed a similar position of the pyridine ring of the nicotine moiety, but the pyrrolidine ring was rotated by about 180°. This allowed the linker part to reach to the Fab surface while high-affinity interactions with the nicotine moiety were maintained.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Proteínas de Transporte/química , Fragmentos Fab das Imunoglobulinas/química , Nicotina/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Cotinina/química , Cotinina/imunologia , Cotinina/metabolismo , Cristalografia por Raios X/métodos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nicotina/imunologia , Nicotina/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirrolidinas/química , Pirrolidinas/imunologia , Pirrolidinas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/imunologia , Receptores Nicotínicos/metabolismo , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa