Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
New Phytol ; 222(1): 497-510, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30372525

RESUMO

The fungus Verticillium dahliae causes wilts of several hundred plant species, including potato and mint. Verticillium spp. also colonize sympatric hosts such as mustards and grasses as endophytes. The evolutionary history of and interactions between pathogenic and endophytic of this fungus are unknown. Verticillium dahliae isolates recovered from sympatric potato, mint, mustard and grasses were characterized genotypically with microsatellite markers and phenotypically for pathogenicity. The evolutionary history of pathogenic and endophytic populations was reconstructed and gene flow between populations quantified. Verticillium dahliae was recovered from all hosts. Endophytic populations were genetically and genotypically similar to but marginally differentiated from the potato population, from which they evolved. Bidirectional migration was detected between these populations and endophytic isolates were pathogenic to potato and behaved as endophytes in mustard and barley. Verticillium dahliae colonizes plants as both endophytes and pathogens. A historical host-range expansion together with endophytic and pathogenic capabilities are likely to have enabled infection of and gene flow between asymptomatic and symptomatic host populations despite minor differentiation. The ability of hosts to harbor asymptomatic infections and the stability of asymptomatic infections over time warrants investigation to elucidate the mechanisms involved in the maintenance of endophytism and pathogenesis.


Assuntos
Endófitos/patogenicidade , Simpatria , Verticillium/patogenicidade , Evolução Biológica , Análise Discriminante , Fluxo Gênico , Variação Genética , Genótipo , Geografia , Modelos Biológicos , Plantas/microbiologia , Análise de Componente Principal , Recombinação Genética/genética , Verticillium/genética , Verticillium/isolamento & purificação , Washington
2.
BMC Genomics ; 19(1): 14, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298673

RESUMO

BACKGROUND: Brassica plant species are attacked by a number of pathogens; among them, the ones with a soil-borne lifestyle have become increasingly important. Verticillium stem stripe caused by Verticillium longisporum is one example. This fungal species is thought to be of a hybrid origin, having a genome composed of combinations of lineages denominated A and D. In this study we report the draft genomes of 2 V. longisporum field isolates sequenced using the Illumina technology. Genomic characterization and lineage composition, followed by selected gene analysis to facilitate the comprehension of its genomic features and potential effector categories were performed. RESULTS: The draft genomes of 2 Verticillium longisporum single spore isolates (VL1 and VL2) have an estimated ungapped size of about 70 Mb. The total number of protein encoding genes identified in VL1 was 20,793, whereas 21,072 gene models were predicted in VL2. The predicted genome size, gene contents, including the gene families coding for carbohydrate active enzymes were almost double the numbers found in V. dahliae and V. albo-atrum. Single nucleotide polymorphisms (SNPs) were frequently distributed in the two genomes but the distribution of heterozygosity and depth was not independent. Further analysis of potential parental lineages suggests that the V. longisporum genome is composed of two parts, A1 and D1, where A1 is more ancient than the parental lineage genome D1, the latter being more closer related to V. dahliae. Presence of the mating-type genes MAT1-1-1 and MAT1-2-1 in the V. longisporum genomes were confirmed. However, the MAT genes in V. dahliae, V. albo-atrum and V. longisporum have experienced extensive nucleotide changes at least partly explaining the present asexual nature of these fungal species. CONCLUSIONS: The established draft genome of V. longisporum is comparatively large compared to other studied ascomycete fungi. Consequently, high numbers of genes were predicted in the two V. longisporum genomes, among them many secreted proteins and carbohydrate active enzyme (CAZy) encoding genes. The genome is composed of two parts, where one lineage is more ancient than the part being more closely related to V. dahliae. Dissimilar mating-type sequences were identified indicating possible ancient hybridization events.


Assuntos
Genoma Fúngico , Verticillium/genética , Metabolismo dos Carboidratos , Evolução Molecular , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Filogenia , Polimorfismo de Nucleotídeo Único , Microbiologia do Solo , Verticillium/classificação , Verticillium/enzimologia , Verticillium/isolamento & purificação
3.
J Chem Ecol ; 44(4): 374-383, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29492723

RESUMO

Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bacillus subtilis/metabolismo , Fusarium/fisiologia , Lipopeptídeos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cromatografia Líquida de Alta Pressão , Fusarium/efeitos dos fármacos , Fusarium/isolamento & purificação , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Espectrometria de Massas , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rhizopus/efeitos dos fármacos , Rhizopus/isolamento & purificação , Rhizopus/fisiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Verticillium/efeitos dos fármacos , Verticillium/isolamento & purificação , Verticillium/fisiologia
4.
Arch Microbiol ; 199(10): 1383-1389, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28741076

RESUMO

Verticillium species are soilborne plant pathogens, responsible for big yield losses worldwide. Here, we report improved procedures to generate DNA from Verticillium species imbedded in farm soils. Using new genomic sequence information, primers for V. dahliae, V. albo-atrum, V. tricorpus, and V. longisporum were designed. In a survey of 429 samples from intensively farmed soil of two Swedish regions, only V. dahliae and V. longisporum were identified. A bias towards V. longisporum (40%) was seen in the south, whereas V. dahliae was more frequent in the western region (19%). Analyses of soil and leaf samples from 20 sugar beet fields, where foliar wilting had been observed, revealed V. dahliae DNA in all leaf and soil samples and V. longisporum in 18 soil samples, illustrating host choice and longevity of the V. longisporum microsclerotia. This study demonstrates the applicability of new molecular diagnostic tools that are important for growers of variable crops.


Assuntos
Brassicaceae/microbiologia , DNA Fúngico/genética , Verticillium/genética , Verticillium/isolamento & purificação , Primers do DNA/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Solo/química , Microbiologia do Solo , Suécia , Verticillium/classificação
5.
Phytopathology ; 106(9): 1038-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27050569

RESUMO

We used a population genomics approach to test the hypothesis of clonal expansion of a highly fit genotype in populations of Verticillium dahliae. This fungal pathogen has a broad host range and can be dispersed in contaminated seed or other plant material. It has a highly clonal population structure, with several lineages having nearly worldwide distributions in agricultural crops. Isolates in lineage 1A are highly virulent and cause defoliation in cotton, okra, and olive (denoted 1A/D), whereas those in other lineages cause wilting but not defoliation (ND). We tested whether the highly virulent lineage 1A/D could have spread from the southwestern United States to the Mediterranean basin, as predicted from historical records. We found 187 single-nucleotide polymorphisms (SNPs), determined by genotyping by sequencing, among 91 isolates of lineage 1A/D and 5 isolates in the closely related lineage 1B/ND. Neighbor-joining and maximum-likelihood analyses on the 187 SNPs showed a clear divergence between 1A/D and 1B/ND haplotypes. Data for only 77 SNPs were obtained for all 96 isolates (no missing data); lineages 1A/D and 1B/ND differed by 27 of these 77 SNPs, confirming a clear divergence between the two lineages. No evidence of recombination was detected within or between these two lineages. Phylogenetic and genealogical analyses resulted in five distinct subclades of 1A/D isolates that correlated closely with geographic origins in the Mediterranean basin, consistent with the hypothesis that the D pathotype was introduced at least five times in independent founder events into this region from a relatively diverse source population. The inferred ancestral haplotype was found in two isolates sampled before 1983 from the southwestern United States, which is consistent with historical records that 1A/D originated in North America. The five subclades coalesce with the ancestral haplotype at the same time, consistent with a hypothesis of rapid population expansion in the source population during the emergence of 1A/D as a severe pathogen of cotton in the United States.


Assuntos
Abelmoschus/microbiologia , Variação Genética , Gossypium/microbiologia , Olea/microbiologia , Doenças das Plantas/microbiologia , Verticillium/genética , Produtos Agrícolas , Genética Populacional , Genômica , Genótipo , Grécia , Haplótipos , Especificidade de Hospedeiro , Israel , Polimorfismo de Nucleotídeo Único/genética , Espanha , Turquia , Estados Unidos , Verticillium/isolamento & purificação , Verticillium/patogenicidade
6.
Environ Microbiol ; 17(8): 2824-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25630463

RESUMO

The spread of aggressive fungal pathogens into previously non-endemic regions is a major threat to plant health and food security. Analyses of the spatial and genetic structure of plant pathogens offer valuable insights into their origin, dispersal mechanisms and evolution, and have been useful to develop successful disease management strategies. Here, we elucidated the genetic diversity, population structure and demographic history of worldwide invasion of the ascomycete Verticillium dahliae, a soil-borne pathogen, using a global collection of 1100 isolates from multiple plant hosts and countries. Seven well-differentiated genetic clusters were revealed through discriminant analysis of principal components (DAPC), but no strong associations between these clusters and host/geographic origin of isolates were found. Analyses of clonal evolutionary relationships among multilocus genotypes with the eBURST algorithm and analyses of genetic distances revealed that genetic clusters represented several ancient evolutionary lineages with broad geographic distribution and wide host range. Comparison of different scenarios of demographic history using approximate Bayesian computations revealed the branching order among the different genetic clusters and lineages. The different lineages may represent incipient species, and this raises questions with respect to their evolutionary origin and the factors allowing their maintenance in the same areas and same hosts without evidence of admixture between them. Based on the above findings and the biology of V. dahliae, we conclude that anthropogenic movement has played an important role in spreading V. dahliae lineages. Our findings have implications for the development of management strategies such as quarantine measures and crop resistance breeding.


Assuntos
Variação Genética/genética , Espécies Introduzidas , Doenças das Plantas/microbiologia , Plantas/microbiologia , Verticillium/classificação , Verticillium/genética , Teorema de Bayes , Evolução Molecular , Genótipo , Especificidade de Hospedeiro/genética , Verticillium/isolamento & purificação
7.
Phytopathology ; 105(1): 80-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25098494

RESUMO

Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.


Assuntos
Lactuca/microbiologia , Doenças das Plantas/microbiologia , Spinacia oleracea/microbiologia , Verticillium/fisiologia , California , Produtos Agrícolas , DNA Fúngico/genética , Genes Reporter , Geografia , Lactuca/citologia , Raízes de Plantas/microbiologia , Sementes/microbiologia , Solo , Microbiologia do Solo , Spinacia oleracea/citologia , Verticillium/genética , Verticillium/isolamento & purificação
8.
J Appl Microbiol ; 116(4): 942-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24329885

RESUMO

AIMS: In this study, a loop-mediated isothermal amplification (LAMP) assay has been developed and evaluated for the rapid and sensitive detection of Verticillium dahliae Kleb., the causal agent of vascular wilts in many economically important crops. METHODS AND RESULTS: LAMP primers were designed based on a previously described RAPD marker, and the LAMP assay was applied for direct detection of V. dahliae grown on medium and from soil samples without DNA purification steps (direct-LAMP). Thirty-two agricultural soil samples from various olive orchards were collected, and the presence of pathogen was detected by LAMP, direct-LAMP and nested-PCR methods. The LAMP methodology could successfully detect V. dahliae with high specificity, and cross-reaction was not observed with different pathogenic and nonpathogenic fungi and bacteria. The LAMP assay was capable of detecting a minimum of 500 and 50 fg of purified target DNA per reaction of V. dahliae ND and D pathotypes, respectively. In contrast, nested-PCR could only detect 5 pg reaction(-1) for both pathotypes. In artificially infested soil samples, the LAMP method detected 5 microsclerotia per gram of soil. Conversely, nested-PCR assay detected 50 microsclerotia g(-1) soil. The detection ratios of LAMP and direct-LAMP protocols were better (26 and 24 positive samples out of 32 agricultural soils analysed, respectively) than that obtained for nested-PCR method (22 positive results). Moreover, direct-LAMP yielded positive detection of V. dahliae in agricultural soil samples within 60-80 min. CONCLUSIONS: The newly developed LAMP method was proved to be an effective, simple and rapid method to detect V. dahliae without the need for either expensive equipment or DNA purification. SIGNIFICANCE AND IMPACT OF STUDY: This technique can be considered as an excellent standard alternative to plating and nested-PCR assays for the early, sensitive and low-cost detection of V. dahliae as well as other soilborne pathogens in the field.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Verticillium/isolamento & purificação , Primers do DNA , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sensibilidade e Especificidade , Microbiologia do Solo , Verticillium/genética
9.
J Appl Microbiol ; 117(2): 472-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24823269

RESUMO

AIMS: To develop multiplex TaqMan real-time PCR assays for detection of spinach seedborne pathogens that cause economically important diseases on spinach. METHODS AND RESULTS: Primers and probes were designed from conserved sequences of the internal transcribed spacer (for Peronospora farinosa f. sp. spinaciae and Stemphylium botryosum), the intergenic spacer (for Verticillium dahliae) and the elongation factor 1 alpha (for Cladosporium variabile) regions of DNA. The TaqMan assays were tested on DNA extracted from numerous isolates of the four target pathogens, as well as a wide range of nontarget, related fungi or oomycetes and numerous saprophytes commonly found on spinach seed. Multiplex real-time PCR assays were evaluated by detecting two or three target pathogens simultaneously. Singular and multiplex real-time PCR assays were also applied to DNA extracted from bulked seed and single spinach seed. CONCLUSIONS: The real-time PCR assays were species-specific and sensitive. Singular or multiplex real-time PCR assays could detect target pathogens from both bulked seed samples as well as single spinach seed. SIGNIFICANCE AND IMPACT OF THE STUDY: The freeze-blotter assay that is currently routinely used in the spinach seed industry to detect and quantify three fungal seedborne pathogens of spinach (C. variabile, S. botryosum and V. dahliae) is quite laborious and takes several weeks to process. The real-time PCR assays developed in this study are more sensitive and can be completed in a single day. As the assays can be applied easily for routine seed inspections, these tools could be very useful to the spinach seed industry.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Spinacia oleracea/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Cladosporium/genética , Cladosporium/isolamento & purificação , Peronospora/genética , Peronospora/isolamento & purificação , Sementes/microbiologia , Verticillium/genética , Verticillium/isolamento & purificação
10.
Phytopathology ; 104(7): 779-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24502204

RESUMO

Two pathogenic races of Verticillium dahliae have been described on lettuce and tomato. Host resistance to race 1 is governed by plant immune receptors that recognize the race 1-specific fungal effector Ave1. Only partial resistance to race 2 exists in lettuce. Although polymerase chain reaction (PCR) assays are available to identify race 1, no complementary test exists to positively identify race 2, except for lengthy pathogenicity assays on host differentials. Using the genome sequences of two isolates of V. dahliae, one each from races 1 and 2, we identified potential markers and PCR primers to distinguish the two races. Several primer pairs based on polymorphisms between the races were designed and tested on reference isolates of known race. One primer pair, VdR2F-VdR2R, consistently yielded a 256-bp amplicon in all race 2 isolates exclusively. We screened DNA from 677 V. dahliae isolates, including 340 from spinach seedlots, with the above primer pair and a previously published race 1-specific primer pair. DNA from isolates that did not amplify with race 1-specific PCRs amplified with the race 2-specific primers. To validate this, two differential lines of lettuce were inoculated with 53 arbitrarily selected isolates from spinach seed and their pathogenicity and virulence were assessed in a greenhouse. The reactions of the differential cultivars strongly supported the PCR data. V. dahliae race structure was investigated in crops in coastal California and elsewhere using primers specific to the two races. All artichoke isolates from California were race 1, whereas nearly all tomato isolates were race 2. Isolates from lettuce, pepper, and strawberry from California as well as isolates from spinach seed from two of four countries comprised both races, whereas only race 2 was observed in cotton, mint, olive, and potato. This highlights the importance of identifying resistance against race 2 in different hosts. The technique developed in this study will benefit studies in ecology, population biology, disease surveillance, and epidemiology at local and global scales, and resistance breeding against race 2 in lettuce and other crops.


Assuntos
Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Spinacia oleracea/microbiologia , Verticillium/isolamento & purificação , Sequência de Bases , California , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , Marcadores Genéticos/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie , Verticillium/genética , Virulência
11.
Phytopathology ; 104(6): 641-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24476528

RESUMO

Few studies in population biology have documented how structure and diversity of pathogens evolve over time at local scales. With the historical samples of Verticillium dahliae available from lettuce, we investigated the structure and diversity of this pathogen in time and space. Three hundred twenty-nine V. dahliae isolates from lettuce fields collected over 18 years were characterized with polymorphic microsatellite markers and polymerase chain reaction tests for race and mating type. Genetic variation within and among commercial lettuce fields in a single season was also investigated using an additional 146 isolates. Sixty-two haplotypes (HTs) were observed among the 329 isolates. A single HT was frequently observed over multiple years and locations (61.40%). Genetic diversity, allelic richness, and private allelic richness suggested a relatively recent clonal expansion. Race 1 (93.63%) and MAT1-2-1 (99.69%) were overwhelmingly represented among the isolates. Linkage disequilibrium was significant (P < 0.001) for all populations, suggesting limited sexual recombination in the sampled populations from lettuce. Populations from 2006, 2009, and 2010 had higher numbers of unique HTs, implying a recent introduction of novel HTs. We conclude that V. dahliae population from lettuce evaluated in this study is expanding clonally, consistent with an asexually reproducing pathogen, and the movement of clonal genotypes locally occurs over time.


Assuntos
Variação Genética , Lactuca/microbiologia , Doenças das Plantas/microbiologia , Verticillium/genética , Alelos , Primers do DNA/genética , DNA Fúngico/genética , Demografia , Genes Fúngicos Tipo Acasalamento/genética , Genética Populacional , Genótipo , Haplótipos , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Especificidade da Espécie , Verticillium/isolamento & purificação
12.
Phytopathology ; 104(3): 282-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134719

RESUMO

Verticillium wilt, caused by Verticillium nonalfalfae, is currently killing tens of thousands of highly invasive Ailanthus altissima trees within the forests in Pennsylvania, Ohio, and Virginia and is being considered as a biological control agent of Ailanthus. However, little is known about the pathogenicity and virulence of V. nonalfalfae isolates from other hosts on Ailanthus, or the genetic diversity among V. nonalfalfae from confirmed Ailanthus wilt epicenters and from locations and hosts not associated with Ailanthus wilt. Here, we compared the pathogenicity and virulence of several V. nonalfalfae and V. alfalfae isolates, evaluated the efficacy of the virulent V. nonalfalfae isolate VnAa140 as a biocontrol agent of Ailanthus in Pennsylvania, and performed multilocus sequence typing of V. nonalfalfae and V. alfalfae. Inoculations of seven V. nonalfalfae and V. alfalfae isolates from six plant hosts on healthy Ailanthus seedlings revealed that V. nonalfalfae isolates from hosts other than Ailanthus were not pathogenic on Ailanthus. In the field, 100 canopy Ailanthus trees were inoculated across 12 stands with VnAa140 from 2006 to 2009. By 2011, natural spread of the fungus had resulted in the mortality of >14,000 additional canopy Ailanthus trees, 10,000 to 15,000 Ailanthus sprouts, and nearly complete eradication of Ailanthus from several smaller inoculated stands, with the exception of a few scattered vegetative sprouts that persisted in the understory for several years before succumbing. All V. nonalfalfae isolates associated with the lethal wilt of Ailanthus, along with 18 additional isolates from 10 hosts, shared the same multilocus sequence type (MLST), MLST 1, whereas three V. nonalfalfae isolates from kiwifruit shared a second sequence type, MLST 2. All V. alfalfae isolates included in the study shared the same MLST and included the first example of V. alfalfae infecting a non-lucerne host. Our results indicate that V. nonalfalfae is host adapted and highly efficacious against Ailanthus and, thus, is a strong candidate for use as a biocontrol agent.


Assuntos
Ailanthus/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Verticillium/patogenicidade , Ailanthus/crescimento & desenvolvimento , Sequência de Bases , Agentes de Controle Biológico , Espécies Introduzidas , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , Pennsylvania , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/microbiologia , Árvores , Verticillium/genética , Verticillium/isolamento & purificação , Verticillium/fisiologia
13.
Appl Microbiol Biotechnol ; 97(10): 4467-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23229565

RESUMO

The cruciferous fungal pathogen Verticillium longisporum represents an allodiploid hybrid with long spores and almost double the amount of nuclear DNA compared to other Verticillium species. V. longisporum evolved at least three times by hybridization. In Europe, virulent A1xD1 and avirulent A1xD3 hybrids were isolated from the oilseed crop Brassica napus. Parental A1 or D1 species are yet unknown whereas the D3 lineage represents Verticillium dahliae. Eleven V. longisporum isolates from Europe or California corresponding to hybrids A1xD1 or A1xD3 were compared. A single characteristic type of nuclear ribosomal DNA could be assigned to each hybrid lineage. The two avirulent A1xD3 isolates carried exclusively D3 ribosomal DNA (rDNA) which corresponds to V. dahliae. The rDNA of all nine A1xD1 isolates is identical but distinct from D3 and presumably originates from A1. Both hybrid lineages carry two distinct isogene pairs of four conserved regulatory genes corresponding to either A1 or D1/D3. D1 and D3 paralogues differ in several single nucleotide polymorphisms. Southern hybridization patterns confirmed differences between the A1 and D1/D3 isogenes and resulted in similar patterns for D1 and D3. Distinct signatures of the Verticillium transcription activator (VTA)2 regulatory isogene pair allow identification of V. longisporum hybrids by a single polymerase chain reaction and the separation from haploid species as V. dahliae or Verticillium albo-atrum. The combination between VTA2 signature and rDNA type identification represents an attractive diagnostic tool to discriminate allodiploid from haploid Verticillia and to distinguish between A1xD1 and A1xD3 hybrids which differ in their virulence towards B. napus.


Assuntos
Brassica napus/microbiologia , Verticillium/isolamento & purificação , Sequência de Bases , Primers do DNA , DNA Fúngico/genética , DNA Ribossômico/genética , Filogenia , Reação em Cadeia da Polimerase , Verticillium/genética , Verticillium/patogenicidade
14.
Phytopathology ; 103(1): 55-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22992111

RESUMO

Verticillium dahliae causes Verticillium wilt of potato and can be found in soil associated with potato seed tubers. The purpose of this research was to quantify V. dahliae in soil associated with certified seed tubers and determine if this potential inoculum source is related to disease development in the field. Approximately 68% of seed lots assayed contained V. dahliae-infested soil on seed tuber surfaces (seed tuber soil). Over 82% of seed lots contained V. dahliae in loose seed lot soil obtained from bags and trucks used to transport seed tubers. Most samples contained ≤50 CFU/g but some contained >500 CFU/g. Most isolates (93%) were vegetative compatibility group 4A. Populations of V. dahliae in stem sap increased with increasing inoculum densities in field soils only when V. dahliae concentrations in seed tuber soil were low. High concentrations of V. dahliae in seed tuber soil resulted in greater stem sap colonization when V. dahliae inoculum densities in field soil were low (P < 0.01) and resulted in greater pathogen inoculum densities in postharvest field soils (P = 0.04). Seed tubers contaminated with V. dahliae-infested soils may introduce the pathogen into fields not previously cropped to potato or recontaminate those which have received preplant management practices. Long-term management of V. dahliae requires reducing propagules in soil associated with seed lots.


Assuntos
Doenças das Plantas/microbiologia , Microbiologia do Solo , Solanum tuberosum/microbiologia , Verticillium/isolamento & purificação , Contagem de Colônia Microbiana , Doenças das Plantas/estatística & dados numéricos , Caules de Planta/microbiologia , Tubérculos/microbiologia , Verticillium/crescimento & desenvolvimento
15.
Phytopathology ; 103(5): 445-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23113547

RESUMO

In total, 286 Verticillium dahliae isolates from mint, potato, and other hosts and substrates were characterized for mating type, vegetative compatibility group (VCG), and multilocus microsatellite haplotype to determine population genetic structure among populations infecting mint and potato. Populations from mint and potato fit a clonal reproductive model, with all isolates a single mating type (MAT1-2) and multiple occurrences of the same haplotypes. Haplotype H02 represented 88% of mint isolates and was primarily VCG2B, while haplotype H04 represented 70% of potato isolates and was primarily VCG4A. Haplotypes H02 and H04 typically caused severe disease on mint and potato, respectively, in greenhouse assays regardless of host origin. Principal coordinate analysis and analysis of molecular variance indicated that mint and potato populations were significantly genetically diverged (P = 0.02), and identification of private alleles and estimation of migration rates suggested restricted gene flow. Migration was detected between infected potato plants and seed tubers, infested tare soil, and field soils. Genetic differentiation of V. dahliae from mint and potato may be due to the occurrence of a single mating type and differences in VCG. Populations of V. dahliae in potato and mint were characterized by the presence of aggressive, clonally reproducing haplotypes which are widely distributed in commercial mint and potato production.


Assuntos
Variação Genética , Mentha/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Verticillium/genética , Alelos , DNA Fúngico/genética , Fluxo Gênico , Genes Fúngicos Tipo Acasalamento/genética , Genótipo , Haplótipos , Repetições de Microssatélites/genética , Mutação , Filogenia , Verticillium/classificação , Verticillium/isolamento & purificação
16.
World J Microbiol Biotechnol ; 29(10): 1961-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23543210

RESUMO

Olive trees play an important role in cultural, ecological, environmental and social fields, constituting in large part the Mediterranean landscape. In Tuscany, an important economic activity is based on olive. Unfortunately, the Verticillium wilt affects this species and causes vascular disease. In the present study, a real-time quantitative PCR approach has been used to detect and quantify Verticillium dahliae in soil and in olive tree tissues both in micropropagated and in seedling olives. The minimum amounts of V. dahliae DNA sequences detected in soil were 11.4 fg which is equivalent to less than one fungal haploid genome. In micropropagated olive the pathogen was detected in the leaves after 43 days, showing a vertical upward movement of the fungus from the culture medium to stem and leaves. A similar fungal behaviour was observed in inoculated olive stem where after 15 days the fungal DNA was detected from symptomless stem tissue above 8 cm the inoculation site. The described molecular approach is expected to provide a more sensitive and less time-consuming alternative detection method for V. dahliae than plating assay procedures, which were traditionally proposed as an early diagnosis method for Verticillium wilt to farmers and tree nursery growers.


Assuntos
Olea/microbiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Verticillium/isolamento & purificação , Carga Bacteriana , DNA Fúngico/análise , DNA Fúngico/genética , Folhas de Planta/microbiologia , Caules de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Verticillium/genética
17.
Phytopathology ; 102(4): 443-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22236050

RESUMO

Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.


Assuntos
Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sementes/microbiologia , Spinacia oleracea/microbiologia , Verticillium/isolamento & purificação , DNA Fúngico/análise , DNA Fúngico/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Verticillium/genética
18.
Phytopathology ; 102(3): 331-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22066673

RESUMO

ABSTRACT Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts, including strawberry, on which low soil inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating but this can take 6 to 8 weeks to complete and delay the grower's ability to make planting decisions. To provide a faster means for estimating pathogen populations in the soil, a multiplexed TaqMan real-time polymerase chain reaction (PCR) assay based on the ribosomal DNA (rDNA) intergenic spacer (IGS) was developed for V. dahliae. The assay was specific for V. dahliae and included an internal control for evaluation of inhibition due to the presence of PCR inhibitors in DNA extracted from soil samples. An excellent correlation was observed in regression analysis (R(2) = 0.96) between real-time PCR results and inoculum densities determined by soil plating in a range of field soils with pathogen densities as low as 1 to 2 microsclerotia/g of soil. Variation in copy number of the rDNA was also evaluated among isolates by SYBR Green real-time PCR amplification of the V. dahliae-specific amplicon compared with amplification of several single-copy genes and was estimated to range from ≈24 to 73 copies per haploid genome, which translated into possible differences in results among isolates of ≈1.8 cycle thresholds. Analysis of the variation in results of V. dahliae quantification among extractions of the same soil sample indicated that assaying four replicate DNA extractions for each field sample would provide accurate results. A TaqMan assay also was developed to help identify colonies of V. tricorpus on soil plates.


Assuntos
Fragaria/microbiologia , Dosagem de Genes/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Microbiologia do Solo , Verticillium/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA Ribossômico/genética , Modelos Lineares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Solo/classificação , Verticillium/classificação , Verticillium/genética
19.
Phytopathology ; 101(5): 523-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21219133

RESUMO

Cauliflower (Brassica oleracea var. botrytis subvar. cauliflora) is susceptible to wilt caused by Verticillium dahliae but broccoli (B. oleracea var. italica subvar. cyamosa) is not. Infection of broccoli and cauliflower by a green fluorescent protein-expressing isolate of V. dahliae was examined using epifluorescence and confocal laser-scanning microscopy to follow infection and colonization in relation to plant phenology. Plant glucosinolate, phenolic, and lignin contents were also assayed at 0, 4, 14, and 28 days postinoculation. V. dahliae consistently infected and colonized the vascular tissues of all cauliflower plants regardless of age at inoculation, with the pathogen ultimately appearing in the developing seed; however, colonization decreased with plant age. In broccoli, V. dahliae infected and colonized root and stem xylem tissues of plants inoculated at 1, 2, or 3 weeks postemergence. However, V. dahliae colonized only the root xylem and the epidermal and cortical tissues of broccoli plants inoculated at 4, 5, and 6 weeks postemergence. The frequency of reisolation of V. dahliae from the stems (4 to 22%) and roots (10 to 40%) of mature broccoli plants was lower than for cauliflower stems (25 to 64%) and roots (31 to 71%). The mean level of aliphatic glucosinolates in broccoli roots was 6.18 times higher than in the shoots and did not vary with age, whereas it was 3.65 times higher in cauliflower shoots than in the roots and there was a proportional increase with age. Indole glucosinolate content was identical in both cauliflower and broccoli, and both indole and aromatic glucosinolates did not vary with plant age in either crop. Qualitative differences in characterized glucosinolates were observed between broccoli and cauliflower but no differences were observed between inoculated and noninoculated plants for either broccoli or cauliflower. However, the phenolic and lignin contents were significantly higher in broccoli following inoculation than in noninoculated broccoli or inoculated cauliflower plants. The increased resistance of broccoli to V. dahliae infection was related to the increase in phenolic and lignin contents. Significant differential accumulation of glucosinolates associated with plant phenology may also contribute to the resistant and susceptible reactions of broccoli and cauliflower, respectively, against V. dahliae.


Assuntos
Brassica/microbiologia , Doenças das Plantas/microbiologia , Verticillium/patogenicidade , Brassica/química , Glucosinolatos/análise , Interações Hospedeiro-Patógeno , Lignina/análise , Microscopia Confocal , Fenol/análise , Fenótipo , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Caules de Planta/química , Caules de Planta/microbiologia , Sementes/química , Sementes/microbiologia , Fatores de Tempo , Verticillium/isolamento & purificação , Xilema/química , Xilema/microbiologia
20.
Proteomics ; 10(2): 289-303, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20017145

RESUMO

Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396-9) and weakly (Vs06-14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty-five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC-ESI-MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant-defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics-based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.


Assuntos
Proteínas Fúngicas/análise , Doenças das Plantas/microbiologia , Verticillium/química , Verticillium/patogenicidade , Fatores de Virulência/análise , Sequência de Aminoácidos , Biomassa , Proteínas Fúngicas/química , Dados de Sequência Molecular , Proteômica , Microbiologia do Solo , Solanum tuberosum/microbiologia , Verticillium/isolamento & purificação , Verticillium/fisiologia , Fatores de Virulência/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa