RESUMO
My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).
Assuntos
Calnexina/genética , Calreticulina/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/genética , Picornaviridae/genética , Proteínas Virais/genética , Virologia/história , Animais , Calnexina/química , Calnexina/metabolismo , Calreticulina/química , Calreticulina/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Endossomos/metabolismo , Endossomos/virologia , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Vírus da Influenza A/metabolismo , Picornaviridae/metabolismo , Dobramento de Proteína , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Internalização do VírusRESUMO
Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.
Assuntos
Nucleoproteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Vesiculovirus , Replicação Viral , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Vesiculovirus/fisiologia , Vesiculovirus/metabolismo , Vesiculovirus/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Linhagem Celular , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismoRESUMO
Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.
Assuntos
Vesiculovirus , Animais , Humanos , Camundongos , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular TumoralRESUMO
The phospho- (P) protein, the co-factor of the RNA polymerase large (L) protein, of vesicular stomatitis virus (VSV, a prototype of nonsegmented negative-strand RNA viruses) plays pivotal roles in transcription and replication. However, the precise mechanism underlying the transcriptional transactivation by the P protein has remained elusive. Here, using an in vitro transcription system and a series of deletion mutants of the P protein, we mapped a region encompassing residues 51-104 as a transactivation domain (TAD) that is critical for terminal de novo initiation, the initial step of synthesis of the leader RNA and anti-genome/genome, with the L protein. Site-directed mutagenesis revealed that conserved amino acid residues in three discontinuous L-binding sites within the TAD are essential for the transactivation activity of the P protein or important for maintaining its full activity. Importantly, relative inhibitory effects of TAD point mutations on synthesis of the full-length leader RNA and mRNAs from the 3'-terminal leader region and internal genes, respectively, of the genome were similar to those on terminal de novo initiation. Furthermore, any of the examined TAD mutations did not alter the gradient pattern of mRNAs synthesized from internal genes, nor did they induce the production of readthrough transcripts. These results suggest that these TAD mutations impact mainly terminal de novo initiation but rarely other steps (e.g., elongation, termination, internal initiation) of single-entry stop-start transcription. Consistently, the mutations of the essential or important amino acid residues within the P TAD were lethal or deleterious to VSV replication in host cells. IMPORTANCE RNA-dependent RNA polymerase L proteins of nonsegmented negative-strand RNA viruses belonging to the Mononegavirales order require their cognate co-factor P proteins or their counterparts for genome transcription and replication. However, exact roles of these co-factor proteins in modulating functions of L proteins during transcription and replication remain unknown. In this study, we revealed that three discrete L-binding motifs within a transactivation domain of the P protein of vesicular stomatitis virus, a prototypic nonsegmented negative-strand RNA virus, are required for terminal de novo initiation mediated by the L protein, which is the first step of synthesis of the leader RNA as well as genome/anti-genome.
Assuntos
Estomatite Vesicular , Animais , Estomatite Vesicular/genética , Ativação Transcricional , RNA Viral/genética , RNA Viral/metabolismo , Vesiculovirus/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , RNA Mensageiro/genética , Aminoácidos/genética , Transcrição Gênica , Replicação Viral/genéticaRESUMO
Viral oncolytic immunotherapy is a nascent field that is developing tools to direct the immune system to find and eliminate cancer cells. Safety is improved by using cancer-targeted viruses that infect or grow poorly on normal cells. The recent discovery of the low-density lipoprotein (LDL) receptor as the major vesicular stomatitis virus (VSV) binding site allowed for the creation of a Her2/neu-targeted replicating recombinant VSV (rrVSV-G) by eliminating the LDL receptor binding site in the VSV-G glycoprotein (gp) and adding a sequence coding for a single chain antibody (SCA) to the Her2/neu receptor. The virus was adapted by serial passage on Her2/neu-expressing cancer cells resulting in a virus that yielded a 15- to 25-fold higher titer following in vitro infection of Her2/neu+-expressing cell lines than that of Her2/neu-negative cells (~1 × 108/mL versus 4 × 106 to 8 × 106/mL). An essential mutation resulting in a higher titer virus was a threonine-to-arginine change that produced an N-glycosylation site in the SCA. Infection of Her2/neu+ subcutaneous tumors yielded >10-fold more virus on days 1 and 2 than Her2/neu- tumors, and virus production continued for 5 days in Her2/neu+ tumors compared with 3 days that of 3 days in Her2/neu- tumors. rrVSV-G cured 70% of large 5-day peritoneal tumors compared with a 10% cure by a previously targeted rrVSV with a modified Sindbis gp. rrVSV-G also cured 33% of very large 7-day tumors. rrVSV-G is a new targeted oncolytic virus that has potent antitumor capabilities and allows for heterologous combination with other targeted oncolytic viruses. IMPORTANCE A new form of vesicular stomatitis virus (VSV) was created that specifically targets and destroys cancer cells that express the Her2/neu receptor. This receptor is commonly found in human breast cancer and is associated with a poor prognosis. In laboratory tests using mouse models, the virus was highly effective at eliminating implanted tumors and creating a strong immune response against cancer. VSV has many advantages as a cancer treatment, including high levels of safety and efficacy and the ability to be combined with other oncolytic viruses to enhance treatment results or to create an effective cancer vaccine. This new virus can also be easily modified to target other cancer cell surface molecules and to add immune-modifying genes. Overall, this new VSV is a promising candidate for further development as an immune-based cancer therapy.
Assuntos
Neoplasias da Mama , Glicoproteínas , Terapia Viral Oncolítica , Vírus Oncolíticos , Vesiculovirus , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Replicação Viral , Análise de SobrevidaRESUMO
Snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus isolated from diseased hybrid snakehead fish, has caused great economic losses in snakehead fish culture in China. The large (L) protein, together with its cofactor phosphoprotein (P), forms a P/L polymerase complex and catalyzes the transcription and replication of viral genomic RNA. In this study, the cellular heat shock protein 90 (Hsp90) was identified as an interacting partner of SHVV L protein. Hsp90 activity was required for the stability of SHVV L because Hsp90 dysfunction caused by using its inhibitor destabilized SHVV L and thereby suppressed SHVV replication via reducing viral RNA synthesis. SHVV L expressed alone was detected mainly in the insoluble fraction, and the insoluble L was degraded by Hsp90 dysfunction through the proteasomal pathway, while the presence of SHVV P promoted the solubility of SHVV L and the soluble L was degraded by Hsp90 dysfunction through the autophagy pathway. Collectively, our data suggest that Hsp90 contributes to the maturation of SHVV L and ensures the effective replication of SHVV, which exhibits an important anti-SHVV target. This study will help us to understand the role of Hsp90 in stabilizing the L protein and regulating the replication of negative-stranded RNA viruses. IMPORTANCE It has long been proposed that cellular proteins are involved in viral RNA synthesis via interacting with the viral polymerase protein. This study focused on identifying cellular proteins interacting with the SHVV L protein, studying the effects of their interactions on SHVV replication, and revealing the underlying mechanisms. We identified Hsp90 as an interacting partner of SHVV L and found that Hsp90 activity was required for SHVV replication. Hsp90 functioned in maintaining the stability of SHVV L. Inhibition of Hsp90 activity with its inhibitor degraded SHVV L through different pathways based on the solubility of SHVV L due to the presence or absence of SHVV P. Our data provide important insights into the role of Hsp90 in SHVV polymerase maturation, which will help us to understand the polymerase function of negative-stranded RNA viruses.
Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vesiculovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Peixes , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Fosfoproteínas/metabolismo , Estabilidade Proteica , RNA Viral/biossíntese , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Vesiculovirus/metabolismoRESUMO
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.
Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sincicial Respiratório Humano/imunologia , Vesiculovirus/genética , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Administração através da Mucosa , Animais , Modelos Animais de Doenças , Vetores Genéticos , Imunidade Celular , Imunidade Humoral , Imunização , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Sigmodontinae , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismoRESUMO
Vesicular stomatitis virus (VSV) is an archetypical member of Mononegavirales, viruses with a genome of negative-sense single-stranded RNA (-ssRNA). Like other viruses of this order, VSV encodes a unique polymerase, a complex of viral L (large, the enzymatic component) protein and P (phosphoprotein, a cofactor component). The L protein has a modular layout consisting of a ring-shaped core trailed by three accessory domains and requires an N-terminal segment of P (P N-terminal disordered [PNTD]) to perform polymerase activity. To date, a binding site for P on L had not been described. In this report, we show that the connector domain of the L protein, which previously had no assigned function, binds a component of PNTD We further show that this interaction is a positive regulator of viral RNA synthesis, and that the interfaces mediating it are conserved in other members of Mononegavirales Finally, we show that the connector-P interaction fits well into the existing structural information of VSV L.IMPORTANCE This study represents the first functional assignment of the connector domain of a Mononegavirales L protein. Furthermore, this study localizes P polymerase cofactor activity to specific amino acids. The functional necessity of this interaction, combined with the uniqueness of L and P proteins to the order Mononegavirales, makes disruption of the P-connector site a potential target for developing antivirals against other negative-strand RNA viruses. Furthermore, the connector domain as an acceptor site for the P protein represents a new understanding of Mononegavirales L protein biology.
Assuntos
Fosfoproteínas/química , Vesiculovirus/química , Proteínas Virais/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
The viral protein Gag selects full-length HIV-1 RNA from a large pool of mRNAs as virion genome during virus assembly. Currently, the precise mechanism that mediates the genome selection is not understood. Previous studies have identified several sites in the 5' untranslated region (5' UTR) of HIV-1 RNA that are bound by nucleocapsid (NC) protein, which is derived from Gag during virus maturation. However, whether these NC binding sites direct HIV-1 RNA genome packaging has not been fully investigated. In this report, we examined the roles of single-stranded exposed guanosines at NC binding sites in RNA genome packaging using stable cell lines expressing competing wild-type and mutant HIV-1 RNAs. Mutant RNA packaging efficiencies were determined by comparing their prevalences in cytoplasmic RNA and in virion RNA. We observed that multiple NC binding sites affected RNA packaging; of the sites tested, those located within stem-loop 1 of the 5' UTR had the most significant effects. These sites were previously reported as the primary NC binding sites by using a chemical probe reverse-footprinting assay and as the major Gag binding sites by using an in vitro assay. Of the mutants tested in this report, substituting 3 to 4 guanosines resulted in <2-fold defects in packaging. However, when mutations at different NC binding sites were combined, severe defects were observed. Furthermore, combining the mutations resulted in synergistic defects in RNA packaging, suggesting redundancy in Gag-RNA interactions and a requirement for multiple Gag binding on viral RNA during HIV-1 genome encapsidation.IMPORTANCE HIV-1 must package its RNA genome during virus assembly to generate infectious viruses. To better understand how HIV-1 packages its RNA genome, we examined the roles of RNA elements identified as binding sites for NC, a Gag-derived RNA-binding protein. Our results demonstrate that binding sites within stem-loop 1 of the 5' untranslated region play important roles in genome packaging. Although mutating one or two NC-binding sites caused only mild defects in packaging, mutating multiple sites resulted in severe defects in genome encapsidation, indicating that unpaired guanosines act synergistically to promote packaging. Our results suggest that Gag-RNA interactions occur at multiple RNA sites during genome packaging; furthermore, there are functionally redundant binding sites in viral RNA.
Assuntos
Regiões 5' não Traduzidas , HIV-1/genética , Proteínas do Nucleocapsídeo/genética , RNA Viral/genética , Empacotamento do Genoma Viral , Vírion/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Animais , Pareamento de Bases , Sítios de Ligação , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/metabolismo , Engenharia Genética/métodos , Genoma Viral , Guanosina/química , Guanosina/metabolismo , Células HEK293 , HIV-1/metabolismo , Humanos , Camundongos , Mutação , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , RNA Viral/química , RNA Viral/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vírion/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription.IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency.
Assuntos
ATPases Transportadoras de Cálcio/genética , Cálcio/metabolismo , Dependovirus/genética , Vetores Genéticos/metabolismo , Complexo de Golgi/metabolismo , Animais , Animais Recém-Nascidos , Transporte Biológico/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistemas CRISPR-Cas , ATPases Transportadoras de Cálcio/deficiência , Linhagem Celular Tumoral , Quelantes/farmacologia , Dependovirus/efeitos dos fármacos , Dependovirus/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Deleção de Genes , Vetores Genéticos/química , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/virologia , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Injeções Intraventriculares , Ionomicina/farmacologia , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Técnicas Estereotáxicas , Transdução Genética , Vesiculovirus/genética , Vesiculovirus/metabolismoRESUMO
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause severe clinical disease in allograft recipients and infants infected in utero Virus-neutralizing antibodies defined in vitro have been proposed to confer protection against HCMV infection, and the virion envelope glycoprotein B (gB) serves as a major target of neutralizing antibodies. The viral fusion protein gB is nonfusogenic on its own and requires glycoproteins H (gH) and L (gL) for membrane fusion, which is in contrast to requirements of related class III fusion proteins, including vesicular stomatitis virus glycoprotein G (VSV-G) or baculovirus gp64. To explore requirements for gB's fusion activity, we generated a set of chimeras composed of gB and VSV-G or gp64, respectively. These gB chimeras were intrinsically fusion active and led to the formation of multinucleated cell syncytia when expressed in the absence of other viral proteins. Utilizing a panel of virus-neutralizing gB-specific monoclonal antibodies (MAbs), we could demonstrate that syncytium formation of the fusogenic gB/VSV-G chimera can be significantly inhibited by only a subset of neutralizing MAbs which target antigenic domain 5 (AD-5) of gB. This observation argues for differential modes of action of neutralizing anti-gB MAbs and suggests that blocking the membrane fusion function of gB could be one mechanism of antibody-mediated virus neutralization. In addition, our data have important implications for the further understanding of the conformation of gB that promotes membrane fusion as well as the identification of structures in AD-5 that could be targeted by antibodies to block this early step in HCMV infection.IMPORTANCE HCMV is a major global health concern, and antiviral chemotherapy remains problematic due to toxicity of available compounds and the emergence of drug-resistant viruses. Thus, an HCMV vaccine represents a priority for both governmental and pharmaceutical research programs. A major obstacle for the development of a vaccine is a lack of knowledge of the nature and specificities of protective immune responses that should be induced by such a vaccine. Glycoprotein B of HCMV is an important target for neutralizing antibodies and, hence, is often included as a component of intervention strategies. By generation of fusion-active gB chimeras, we were able to identify target structures of neutralizing antibodies that potently block gB-induced membrane fusion. This experimental system provides an approach to screen for antibodies that interfere with gB's fusogenic activity. In summary, our data will likely contribute to both rational vaccine design and the development of antibody-based therapies against HCMV.
Assuntos
Anticorpos Neutralizantes/farmacologia , Citomegalovirus/genética , Proteínas Mutantes Quiméricas/genética , Proteínas do Envelope Viral/genética , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/farmacologia , Sítios de Ligação , Fusão Celular , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/ultraestrutura , Células Gigantes/virologia , Células HEK293 , Humanos , Camundongos , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Cultura Primária de Células , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/virologia , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/metabolismoRESUMO
Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections. Here, we showed that the anti-VSV activity of tGBP1 was independent of its GTPase activity and isoprenylation. In response to VSV infection, instead of regulating IFN expression and autophagy, tGBP1 competed with the VSV nucleocapsid (N) protein in binding to the VSV phosphoprotein (VSV-P), leading to the repression of the primary transcription of the VSV genome. These observations constitute the first report of the potential mechanism underlying the inhibition of VSV by GBP1.
Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Genoma Viral , Fosfoproteínas/genética , Tupaia/genética , Vesiculovirus/metabolismo , Animais , Autofagia , Células HEK293 , Humanos , Interferons/metabolismo , Proteínas do Nucleocapsídeo/química , Ligação Proteica , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima , Proteínas Virais/química , Replicação Viral/efeitos dos fármacosRESUMO
RIG-I senses viral RNA in the cytosol and initiates host innate immune response by triggering the production of type 1 interferon. A recent RNAi knockdown screen yielded close to hundred host genes whose products affected viral RNA-induced IFN-ß production and highlighted the complexity of the antiviral response. The stress granule protein G3BP1, known to arrest mRNA translation, was identified as a regulator of RIG-I-induced IFN-ß production. How G3BP1 functions in RIG-I signaling is not known, however. Here, we overexpress G3BP1 with RIG-I in HEK293T cells and found that G3BP1 significantly enhances RIG-I-induced ifn-b mRNA synthesis. More importantly, we demonstrate that G3BP1 binds RIG-I and that this interaction involves the C-terminal RGG domain of G3BP1. Confocal microscopy studies also show G3BP1 co-localization with RIG-I and with infecting vesicular stomatitis virus in Cos-7 cells. Interestingly, immunoprecipitation studies using biotin-labeled viral dsRNA or poly(I·C) and cell lysate-derived or in vitro translated G3BP1 indicated that G3BP1 could directly bind these substrates and again via its RGG domain. Computational modeling further revealed a juxtaposed interaction between G3BP1 RGG and RIG-I RNA-binding domains. Together, our data reveal G3BP1 as a critical component of RIG-I signaling and possibly acting as a co-sensor to promote RIG-I recognition of pathogenic RNA.
Assuntos
Proteína DEAD-box 58 , DNA Helicases , Interferon beta , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose , Biossíntese de Proteínas , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA de Cadeia Dupla , RNA Viral , Infecções por Rhabdoviridae , Vesiculovirus , Animais , Células COS , Chlorocebus aethiops , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Células HEK293 , Humanos , Interferon beta/biossíntese , Interferon beta/genética , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Células RAW 264.7 , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Receptores Imunológicos , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/metabolismo , Transdução de Sinais/genética , Vesiculovirus/química , Vesiculovirus/genética , Vesiculovirus/metabolismoRESUMO
Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of these viruses using an array of cell lines with different levels of impairment of antiviral signaling and a panel of chemical compounds arresting the cell cycle at different phases. We observed that all compounds inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51 in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type III interferon (IFN) production as well as expression of IFN-stimulated genes in response to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai virus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did not stimulate the replication of a wild-type VSV that is more effective at evading antiviral responses. In contrast, the positive effect of G2/M arrest on virus replication was not observed in cells defective in IFN signaling. Altogether, our data show that replication of IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a result of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. The G2/M phase thus could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest.IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. Our data suggest that the G2/M phase could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest, and it has important implications for oncolytic virotherapy, suggesting that frequent cell cycle progression in cancer cells could make them more permissive to viruses.
Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Vesiculovirus/genética , Replicação Viral/genética , Animais , Antivirais/farmacologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Citoplasma , Fase G2/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Expressão Gênica/genética , Humanos , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Interferons , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus de RNA/imunologia , Vírus de RNA/metabolismo , Vírus Sendai/genética , Vírus Sendai/metabolismo , Transdução de Sinais , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/metabolismo , Proteínas da Matriz Viral/genética , Replicação Viral/imunologia , Interferon lambdaRESUMO
Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a "gesicle" to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Células HEK293 , Repetição Terminal Longa de HIV/genética , Repetição Terminal Longa de HIV/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Lipopolissacarídeos/farmacologia , Mutação/genética , Provírus/genética , Provírus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismoRESUMO
Successful HIV-1 infection and subsequent replication deeply depend on how the virus usurps the host cell machinery. Identification and functional characterization of these host factors may represent a critical strategy for developing novel anti-HIV-1 therapy. Here, expression cloning with a cDNA expression library identified as an inhibitor of HIV-1 infection, a carboxy-terminally truncated form of human POZ/BTB and AT-hook- containing Zinc finger protein 1 (PATZ1), a transcriptional regulatory factor implicated in development and cancer. Knockdown or knockout of endogenous PATZ1 revealed a supportive role of PATZ1 in HIV-1 infection, but not in transduction with murine leukemia virus-based retroviral vector. More specifically, knockdown or knockout of PATZ1 impaired the viral cDNA synthesis but not the entry process and expression of two PATZ1 isoforms in PATZ1-KO cells restored susceptibility to HIV-1 infection. These results indicate that PATZ1 plays an important role in HIV-1 infection.
Assuntos
HIV-1/genética , Interações Hospedeiro-Patógeno/genética , Fatores de Transcrição Kruppel-Like/genética , Linfócitos/virologia , RNA Viral/genética , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/metabolismo , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Linfócitos/patologia , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/biossíntese , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Vesiculovirus/genética , Vesiculovirus/metabolismoRESUMO
Previous studies demonstrated that a single intramuscular (i.m.) dose of an attenuated recombinant vesicular stomatitis virus (rVSV) vector (VesiculoVax vector platform; rVSV-N4CT1) expressing the glycoprotein (GP) from the Mayinga strain of Zaire ebolavirus (EBOV) protected nonhuman primates (NHPs) from lethal challenge with EBOV strains Kikwit and Makona. Here, we studied the immunogenicities of an expanded range of attenuated rVSV vectors expressing filovirus GP in mice. Based on data from those studies, an optimal attenuated trivalent rVSV vector formulation was identified that included rVSV vectors expressing EBOV, Sudan ebolavirus (SUDV), and the Angola strain of Marburg marburgvirus (MARV) GPs. NHPs were vaccinated with a single dose of the trivalent formulation, followed by lethal challenge 28 days later with each of the three corresponding filoviruses. At day 14 postvaccination, a serum IgG response specific for all three GPs was detected in all the vaccinated macaques. A modest and balanced cell-mediated immune response specific for each GP was also detected in a majority of the vaccinated macaques. No matter the level of total GP-specific immune response detected postvaccination, all the vaccinated macaques were protected from disease and death following lethal challenge with each of the three filoviruses. These findings indicate that vaccination with a single dose of attenuated rVSV-N4CT1 vectors each expressing a single filovirus GP may provide protection against the filoviruses most commonly responsible for outbreaks of hemorrhagic fever in sub-Saharan Africa.IMPORTANCE The West African Ebola virus Zaire outbreak in 2013 showed that the disease was not only a regional concern, but a worldwide problem, and highlighted the need for a safe and efficacious vaccine to be administered to the populace. However, other endemic pathogens, like Ebola virus Sudan and Marburg, also pose an important health risk to the public and therefore require development of a vaccine prior to the occurrence of an outbreak. The significance of our research was the development of a blended trivalent filovirus vaccine that elicited a balanced immune response when administered as a single dose and provided complete protection against a lethal challenge with all three filovirus pathogens.
Assuntos
Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/metabolismo , Vesiculovirus/genética , Vacinas Virais/administração & dosagem , Animais , Anticorpos Antivirais/metabolismo , Ebolavirus/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Imunoglobulina G/metabolismo , Injeções Intramusculares , Macaca fascicularis , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Camundongos , Vacinação , Vacinas Atenuadas , Vacinas Sintéticas , Vesiculovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologiaRESUMO
Astrocytes are susceptible to HIV infection and potential latent HIV reservoirs. Tat is one of three abundantly expressed HIV early genes in HIV-infected astrocytes and has been shown to be a major pathogenic factor for HIV/neuroAIDS. In this study, we sought to determine if and how Tat expression would affect HIV infection and latency in astrocytes. Using the glycoprotein from vesicular stomatitis virus-pseudotyped red-green HIV (RGH) reporter viruses, we showed that HIV infection was capable of establishing HIV latency in astrocytes. We also found that Tat expression decreased the generation of latent HIV-infected cells. Activation of latent HIV-infected astrocytes showed that treatment of GSK126, a selective inhibitor of methyltransferase enhancer of zeste homolog 2 (Ezh2) that is specifically responsible for tri-methylation of histone 3 lysine 27 (H3K27me3), led to activation of significantly more latent HIV-infected Tat-expressing astrocytes. Molecular analysis showed that H3K27me3, Ezh2, MeCP2, and Tat all exhibited a similar bimodal expression kinetics in the course of HIV infection and latency in astrocytes, although H3K27me3, Ezh2, and MeCP2 were expressed higher in Tat-expressing astrocytes and their expression were peaked immediately preceding Tat expression. Subsequent studies showed that Tat expression alone was sufficient to induce H3K27me3 expression, likely through its regulation of Ezh2 and MeCP2 expression. Taken together, these results showed for the first time that Tat expression induced H3K27me3 expression and contributed to HIV latency in astrocytes and suggest a new role and novel mechanism for Tat in HIV latency.
Assuntos
Astrócitos/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Interações Hospedeiro-Patógeno/genética , Proteína 2 de Ligação a Metil-CpG/genética , Latência Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Indóis/farmacologia , Células Jurkat , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Metilação , Piridonas/farmacologia , Transdução de Sinais , Vesiculovirus/genética , Vesiculovirus/metabolismo , Latência Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteína Vermelha FluorescenteRESUMO
Colorectal cancer (CRC) is the third most common cancer in both men and women. Oncolytic viral-based therapy methods seem to be promising for CRC treatment. Vesicular stomatitis virus (VSV) is considered as a potent candidate in viral therapy for several tumors. VSV particles with mutated matrix (M) protein are capable of initiating cell death cascades while not being harmful to the immune system. In the current study, the effects of the VSV M-protein was investigated on the apoptosis of the colorectal cancer SW480 cell. Wild-type, M51R, and ΔM51 mutants VSV M-protein genes were cloned into the PCDNA3.1 vector and transfected into the SW480 cells. The results of the MTT assay, Western blotting, and Caspase 3, 8, and 9 measurement, illustrated that both wild and M51R mutant M-proteins can destroy the SW480 colorectal cancer cells. DAPI/TUNEL double-staining reconfirmed the apoptotic effects of the M-protein expression. The ΔM51 mutant M-protein is effective likewise M51R, somehow it can be considered as a safer substitution.
Assuntos
Apoptose/fisiologia , Vesiculovirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Humanos , Proteínas Mutantes/genética , Mutação , Terapia Viral Oncolítica/métodos , Estomatite Vesicular/metabolismo , Vesiculovirus/patogenicidadeRESUMO
Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics.