Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.244
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
PLoS Biol ; 22(9): e3002734, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226241

RESUMO

Vibrio coralliilyticus is a pathogen of coral and shellfish, leading to devastating economic and ecological consequences worldwide. Although rising ocean temperatures correlate with increased V. coralliilyticus pathogenicity, the specific molecular mechanisms and determinants contributing to virulence remain poorly understood. Here, we systematically analyzed the type VI secretion system (T6SS), a contact-dependent toxin delivery apparatus, in V. coralliilyticus. We identified 2 omnipresent T6SSs that are activated at temperatures in which V. coralliilyticus becomes virulent; T6SS1 is an antibacterial system mediating interbacterial competition, whereas T6SS2 mediates anti-eukaryotic toxicity and contributes to mortality during infection of an aquatic model organism, Artemia salina. Using comparative proteomics, we identified the T6SS1 and T6SS2 toxin arsenals of 3 V. coralliilyticus strains with distinct disease etiologies. Remarkably, T6SS2 secretes at least 9 novel anti-eukaryotic toxins comprising core and accessory repertoires. We propose that T6SSs differently contribute to V. coralliilyticus's virulence: T6SS2 plays a direct role by targeting the host, while T6SS1 plays an indirect role by eliminating competitors.


Assuntos
Antozoários , Sistemas de Secreção Tipo VI , Vibrio , Animais , Vibrio/patogenicidade , Vibrio/genética , Vibrio/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Virulência , Antozoários/microbiologia , Artemia/microbiologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Vibrioses/microbiologia , Proteômica/métodos , Fatores de Virulência/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(25): e2316143121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861595

RESUMO

Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.


Assuntos
Toxinas Bacterianas , Vibrio vulnificus , Proteínas rab de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Células HEK293 , Camundongos Endogâmicos ICR , Proteólise , Proteínas rab de Ligação ao GTP/metabolismo , Vibrioses/microbiologia , Vibrioses/metabolismo , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidade
3.
PLoS Pathog ; 20(7): e1012321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990823

RESUMO

Vibriosis is one of the most serious diseases that commonly occurs in aquatic animals, thus, shaping a steady inherited resistance trait in organisms has received the highest priority in aquaculture. Whereas, the mechanisms underlying the development of such a resistance trait are mostly elusive. In this study, we constructed vibriosis-resistant and susceptible families of the Pacific white shrimp Litopenaeus vannamei after four generations of artificial selection. Microbiome sequencing indicated that shrimp can successfully develop a colonization resistance trait against Vibrio infections. This trait was characterized by a microbial community structure with specific enrichment of a single probiotic species (namely Shewanella algae), and notably, its formation was inheritable and might be memorized by host epigenetic remodeling. Regardless of the infection status, a group of genes was specifically activated in the resistant family through disruption of complete methylation. Specifically, hypo-methylation and hyper-expression of genes related to lactate dehydrogenase (LDH) and iron homeostasis might provide rich sources of specific carbon (lactate) and ions for the colonization of S. algae, which directly results in the reduction of Vibrio load in shrimp. Lactate feeding increased the survival of shrimp, while knockdown of LDH gene decreased the survival when shrimp was infected by Vibrio pathogens. In addition, treatment of shrimp with the methyltransferase inhibitor 5-azacytidine resulted in upregulations of LDH and some protein processing genes, significant enrichment of S. algae, and simultaneous reduction of Vibrio in shrimp. Our results suggest that the colonization resistance can be memorized as epigenetic information by the host, which has played a pivotal role in vibriosis resistance. The findings of this study will aid in disease control and the selection of superior lines of shrimp with high disease resistance.


Assuntos
Resistência à Doença , Microbioma Gastrointestinal , Penaeidae , Vibrioses , Vibrio , Animais , Penaeidae/microbiologia , Penaeidae/imunologia , Vibrioses/imunologia , Resistência à Doença/genética , Aquicultura
4.
PLoS Pathog ; 20(3): e1012094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536895

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis in humans worldwide. The major virulence factor responsible for the enteropathogenicity of this pathogen is type III secretion system 2 (T3SS2), which is encoded on the 80-kb V. parahaemolyticus pathogenicity island (Vp-PAI), the gene expression of which is governed by the OmpR-family transcriptional regulator VtrB. Here, we found a positive autoregulatory feature of vtrB transcription, which is often observed with transcriptional regulators of bacteria, but the regulation was not canonically dependent on its own promoter. Instead, this autoactivation was induced by heterogeneous transcripts derived from the VtrB-regulated operon upstream of vtrB. VtrB-activated transcription overcame the intrinsic terminator downstream of the operon, resulting in transcription read-through with read-in transcription of the vtrB gene and thus completing the autoregulatory loop for vtrB gene expression. The dampening of read-through transcription with an exogenous strong terminator reduced vtrB gene expression. Furthermore, a V. parahaemolyticus mutant with defects in the vtrB autoregulatory loop also showed compromises in T3SS2 expression and T3SS2-dependent cytotoxicity in vitro and enterotoxicity in vivo, indicating that this autoregulatory loop is essential for sustained vtrB activation and the consequent robust expression of T3SS2 genes for pathogenicity. Taken together, these findings demonstrate that the regulatory loop for vtrB gene expression based on read-through transcription from the upstream operon is a crucial pathway in T3SS2 gene regulatory network to ensure T3SS2-mediated virulence of V. parahaemolyticus.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrioses/genética , Vibrioses/microbiologia , Regulação Bacteriana da Expressão Gênica
5.
PLoS Pathog ; 20(8): e1012463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146353

RESUMO

Circular RNAs (circRNAs) are involved in various physiological and pathological processes in both vertebrates and invertebrates. However, most studies on circRNAs have focused on their roles as endogenous competitive RNAs. Here, we report a novel function of circRNA derived from the Fibrinogen-like protein 1 gene (circ-FGL1) that inhibits coelomocyte apoptosis via competing with the deubiquitinase AjOTUB1 to bind AjMyc in Apostichopus japonicus during Vibrio splendidus infection. The results showed that circ-FGL1 is significantly downregulated in coelomocytes of V. splendidus-induced A. japonicus and negatively regulates coelomocyte apoptosis through the AjBax-AjCyt c pathway. Mechanistically, the deubiquitinase AjOTUB1 and circ-FGL1 could interact with the transcription factor protein AjMyc in the same region with circ-FGL1/AjMyc having greater affinity. Under normal conditions, high levels of circ-FGL1 bind directly to AjMyc, inhibiting the deubiquitylation of AjMyc by AjOTUB1 and leading to the degradation of AjMyc. After V. splendidus infection, AjMyc disassociates from the depressed expression of circ-FGL1, promoting its deubiquitylation by binding to the induced deubiquitinase AjOTUB1 to inhibit its degradation. AjMyc is then transferred to the nucleus and promotes the transcription of AjCyt c and AjBax to induce coelomocyte apoptosis. The new finding will expand our present outstanding on the functional role of circRNAs and suggest new therapeutic targets for the treatment of echinoderms during bacterial invasion.


Assuntos
Apoptose , RNA Circular , Stichopus , Vibrioses , Vibrio , Animais , RNA Circular/metabolismo , RNA Circular/genética , Stichopus/microbiologia , Stichopus/metabolismo , Stichopus/genética , Vibrioses/metabolismo , Ligação Competitiva , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
6.
PLoS Pathog ; 20(8): e1012474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186780

RESUMO

The bacterium Vibrio vulnificus causes fatal septicemia in humans. Previously, we reported that an extracellular metalloprotease, vEP-45, secreted by V. vulnificus, undergoes self-proteolysis to generate a 34 kDa protease (vEP-34) by losing its C-terminal domain to produce the C-ter100 peptide. Moreover, we revealed that vEP-45 and vEP-34 proteases induce blood coagulation and activate the kallikrein/kinin system. However, the role of the C-ter100 peptide fragment released from vEP-45 in inducing inflammation is still unclear. Here, we elucidate, for the first time, the effects of C-ter100 on inducing inflammation and activating host innate immunity. Our results showed that C-ter100 could activate NF-κB by binding to the receptor TLR4, thereby promoting the secretion of inflammatory cytokines and molecules, such as TNF-α and nitric oxide (NO). Furthermore, C-ter100 could prime and activate the NLRP3 inflammasome (NLRP3, ASC, and caspase 1), causing IL-1ß secretion. In mice, C-ter100 induced the recruitment of immune cells, such as neutrophils and monocytes, along with histamine release into the plasma. Furthermore, the inflammatory response induced by C-ter100 could be effectively neutralized by an anti-C-ter100 monoclonal antibody (C-ter100Mab). These results demonstrate that C-ter100 can be a pathogen-associated molecular pattern (PAMP) that activates an innate immune response during Vibrio infection and could be a target for the development of antibiotics.


Assuntos
Imunidade Inata , Inflamação , Vibrio vulnificus , Animais , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Vibrio vulnificus/imunologia , Vibrioses/imunologia , Camundongos Endogâmicos C57BL , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia
7.
PLoS Pathog ; 20(7): e1012410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038066

RESUMO

One of the greatest challenges encountered by enteric pathogens is responding to rapid changes of nutrient availability in host. However, the mechanisms by which pathogens sense gastrointestinal signals and exploit available host nutrients for proliferation remain largely unknown. Here, we identified a two-component system in Vibrio parahaemolyticus, TtrRS, which senses environmental tetrathionate and subsequently activates the transcription of the ttrRS-ttrBCA-tsdBA gene cluster to promote V. parahaemolyticus colonization of adult mice. We demonstrated that TsdBA confers the ability of thiosulfate oxidation to produce tetrathionate which is sensed by TtrRS. TtrRS autoregulates and directly activates the transcription of the ttrBCA and tsdBA gene clusters. Activated TtrBCA promotes bacterial growth under micro-aerobic conditions by inducing the reduction of both tetrathionate and thiosulfate. TtrBCA and TsdBA activation by TtrRS is important for V. parahaemolyticus to colonize adult mice. Therefore, TtrRS and their target genes constitute a tetrathionate-responsive genetic circuit to exploit the host available sulfur compounds, which further contributes to the intestinal colonization of V. parahaemolyticus.


Assuntos
Proteínas de Bactérias , Vibrioses , Vibrio parahaemolyticus , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/genética , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Compostos de Enxofre/metabolismo , Regulação Bacteriana da Expressão Gênica , Feminino , Camundongos Endogâmicos C57BL
8.
J Immunol ; 212(8): 1319-1333, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38426898

RESUMO

N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.


Assuntos
Adenina/análogos & derivados , MicroRNAs , Stichopus , Vibrioses , Vibrio , Animais , Stichopus/genética , Transporte Ativo do Núcleo Celular , Imunidade Inata/genética , Autofagia , MicroRNAs/genética , MicroRNAs/metabolismo
9.
EMBO J ; 40(2): e105699, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347626

RESUMO

Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Nucléolo Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio parahaemolyticus/metabolismo , Virulência/fisiologia , Animais , Células CACO-2 , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Herpesvirus Humano 4/patogenicidade , Humanos , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Coelhos , Vibrioses/metabolismo
10.
Emerg Infect Dis ; 30(8): 1729-1732, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043427

RESUMO

Vibrio mimicus bacteria have caused sporadic cases and outbreaks of cholera-like diarrhea throughout the world, but the association of lineages with such events is unexplored. Genomic analyses revealed V. mimicus lineages carrying the virulence factors cholera toxin and toxin coregulated pilus, one of which has persisted for decades in China and the United States.


Assuntos
Toxina da Cólera , Ilhas Genômicas , Vibrio mimicus , China/epidemiologia , Humanos , Vibrio mimicus/genética , Vibrio mimicus/patogenicidade , Estados Unidos/epidemiologia , Toxina da Cólera/genética , Cólera/microbiologia , Cólera/epidemiologia , Filogenia , Vibrioses/microbiologia , Vibrioses/epidemiologia , Fatores de Virulência/genética
11.
Biochem Biophys Res Commun ; 730: 150389, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39003864

RESUMO

To better understand the effect of Vibrio splendidus infection on Strongylocentrotus intermedius, 16S rRNA sequencing was carried out to investigate the intestinal flora of S. intermedius stimulated by 0 CFU/mL (Con), 1.5 × 107 CFU/mL (Vib1) and 1.5 × 108 CFU/mL (Vib2) concentrations of V. splendidus. The results showed that there was significant difference in intestinal flora diversity between Con group and Vib1 group, but no significant difference between Con group and Vib2 group. However, there were significant differences in the composition of intestinal flora among all groups. Bacteroidota, Proteobacteria and Firmicutes were the dominant phylum in the Con group. The abundance of Bacteroidota and Firmicutes decreased and Proteobacteria increased in Vib1 and Vib2 groups. The relative abundance of the potential probiotic bacteria Muribaculaceae and Alloprevotella was significantly lower in the Vib1 and Vib2 groups. In addition, the opportunistic pathogen Desulfovibrio was found in Vib1 and Vib2 groups. It is evident that V. splendidus infection not only alters the composition of the microbial community in the intestinal tract of S. intermedius, but may also lead to the production of opportunistic pathogens, which could be potentially harmful to the health of S. intermedius. The results of this study provide a foundation for exploring the diseases caused by V. splendidus stimulation leading to an imbalance in the intestinal flora of S. intermedius, and contribute to our further understanding of the role of Vibrio on the health of S. intermedius.


Assuntos
Microbioma Gastrointestinal , Strongylocentrotus , Vibrio , Vibrio/fisiologia , Animais , Strongylocentrotus/microbiologia , RNA Ribossômico 16S/genética , Vibrioses/microbiologia
12.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073369

RESUMO

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Assuntos
Proteínas de Artrópodes/imunologia , Flagelina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Penaeidae/imunologia , Vibrioses/imunologia , Animais , Sistema de Sinalização das MAP Quinases/imunologia , Penaeidae/microbiologia , Fatores de Transcrição STAT/imunologia , Vibrio
13.
Appl Environ Microbiol ; 90(6): e0053924, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809043

RESUMO

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Assuntos
Antibacterianos , Baías , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/crescimento & desenvolvimento , Baías/microbiologia , Antibacterianos/farmacologia , Estudos Longitudinais , Maryland , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Vibrioses/microbiologia , Humanos
14.
BMC Microbiol ; 24(1): 275, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048954

RESUMO

BACKGROUND: Extreme precipitation events often cause sudden drops in salinity, leading to disease outbreaks in shrimp aquaculture. Evidence suggests that environmental stress increases animal host susceptibility to pathogens. However, the mechanisms of how low salinity stress induces disease susceptibility remain poorly understood. METHODS: We investigated the acute response of shrimp gut microbiota exposed to pathogens under low salinity stress. For comparison, shrimp were exposed to Vibrio infection under two salinity conditions: optimal salinity (Control group) and low salinity stress (Stress group). High throughput 16S rRNA sequencing and real-time PCR were employed to characterize the shrimp gut microbiota and quantify the severity level of Vibrio infection. RESULTS: The results showed that low salinity stress increased Vibrio infection levels, reduced gut microbiota species richness, and perturbed microbial functions in the shrimp gut, leading to significant changes in lipopolysaccharide biosynthesis that promoted the growth of pathogens. Gut microbiota of the bacterial genera Candidatus Bacilliplasma, Cellvibrio, and Photobacterium were identified as biomarkers of the Stress group. The functions of the gut microbiota in the Stress group were primarily associated with cellular processes and the metabolism of lipid-related compounds. CONCLUSIONS: Our findings reveal how environmental stress, particularly low salinity, increases shrimp susceptibility to Vibrio infection by affecting the gut microbiota. This highlights the importance of avoiding low salinity stress and promoting gut microbiota resilience to maintain the health of shrimp.


Assuntos
Disbiose , Microbioma Gastrointestinal , Penaeidae , RNA Ribossômico 16S , Estresse Salino , Vibrioses , Vibrio parahaemolyticus , Animais , Penaeidae/microbiologia , Vibrio parahaemolyticus/fisiologia , RNA Ribossômico 16S/genética , Vibrioses/microbiologia , Vibrioses/veterinária , Disbiose/microbiologia , Salinidade , Aquicultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
15.
BMC Microbiol ; 24(1): 145, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671363

RESUMO

BACKGROUND: Vibrio parahaemolyticus is the predominant etiological agent of seafood-associated foodborne illnesses on a global scale. It is essential to elucidate the mechanisms by which this pathogen disseminates. Given the existing research predominantly concentrates on localized outbreaks, there is a pressing necessity for a comprehensive investigation to capture strains of V. parahaemolyticus cross borders. RESULTS: This study examined the frequency and genetic attributes of imported V. parahaemolyticus strains among travelers entering Shanghai Port, China, between 2017 and 2019.Through the collection of 21 strains from diverse countries and regions, Southeast Asia was pinpointed as a significant source for the emergence of V. parahaemolyticus. Phylogenetic analysis revealed clear delineation between strains originating from human and environmental sources, emphasizing that underlying genome data of foodborne pathogens is essential for environmental monitoring, food safety and early diagnosis of diseases. Furthermore, our study identified the presence of virulence genes (tdh and tlh) and approximately 120 antibiotic resistance-related genes in the majority of isolates, highlighting their crucial involvement in the pathogenesis of V. parahaemolyticus. CONCLUSIONS: This research enhanced our comprehension of the worldwide transmission of V. parahaemolyticus and its antimicrobial resistance patterns. The findings have important implications for public health interventions and antimicrobial stewardship strategies, underscoring the necessity for epidemiological surveillance of pathogen at international travel hubs.


Assuntos
Doenças Transmitidas por Alimentos , Filogenia , Vibrioses , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/patogenicidade , Vibrio parahaemolyticus/efeitos dos fármacos , Humanos , China/epidemiologia , Vibrioses/microbiologia , Vibrioses/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/epidemiologia , Genoma Bacteriano/genética , Viagem , Fatores de Virulência/genética , Genômica , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Alimentos Marinhos/microbiologia
16.
Microb Pathog ; 189: 106591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401591

RESUMO

The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.


Assuntos
Anguilla , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Vacinas Atenuadas/genética , Muramidase , Vacinas Bacterianas , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio/genética , Superóxido Dismutase/genética , Imunoglobulina M , Doenças dos Peixes/prevenção & controle
17.
Microb Pathog ; 187: 106519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158142

RESUMO

Vibrio splendidus is one of the main pathogens caused diseases with a diversity of marine cultured animals, especially the skin ulcer syndrome in Apostichopus japonicus. However, limited virulence factors have been identified in V. splendidus. In this study, one aerAVs gene coding an aerolysin of V. splendidus was cloned and conditionally expressed in Escherichia coli. The haemolytic activity of the recombinant AerAVs was analyzed. Western blotting was used to study of the secretion pathway of proaerolysin, and it showed that the proaerolysin was secreted via both outer membrane vehicles and classical secretion pathways. Since no active protein of aerolysin was obtained, one aerolysin surface displayed bacterium DH5α/pAT-aerA was constructed, and its haemolytic activity and virulence were determined. The results showed that the AerAVs displayed on the surface showed obvious haemolytic activity and cytotoxic to the coelomocyte of A. japonicus. Artificial immerse infection separately using the DH5α/pAT or DH5α/pAT-aerA was conducted. The result showed that the mortality percent of sea cucumber A. japonicus challenged with DH5α/pAT-aerA was 38.89 % higher than that challenged with the control strain DH5α/pAT, and earlier death occurred. Combined all the results indicates that aerolysin with the haemolytic activity and cytotoxic activity is a virulence factor of V. splendidus.


Assuntos
Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros , Stichopus , Vibrioses , Vibrio , Animais , Vibrioses/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Clonagem Molecular , Stichopus/genética , Stichopus/microbiologia , Imunidade Inata
18.
Microb Pathog ; 189: 106597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395316

RESUMO

Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.


Assuntos
Bass , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Vibrioses/microbiologia , Bass/microbiologia , Virulência/genética , Vibrio/genética , Antibacterianos , Doenças dos Peixes/microbiologia
19.
Microb Pathog ; 186: 106498, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097116

RESUMO

Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.


Assuntos
Anguilla , Doenças dos Peixes , Vibrioses , Vibrio vulnificus , Animais , Vibrio vulnificus/genética , Anguilla/genética , Anguilla/microbiologia , Virulência/genética , RNA-Seq , Doenças dos Peixes/microbiologia
20.
Microb Pathog ; 191: 106677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705217

RESUMO

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Assuntos
Chenopodiaceae , Endófitos , Probióticos , Streptomyces , Vibrio , Animais , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Chenopodiaceae/microbiologia , Probióticos/farmacologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Streptomyces/fisiologia , Streptomyces/isolamento & purificação , Streptomyces/genética , Penaeidae/microbiologia , RNA Ribossômico 16S/genética , Antibiose , Vibrioses/microbiologia , Vibrioses/veterinária , Vibrioses/prevenção & controle , Salinidade , Larva/microbiologia , DNA Bacteriano/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa