Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Nature ; 593(7857): 61-66, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953410

RESUMO

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Assuntos
Fontes de Energia Elétrica , Eletroquímica , Peptídeos/química , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Óxidos N-Cíclicos/química , Camundongos , Osteoblastos/citologia , Oxirredução , Peptídeos/síntese química , Desenvolvimento Sustentável , Viologênios/química
2.
Macromol Rapid Commun ; 45(13): e2400031, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38620002

RESUMO

The systematic study of two ionic porous organic polymers (iPOPs) based on viologens and their first applications in the electrochromic field are reported. The viologen-based iPOPs are synthesized by electrochemical polymerization with cyano groups, providing a simple and controllable method for iPOPs that solves the film preparation problems common to viologens. After the characterization of these iPOPs, a detailed study of their electrochromic properties is conducted. The iPOP films based on viologens structure exhibit excellent electrochromic properties. In addition, the resulting iPOP films show high sensitivity to electrolyte ions of different sizes in the redox process. Electrochemical and electrochromic data of the iPOPs explain this phenomenon in detail. These results demonstrate that iPOPs of this type are ideal candidates as electrochromic materials due to their inherent porous structures and ion-rich properties.


Assuntos
Técnicas Eletroquímicas , Polímeros , Viologênios , Polímeros/química , Polímeros/síntese química , Porosidade , Viologênios/química , Estrutura Molecular , Íons/química , Propriedades de Superfície , Polimerização , Oxirredução
3.
Chemistry ; 29(33): e202300633, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37067351

RESUMO

The structure of the Viologen-Phenylene-Imidazole (VPI) guest, previously shown to be bound by cucurbit[7]uril (CB[7]) with binding modes depending on pH and silver ions, has been extended by adding hydrophobic groups on the two extremities of VPI before investigations of CB[7] binding by NMR, ITC, X-ray diffraction, UV-vis and fluorescence spectroscopies. With an imidazole station extended by a naphthalene group (VPI-N), binding modes of CB[7] are similar to those previously observed. However, with the viologen extended by a tolyl group (T-VPI), CB[7] preferentially sits on station T, shuttling between the T and P stations at acid pH or after Ag+ addition. The CB[7] ⋅ T-VPI complex thus behaves as a metal-actuated thermodynamic stop-and-go molecular shuttle featured by fast and autonomous ring translocation between two stations and a continuum for fractional station occupancy solely and easily controlled by Ag+ concentration.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Água , Água/química , Hidrocarbonetos Aromáticos com Pontes/química , Viologênios/química , Imidazóis/química , Concentração de Íons de Hidrogênio
4.
Inorg Chem ; 62(15): 6084-6091, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37016496

RESUMO

Quinolone antibiotic residues, norfloxacin (NORF) and ciprofloxacin (CIP), have attracted more attention due to their frequent detection in surface water and food field, which seriously threaten the health of animals and humans. Rapid and efficient detection of NORF and CIP is critical for environmental testing and ecosystems. Herein, two novel isostructural viologen-functionalized Ln(III) complexes [Ln2L0.5(IPA)3]n (Ln = Eu, 1; Tb, 2; L = N,N'-bis (2-carboxyethyl)-4,4'-bipyridridylium dichloride, H2IPA = isophthalic acid) with a three-dimensional structure have been synthesized solvothermally. Complexes 1 and 2 exhibited reversible photochromism under UV light. In addition, complex 1 exhibits excellent pH tolerance and can be seen as an efficient fluorescent probe for the detection of NORF and CIP with detection limits of 7.90 × 10-7 and 9.48 × 10-7 M, respectively. Furthermore, the good photoresponsive and outstanding fluorescent properties of 1 were further exploited in dual-function paper involving erasable inkless printing and detection of NORF and CIP. Our work reports a new strategy for recognizing NORF and CIP based on the luminescent color change of the viologen-based Ln-MOFs, providing a new direction for the development of multifunctional materials.


Assuntos
Ecossistema , Elementos da Série dos Lantanídeos , Animais , Humanos , Fluorescência , Antibacterianos , Ciprofloxacina , Corantes Fluorescentes , Viologênios
5.
Angew Chem Int Ed Engl ; 62(1): e202211387, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36131604

RESUMO

The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.


Assuntos
Paraquat , Viologênios , Paraquat/química
6.
J Am Chem Soc ; 144(41): 19127-19136, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206443

RESUMO

We present herein the "vermellogens", a new class of pH-responsive viologen analogues, which replace the direct linking between para-substituted pyridinium moieties within those by a hydrazone functional group. A series of such compounds have been efficiently synthesized in aqueous media by hydrazone exchange reactions, displaying a marked pH-responsivity. Furthermore, the parent N,N'-dimethylated "vermellogen": the "red thread", an analogue of the herbicide paraquat and used herein as a representative model of the series, showed anion-recognition abilities, non-reversible electrochemical behavior, and non-toxicity of the modified bis-pyridinium core. The host-guest chemistry for the "red thread" with the CB[7,8] macrocyclic receptors has been extensively studied experimentally and by dispersion corrected density functional theory methods, showing a parallel behavior to that previously described for the herbicide but, crucially, swapping the well-known redox reactive capabilities of the viologen-based inclusion complexes by acid-base supramolecular responsiveness.


Assuntos
Herbicidas , Viologênios , Paraquat/toxicidade , Ânions , Concentração de Íons de Hidrogênio , Hidrazonas
7.
J Am Chem Soc ; 144(39): 17955-17965, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154166

RESUMO

We herein report the synthesis and magnetic properties of a Ni(II)-porphyrin tethered to an imidazole ligand through a flexible electron-responsive mechanical hinge. The latter is capable of undergoing a large amplitude and fully reversible folding motion under the effect of electrical stimulation. This redox-triggered movement is exploited to force the axial coordination of the appended imidazole ligand onto the square-planar Ni(II) center, resulting in a change in its spin state from low spin (S = 0) to high spin (S = 1) proceeding with an 80% switching efficiency. The driving force of this reversible folding motion is the π-dimerization between two electrogenerated viologen cation radicals. The folding motion and the associated spin state switching are demonstrated on the grounds of NMR, (spectro)electrochemical, and magnetic data supported by quantum calculations.


Assuntos
Níquel , Porfirinas , Estimulação Elétrica , Imidazóis , Ligantes , Níquel/química , Viologênios
8.
J Am Chem Soc ; 144(8): 3510-3516, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167288

RESUMO

Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air-water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host-guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air-water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.


Assuntos
Viologênios , Água , Animais , Mamíferos , Oxirredução , Temperatura , Viologênios/química , Água/química
9.
J Am Chem Soc ; 144(14): 6483-6492, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35349274

RESUMO

Smart voltage-gated nanofiltration membranes have enormous potential for on-demand and precise separation of similar molecules, which is an essential element of sustainable water purification and resource recovery. However, the existing voltage-gated membranes are hampered by limited selectivity, stability, and scalability due to electroactive monomer dimerization. Here, for the first time, the host-guest recognition properties of cucurbit[7]uril (CB[7]) are used to protect the viologen derivatives and promote their assembly into the membrane by interfacial polymerization. Viologen functions as a voltage switch, whereas CB[7] complexation prevents its dimerization and improves its redox stability. The inhibited diffusion of the CB[7]-viologen complex enables the precise patterning of the surface structure. The resultant voltage-gated membrane displays 80% improved rejection performance, excellent recovery accuracy for similar molecules, and anti-fouling properties. This work not only provides an innovative strategy for the preparation of voltage-gated smart nanofiltration membranes but also opens up new avenues for ion-selective transmission in water treatment, bionic ion channels, and energy conversion.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Hidrocarbonetos Aromáticos com Pontes/química , Dimerização , Imidazóis/química , Viologênios
10.
J Org Chem ; 87(1): 760-764, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34889610

RESUMO

We present herein the development of a series of viologen-amino acid hybrids, obtained in good yields either by successive alkylations of 4,4'-bipyridine, or by Zincke reactions followed by a second alkylation step. The potential of the obtained amino acids has been exemplified, either as typical guests of the curcubituril family of hosts (particularly CB[7]/[8]) or as suitable building blocks for the solution/solid-phase synthesis of two model tripeptides with the viologen core inserted within their sequences.


Assuntos
Aminoácidos , Compostos Macrocíclicos , Peptídeos , Viologênios
11.
Chemistry ; 27(42): 10957-10965, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33884685

RESUMO

Porous materials have been investigated as efficient photochromic platforms for detecting hazardous radiation, while the utilization of hydrogen bonded organic frameworks (HOFs) in this field has remained intact. Herein, two HOFs were synthesized through self-assembly of tetratopic viologen ligand and formic acid (PFC-25, PFC-26), as a new class of "all-organic" radiochromic smart material, opening a gate for HOFs in this field. PFC-26 is active upon both X-ray and UV irradiation, while PFC-25 is only active upon X-ray irradiation. The same building block yet different radiochromic behaviors of PFC-25 and PFC-26 allow us to gain a deep mechanistic understanding of the factors that control the detection specificity. Theoretical and experimental studies reveal that the degree of π-conjugation of viologen ligand is highly related to the threshold energy of triggering a charge transfer, therefore being a vital factor for the particularity of radiochromic materials. Thanks to its convenient processibility, nanoparticle size, and UV silence, PFC-25 can be further fabricated into a portable naked-eye sensor for X-ray detection, which shows obvious color change with the merits of high transmittance contrast, good sensitivity (reproducible dose threshold of 3.5 Gy), and excellent stability. The work exhibits the promising practical potentials of HOF materials in photochromic technology.


Assuntos
Hidrogênio , Viologênios , Ligação de Hidrogênio , Raios X
12.
Chemistry ; 27(36): 9360-9371, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33831265

RESUMO

Stimuli-responsive chromic materials such as photochromics, hydrochromics, thermochromics, and electrochromics have a long history of capturing the attention of scientists due to their potential industrial applications and novelty in popular culture. However, hybrid chromic materials that combine two or more stimuli-triggered color changing properties are not so well known. Herein, we report a design strategy that has led to a series of emissive 1,8-naphthalimide-viologen dyads which exhibit unusual dual photochromic and hydrochromic switching behavior in the solid-state when embedded in a cellulose matrix. This behavior manifests as reversible solid state fluorescence hydrochromism upon changes in atmospheric relative humidity (RH), and reversible solid state photochromism upon generation of a cellulose-stabilized viologen radical cation. In this design strategy, the bipyridinium unit serves as both a water-sensitive receptor for the hydrochromic fluorophore-receptor system, and a photochromic group, capable of eliciting its own visible colorimetric response, generating a fluorescence quenching radical cation with prolonged exposure to ultraviolet (UV) light. These dyes can be inkjet-printed onto cellulose paper or drop-cast as cellulose powder-based films and can be unidirectionally cycled between three different states which can be characteristically visualized under UV light or visible light. The material's photochromism, hydrochromism, and underlying mechanism of action was investigated using computational analysis, dynamic vapor sorption/desorption isotherms, electron paramagnetic resonance spectroscopy, and variable humidity UV-Vis adsorption and fluorescence spectroscopies.


Assuntos
Naftalimidas , Viologênios , Celulose , Luz , Raios Ultravioleta
13.
J Org Chem ; 86(18): 13001-13010, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469156

RESUMO

The synthesis of calix[4]- and -[6]arene derivatives P6(H)22+·(Cl-)2, V4(H)24+·(Cl-)2·(I-)2, and V6(H)24+·(Cl-)2·(I-)2 bearing N-linked pyridinium (P) and viologen (V) units at the upper rim is described here. A rare example of an anionic conformational template is reported for p-pyridiniumcalix[6]arene P6(H)22+, which adopts a 1,3,5-alternate conformation in the presence of chloride anions. Derivatives P6(H)22+·(Cl-)2, V6(H)24+·(Cl-)2·(I-)2, and V4(H)24+·(Cl-)2·(I-)2 show a negative solvatochromism, while their UV-vis acid-base titration evidenced that upon addition of a base, new bands appear at 487, 583, and 686 nm, respectively, due to the formation of betainic monodeprotonated species P6(H)1+, V6(H)13+, and V4(H)13+. These new bands were attributable to the intramolecular charge-transfer (CT) transition from the phenoxide to the pyridinium or viologen moiety and were responsive to the presence of cations. In fact, the band at 487 nm of P6(H)1+ was quenched in the presence of a hard Li+ cation, and the color of its acetonitrile solution was changed from pink to colorless upon addition of LiI. Consequently, this derivative can be considered as a useful host for the recognition and sensing of lithium cations.


Assuntos
Calixarenos , Viologênios , Animais , Cátions , Cloretos , Cloro
14.
J Am Chem Soc ; 142(50): 21153-21159, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33226790

RESUMO

Donor-acceptor (DA) π-interactions are weak attractive forces that are exploited widely in molecular and supramolecular chemistry. They have been characterized extensively by ensemble techniques, providing values for their energies that are useful for the design of soft materials. For implementation of motions or operations based on these DA π-interactions in wholly synthetic molecular machines, the mechanical strength and force associated with their out-of-equilibrium performance are the key parameters, in addition to their energies obtained at thermodynamic equilibrium. In this context, we have used single-molecule force spectroscopy as a nonequilibrium technique to determine the mechanical strength of individual DA π-interactions in solution. We designed and synthesized a molecular tweezer that is able to encapsulate π-donors and also demonstrated a precise opening extension. The mechanical breaking of the noncovalent interactions between viologen units-π-acceptors commonly employed in mechanically interlocked molecules-and several π-donors afforded a characteristic force-distance signature, revealing the opening of individual viologen tweezers with an unambiguous extension. Single-tweezer host-exchange experiments performed in situ demonstrated the sensitivity of the technique. This simple design could be exploited in quantifying the force of a large range of weak noncovalent bonding interactions as well as the potential work that molecular machines can generate at the single-molecule level.


Assuntos
Microscopia de Força Atômica , Viologênios/química , Modelos Moleculares , Conformação Molecular
15.
Molecules ; 25(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456122

RESUMO

A series of bis(4-alkoxyphenyl) viologen bis(triflimide) salts with alkoxy chains of different lengths were synthesized by the metathesis reaction of respective bis(4-alkoxyphenyl) viologen dichloride salts, which were in turn prepared from the reaction of Zincke salt with the corresponding 4-n-alkoxyanilines, with lithium triflimide in methanol. Their chemical structures were characterized by 1H and 13C nuclear magnetic resonance spectra and elemental analysis. Their thermotropic liquid-crystalline (LC) properties were examined by differential scanning calorimetry, polarizing optical microscopy, and variable temperature X-ray diffraction. Salts with short length alkoxy chains had crystal-to-liquid transitions. Salts of intermediate length alkoxy chains showed both crystal-to-smectic A (SmA) transitions, Tms, and SmA-to-isotropic transitions, Tis. Those with longer length of alkoxy chains had relatively low Tms at which they formed the SmA phases that persisted up to the decomposition at high temperatures. As expected, all of them had excellent thermal stabilities in the temperature range of 330-370 °C. Their light-emitting properties in methanol were also included.


Assuntos
Cicloexanonas/química , Cristais Líquidos/química , Sais/química , Viologênios/química , Varredura Diferencial de Calorimetria , Luz , Espectroscopia de Ressonância Magnética , Difração de Raios X
16.
Photochem Photobiol Sci ; 18(11): 2673-2681, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31482917

RESUMO

The utilization of the light-harvesting and electron-transferring function of chlorophylls (Chls) has received attention for visible-light driven hydrogen production. In this work, a series of Chl derivatives based on pyropheophorbide-a (Pyro-a) conjugated with a viologen moiety, including a Pyro-a methyl ester directly bonded with the viologen at the 3-position 1, its 31-methylene analog 2 and Pyro-a connected with the viologen in the 17-substituent 3, were synthesized from chemical modification of naturally occurring Chl-a and characterized in terms of their photochemical and photophysical properties. As the photoexcited singlet state of the Pyro-a moiety was strongly quenched by the viologen moiety in a molecule, the effective photoinduced intramolecular electron transfer from Pyro-a to the bonded viologen moiety occurred. Moreover, these molecules were applied as a photosensitizer in the system for visible-light driven hydrogen production with platinum nanoparticles via intramolecular reduction of the bonded viologen moiety. Efficient photoreduction of external methyl viologen and successive hydrogen production on platinum nanoparticles were achieved using the synthetic conjugate of Pyro-a with the viologen moiety as a photosensitizer. In particular, effective visible-light driven hydrogen production was accomplished using 3 and platinum nanoparticles via the reduction of external methyl viologen.


Assuntos
Clorofila/análogos & derivados , Hidrogênio/química , Luz , Nanopartículas Metálicas/química , Platina/química , Clorofila/química , Transporte de Elétrons , Fármacos Fotossensibilizantes/química , Teoria Quântica , Viologênios/química
17.
Molecules ; 25(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861256

RESUMO

Mono- and di-quaternized 4,4'-bipyridine derivatives constitute a family of heterocyclic compounds, which in recent years have been employed in numerous applications. These applications correspond to various disciplines of research and technology. In their majority, two key features of these 4,4'-bipyridine-based derivatives are exploited: their redox activity and their electrochromic aptitude. Contemporary materials and compounds encompassing these skeletons as building blocks are often characterized as multifunctional, as their presence often gives rise to interesting phenomena, e.g., various types of chromism. This research trend is acknowledged, and, in this review article, recent examples of multifunctional chromic materials/compounds of this class are presented. Emphasis is placed on solvent-/medium- and environment-responsive 4,4'-bipyridine derivatives. Two important classes of 4,4'-bipyridine-based products with solvatochromic and/or environment-responsive character are reviewed: viologens (i.e., N,N'-disubstituted derivatives) and monoquats (i.e., monosubstituted 4,4'-bipyridine derivatives). The multifunctional nature of these derivatives is analyzed and structure-property relations are discussed in connection to the role of these derivatives in various novel applications.


Assuntos
Fenômenos Químicos , Piridinas/química , Técnicas de Química Sintética , Compostos Heterocíclicos/química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Análise Espectral , Viologênios/síntese química , Viologênios/química
18.
Chemistry ; 24(17): 4255-4258, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29431883

RESUMO

We report a cross-reactive sensor array, combining a two-component probe system based upon three viologen substituted boronic acids and a poly(aryleneethynylene) (PAE) and an additional number of simple PAEs alone. This combined system discriminates 27 different honeys in aqueous solution, according to patterns in fluorescence intensity modulation, using linear discriminant analysis for data processing. The fluorescence turn-on array detects saccharide composition, while the PAEs discriminate trace colored components in the honeys.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Borônicos/química , Corantes Fluorescentes/química , Xarope de Milho Rico em Frutose/análise , Mel/análise , Polímeros/química , Poli-Inos/química , Viologênios/química , Carboidratos/análise , Humanos , Espectrometria de Fluorescência , Água/química
19.
Langmuir ; 34(51): 15658-15664, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30495963

RESUMO

The photosynthetic protein complex, photosystem I (PSI), can be photoexcited with a quantum efficiency approaching unity and can be integrated into solar energy conversion devices as the photoactive electrode. The incorporation of PSI into conducting polymer frameworks allows for improved conductivity and orientational control in the photoactive layer. Polyviologens are a unique class of organic polycationic polymers that can rapidly accept electrons from a primary donor such as photoexcited PSI and subsequently can donate them to a secondary acceptor. Monomeric viologens, such as methyl viologen, have been widely used as diffusible mediators in wet PSI-based photoelectrochemical cells on the basis of their suitable redox potentials for accepting electrons. Polyviologens possess similar electronic properties to their monomers with the added advantage that they can shuttle electrons in the solid state. Depositing polyviologen directly onto a film of PSI protein results in significant photocurrent enhancement, which confirms its role as an electron-transport material. The polymer film not only improves the photocurrent by aiding the electron transfer but also helps preserve the protein film underneath. The composite polymer-PSI assembly enhances the charge-shuttling processes from individual protein molecules within the PSI multilayer, greatly reducing charge-transfer resistances. The resulting PSI-based solid-state platform demonstrates a much higher photocurrent than the corresponding photoelectrochemical cell built using a similar architecture.


Assuntos
Fontes de Energia Bioelétrica , Eletroquímica/métodos , Elétrons , Complexo de Proteína do Fotossistema I/química , Polímeros/química , Viologênios/química , Eletroquímica/instrumentação , Eletrodos , Oxirredução , Polímeros/síntese química , Energia Solar , Viologênios/síntese química
20.
Photochem Photobiol Sci ; 17(1): 60-68, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29182696

RESUMO

The effect of the functional ionic group of 4,4'-bipyridinium salt derivatives (4,4'-BPs) as the electron carrier on the visible-light driven conversion of CO2 to formic acid with the system consisting of water-soluble zinc tetraphenylporphyrin tetrasulfonate (ZnTPPS) and formate dehydrogenase (FDH) in the presence of triethanolamine (TEOA) as an electron donor was investigated. 1,1'-Diaminoethyl- (DAV), 1-aminoethyl-1'-methyl- (AMV), 1-carboxymethyl-1'-methyl- (CMV) and 1,1'-dicarboxymethyl-4,4'-bipyridinium salt (DCV) were prepared as the 4,4'-BPs with the functional ionic group. Irradiation of a CO2 saturated buffer solution containing TEOA, ZnTPPS, 4,4'-BP and FDH with visible light irradiation resulted in the production of formic acid. By using 4,4'-BPs with the cationic aminoethyl-group, DAV or AMV as an electron carrier, the effective visible-light driven formic acid production based on the CO2 reduction was observed compared to the 4,4'-BPs with the anionic carboxymethyl-group, CMV or DCV. The formic acid production rate with DAV was approximately 3.2 times higher than that of the system with DCV.


Assuntos
Dióxido de Carbono/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Luz , Metaloporfirinas/metabolismo , Viologênios/metabolismo , Candida/enzimologia , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiatos/química , Íons/química , Íons/metabolismo , Metaloporfirinas/química , Oxirredução , Solubilidade , Viologênios/química , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa