Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.072
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(19): 5282-5297.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168125

RESUMO

Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.


Assuntos
Cromatina , DNA , Elasticidade , Cromatina/metabolismo , Cromatina/química , DNA/metabolismo , DNA/química , Humanos , Viscosidade , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Loci Gênicos
2.
Cell ; 184(7): 1914-1928.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730596

RESUMO

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Animais , Blastoderma/citologia , Blastoderma/fisiologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Embrião não Mamífero/citologia , Morfolinos/metabolismo , Reologia , Viscosidade , Peixe-Zebra/crescimento & desenvolvimento
3.
Cell ; 183(6): 1462-1463, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33306951

RESUMO

Defining the principles underlying the organization of biomolecules within cells is a key challenge of current cell biology research. Persson et al. now identify a powerful layer of regulation that allows cells to decouple diffusion from temperature by modulating their intracellular viscosity. This so-called viscoadaptation is mediated through trehalose and glycogen activities, which alter diffusion dynamics and self-assembly propensity inside the cell globally.


Assuntos
Física , Trealose , Difusão , Temperatura , Viscosidade
4.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157040

RESUMO

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Assuntos
Metabolismo Energético , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Difusão , Glicogênio/metabolismo , Homeostase , Modelos Biológicos , Solubilidade , Trealose , Viscosidade
5.
Nat Rev Mol Cell Biol ; 24(1): 3, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380159

Assuntos
Viscosidade
6.
Nature ; 626(7999): 635-642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297127

RESUMO

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Elasticidade , Matriz Extracelular , Cirrose Hepática , Neoplasias Hepáticas , Animais , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Viscosidade , Proteínas de Sinalização YAP/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
7.
Cell ; 158(2): 339-352, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24998931

RESUMO

During B lymphocyte development, immunoglobulin heavy-chain variable (VH), diversity (DH), and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here, we have marked the distal VH and DH-JH-Eµ regions with Tet-operator binding sites and traced their 3D trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers. Using fractional Langevin dynamics modeling, we found that, with high probability, DHJH elements reach a VH element within minutes. Spatial confinement emerged as the dominant parameter that determined the frequency of such encounters. We propose that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Recombinação V(D)J , Animais , Fenômenos Biomecânicos , Elasticidade , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Vetores Genéticos , Camundongos , Células Precursoras de Linfócitos B/metabolismo , Transdução Genética , Viscosidade
8.
Nature ; 619(7971): 876-883, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468629

RESUMO

Proteins and nucleic acids can phase-separate in the cell to form concentrated biomolecular condensates1-4. The functions of condensates span many length scales: they modulate interactions and chemical reactions at the molecular scale5, organize biochemical processes at the mesoscale6 and compartmentalize cells4. Understanding the underlying mechanisms of these processes will require detailed knowledge of the rich dynamics across these scales7. The mesoscopic dynamics of biomolecular condensates have been extensively characterized8, but their behaviour at the molecular scale has remained more elusive. Here, as an example of biomolecular phase separation, we study complex coacervates of two highly and oppositely charged disordered human proteins9. Their dense phase is 1,000 times more concentrated than the dilute phase, and the resulting percolated interaction network10 leads to a bulk viscosity 300 times greater than that of water. However, single-molecule spectroscopy optimized for measurements within individual droplets reveals that at the molecular scale, the disordered proteins remain exceedingly dynamic, with their chain configurations interconverting on submicrosecond timescales. Massive all-atom molecular dynamics simulations reproduce the experimental observations and explain this apparent discrepancy: the underlying interactions between individual charged side chains are short-lived and exchange on a pico- to nanosecond timescale. Our results indicate that, despite the high macroscopic viscosity of phase-separated systems, local biomolecular rearrangements required for efficient reactions at the molecular scale can remain rapid.


Assuntos
Condensados Biomoleculares , Humanos , Condensados Biomoleculares/química , Simulação de Dinâmica Molecular , Água/química , Fatores de Tempo , Viscosidade , Imagem Individual de Molécula , Proteínas Intrinsicamente Desordenadas/química
9.
Nature ; 611(7935): 365-373, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323783

RESUMO

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Assuntos
Movimento Celular , Líquido Extracelular , Metástase Neoplásica , Neoplasias , Viscosidade , Animais , Embrião de Galinha , Camundongos , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Trocadores de Sódio-Hidrogênio/metabolismo , Canais de Cátion TRPV , Peixe-Zebra/metabolismo , Metástase Neoplásica/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Via de Sinalização Hippo , Esferoides Celulares/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina , Proteína rhoA de Ligação ao GTP , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pulmão/patologia
10.
Physiol Rev ; 100(2): 695-724, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751165

RESUMO

Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.


Assuntos
Microambiente Celular , Mecanotransdução Celular , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Forma Celular , Elasticidade , Humanos , Viscosidade
11.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856082

RESUMO

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.


Assuntos
Proliferação de Células , Mesoderma , Modelos Biológicos , Morfogênese , Tubo Neural , Animais , Mesoderma/embriologia , Mesoderma/citologia , Tubo Neural/embriologia , Tubo Neural/citologia , Codorniz/embriologia , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/fisiologia , Viscosidade
12.
Proc Natl Acad Sci U S A ; 121(40): e2319310121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39302997

RESUMO

Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer's viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of [Formula: see text] nematic defects and 5-7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell-cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems.


Assuntos
Movimento Celular , Fricção , Modelos Biológicos , Movimento Celular/fisiologia , Viscosidade
13.
Proc Natl Acad Sci U S A ; 121(31): e2407501121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042697

RESUMO

This study explores the impact of electrostatic interactions and hydrogen bonding on tear film stability, a crucial factor for ocular surface health. While mucosal and meibomian layers have been extensively studied, the role of electrolytes in the aqueous phase remains unclear. Dry eye syndrome, characterized by insufficient tear quantity or quality, is associated with hyperosmolality, making electrolyte composition an important factor that might impact tear stability. Using a model buffer solution on a silica glass dome, we simulated physiologically relevant tear film conditions. Sodium chloride alone induced premature dewetting through salt crystal nucleation. In contrast, trace amounts of solutes with hydroxyl groups (sodium phosphate dibasic, potassium phosphate monobasic, and glucose) exhibited intriguing phenomena: quasi-stable films, solutal Marangoni-driven fluid influx increasing film thickness, and viscous fingering due to Saffman-Taylor instability. These observations are rationalized by the association of salt solutions with increased surface tension and the propensity of hydroxyl-group-containing solutes to engage in significant hydrogen bonding, altering local viscosity. This creates a viscosity contrast between the bulk buffer solution and the film region. Moreover, these solutes shield the glass dome, counteracting sodium chloride crystallization. These insights not only advance our understanding of tear film mechanics but also pave the way for predictive diagnostics in dry eye syndrome, offering a robust platform for personalized medical interventions based on individual tear film composition.


Assuntos
Eletrólitos , Ligação de Hidrogênio , Lágrimas , Lágrimas/química , Eletrólitos/química , Humanos , Viscosidade , Cloreto de Sódio/química , Fosfatos/química , Tensão Superficial , Eletricidade Estática , Síndromes do Olho Seco/metabolismo , Molhabilidade , Compostos de Potássio
14.
Proc Natl Acad Sci U S A ; 121(43): e2405169121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39401351

RESUMO

Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (Nyctalus noctula), the nonhibernating Egyptian fruit bat (Rousettus aegyptiacus), and humans (Homo sapiens). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.


Assuntos
Quirópteros , Elasticidade , Eritrócitos , Hibernação , Quirópteros/fisiologia , Quirópteros/sangue , Hibernação/fisiologia , Humanos , Eritrócitos/fisiologia , Animais , Temperatura , Viscosidade , Membrana Eritrocítica/metabolismo , Viscosidade Sanguínea/fisiologia
15.
Proc Natl Acad Sci U S A ; 121(37): e2405560121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231206

RESUMO

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.


Assuntos
Caderinas , Movimento Celular , Receptores ErbB , Animais , Humanos , Junções Aderentes/metabolismo , Caderinas/metabolismo , Movimento Celular/fisiologia , Receptores ErbB/metabolismo , Fosforilação , Viscosidade
16.
Proc Natl Acad Sci U S A ; 120(9): e2216839120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802422

RESUMO

Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.


Assuntos
Citoesqueleto , Hidrodinâmica , Citoplasma/fisiologia , Membrana Celular , Microtúbulos , Viscosidade
17.
Nat Mater ; 23(9): 1283-1291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39085417

RESUMO

Living systems are complex dynamic entities that operate far from thermodynamic equilibrium. Their active, non-equilibrium behaviour requires energy to drive cellular organization and dynamics. Unfortunately, most statistical mechanics approaches are not valid in non-equilibrium situations, forcing researchers to use intricate and often invasive methods to study living processes. Here we experimentally demonstrate that an observable termed mean back relaxation quantifies the active mechanics of living cells from passively observed particle trajectories. The mean back relaxation represents the average trajectory of a particle after a recent motion and is calculated from three-point probabilities. We show that this parameter allows the detection of broken detailed balance in confined systems. We experimentally observe that it provides access to the non-equilibrium generating energy and viscoelastic properties of artificial bulk materials and living cells. These findings suggest that the mean back relaxation can function as a marker of non-equilibrium dynamics and is a non-invasive avenue to determine viscoelastic material properties from passive measurements.


Assuntos
Elasticidade , Viscosidade , Animais
18.
Proc Natl Acad Sci U S A ; 119(36): e2120538119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037347

RESUMO

Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature. Relevant to microfluidics, the resulting local, strong inertial effects allow manipulation of fluid and particles effectively, within short time scales and compact footprints. Nonetheless, practically, viscous streaming has been stymied by a narrow set of achievable flow topologies, limiting scope and application. Here, by moving away from classically employed microfeatures of uniform curvature, we experimentally show how multicurvature designs, computationally obtained, give rise, instead, to rich flow repertoires. The potential utility of these flows is then illustrated in compact, robust, and tunable devices for enhanced manipulation, filtering, and separation of both synthetic and biological particles. Overall, our mixed computational/experimental approach expands the scope of viscous streaming application, with opportunities in manufacturing, environment, health, and medicine, from particle self-assembly to microplastics removal.


Assuntos
Simulação por Computador , Microfluídica , Técnicas de Química Analítica , Viscosidade
19.
Proc Natl Acad Sci U S A ; 119(29): e2203116119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858310

RESUMO

We use magnetohydrodynamic levitation as a means to create a soft, elastomeric, solenoid-driven pump (ESP). We present a theoretical framework and fabrication of a pump designed to address the unique challenges of soft robotics, maintaining pumping performance under deformation. Using a permanent magnet as a piston and ferrofluid as a liquid seal, we model and construct a deformable displacement pump. The magnet is driven back and forth along the length of a flexible core tube by a series of solenoids made of thin conductive wire. The magnet piston is kept concentric within the tube by Maxwell stresses within the ferrofluid and magnetohydrodynamic levitation, as viscous lift pressure is created due to its forward velocity. The centering of the magnet reduces shear stresses during pumping and improves efficiency. We provide a predictive model and capture the transient nonlinear dynamics of the magnet during operation, leading to a parametric performance curve characterizing the ESP, enabling goal-driven design. In our experimental validation, we report a shut-off pressure of 2 to 8 kPa and run-out flow rate of 50 to 320 mL⋅min-1, while subject to deformation of its own length scale, drawing a total of 0.17 W. This performance leads to the highest reported duty point (i.e., pressure and flow rate provided under load) for a pump that operates under deformation of its own length scale. We then integrate the pump into an elastomeric chassis and squeeze it through a tortuous pathway while providing continuous fluid pressure and flow rate; the vehicle then emerges at the other end and propels itself swimming.


Assuntos
Coração Auxiliar , Robótica , Elasticidade , Desenho de Prótese , Viscosidade
20.
Proc Natl Acad Sci U S A ; 119(30): e2121147119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857875

RESUMO

Cell migration in confined environments is fundamental for diverse biological processes from cancer invasion to leukocyte trafficking. The cell body is propelled by the contractile force of actomyosin networks transmitted from the cell membrane to the external substrates. However, physical determinants of actomyosin-based migration capacity in confined environments are not fully understood. Here, we develop an in vitro migratory cell model, where cytoplasmic actomyosin networks are encapsulated into droplets surrounded by a lipid monolayer membrane. We find that the droplet can move when the actomyosin networks are bound to the membrane, in which the physical interaction between the contracting actomyosin networks and the membrane generates a propulsive force. The droplet moves faster when it has a larger contact area with the substrates, while narrower confinement reduces the migration speed. By combining experimental observations and active gel theory, we propose a mechanism where the balance between sliding friction force, which is a reaction force of the contractile force, and viscous drag determines the migration speed, providing a physical basis of actomyosin-based motility in confined environments.


Assuntos
Citoesqueleto de Actina , Actomiosina , Movimento Celular , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Fenômenos Mecânicos , Modelos Biológicos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa