RESUMO
Wigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia's genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly's vertebrate blood-specific diet. These Wigglesworthia-derived B-vitamins play essential nutritional roles to maintain tsetse's physiological homeostasis as well as that of other members of the fly's microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse's immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia. These amidases in turn exhibit antiparasitic activity and decrease tsetse's ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.
Assuntos
Moscas Tsé-Tsé , Wigglesworthia , Amidoidrolases/metabolismo , Animais , Antiparasitários/metabolismo , Simbiose , Moscas Tsé-Tsé/parasitologia , Moscas Tsé-Tsé/fisiologia , Vitaminas/metabolismo , Wigglesworthia/metabolismoRESUMO
BACKGROUND: Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. RESULTS: An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, 'translation, ribosomal structure and biogenesis' followed by 'coenzyme transport and metabolism' were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. CONCLUSIONS: These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies.
Assuntos
Moscas Tsé-Tsé , Animais , Enterobacteriaceae/genética , Humanos , Transcriptoma , Moscas Tsé-Tsé/genética , Wigglesworthia/genéticaRESUMO
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program 'Enhancing Vector Refractoriness to Trypanosome Infection', in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host's immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Simbiose/imunologia , Moscas Tsé-Tsé/microbiologia , Gorgulhos/microbiologia , Animais , Evolução Biológica , Enterobacteriaceae/imunologia , Controle de Pragas , Moscas Tsé-Tsé/imunologia , Gorgulhos/imunologia , Wigglesworthia/imunologia , Wolbachia/imunologiaRESUMO
BACKGROUND: Microbiota plays an important role in the biology, ecology and evolution of insects including tsetse flies. The bacterial profile of 3 Glossina palpalis gambiensis laboratory colonies was examined using 16S rRNA gene amplicon sequencing to evaluate the dynamics of the bacterial diversity within and between each G. p. gambiensis colony. RESULTS: The three G. p. gambiensis laboratory colonies displayed similar bacterial diversity indices and OTU distribution. Larval guts displayed a higher diversity when compared with the gastrointestinal tract of adults while no statistically significant differences were observed between testes and ovaries. Wigglesworthia and Sodalis were the most dominant taxa. In more detail, the gastrointestinal tract of adults was more enriched by Wigglesworthia while Sodalis were prominent in gonads. Interestingly, in larval guts a balanced co-existence between Wigglesworthia and Sodalis was observed. Sequences assigned to Wolbachia, Propionibacterium, and Providencia were also detected but to a much lesser degree. Clustering analysis indicated that the bacterial profile in G. p. gambiensis exhibits tissue tropism, hence distinguishing the gut bacterial profile from that present in reproductive organs. CONCLUSIONS: Our results indicated that age, gender and the origin of the laboratory colonies did not significantly influence the formation of the bacterial profile, once these populations were kept under the same rearing conditions. Within the laboratory populations a tissue tropism was observed between the gut and gonadal bacterial profile.
Assuntos
Bactérias/classificação , Variação Genética , Microbiota , Moscas Tsé-Tsé/microbiologia , Animais , Bactérias/isolamento & purificação , Enterobacteriaceae/genética , Feminino , Trato Gastrointestinal/microbiologia , Masculino , RNA Ribossômico 16S/genética , Simbiose , Wigglesworthia/genética , Wolbachia/genéticaRESUMO
Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetse's survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the host's nutritionally deficient diet. The absence of Wigglesworthia's contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.
Assuntos
Metaboloma , Simbiose , Transcriptoma , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/metabolismo , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Chaperonina 60/metabolismo , Feminino , Análise de Sequência de RNA , Moscas Tsé-Tsé/metabolismo , Complexo Vitamínico B/biossínteseRESUMO
Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between "Wigglesworthia morsitans" (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control.
Assuntos
Ácido Fólico/biossíntese , Simbiose , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia , Wigglesworthia/metabolismo , Animais , Reprodução , Wigglesworthia/fisiologiaRESUMO
The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to 10(6) normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.
Assuntos
Trato Gastrointestinal/microbiologia , Variação Genética , Microbiota , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/microbiologia , Animais , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose , Uganda , Wigglesworthia/genética , Wigglesworthia/isolamento & purificaçãoRESUMO
The viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse's obligate symbiont, Wigglesworthia glossinidia. In this study, we examined the role of Wigglesworthia-produced vitamin B6 for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse's reproductive cycle. We found that expression of agat, as well as genes involved in vitamin B6 metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6 in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast or Wigglesworthia extracts. RNA interference-mediated knockdown of agat in wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated with agat short interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence of Wigglesworthia in tsetse is critical for the maintenance of proline homeostasis through vitamin B6 production.
Assuntos
Fertilidade , Homeostase , Prolina/metabolismo , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia , Vitamina B 6/metabolismo , Wigglesworthia/metabolismo , Animais , Perfilação da Expressão Gênica , Simbiose , Transaminases/biossíntese , Moscas Tsé-Tsé/metabolismo , Wigglesworthia/fisiologiaRESUMO
Beneficial microbial symbionts serve important functions within their hosts, including dietary supplementation and maintenance of immune system homeostasis. Little is known about the mechanisms that enable these bacteria to induce specific host phenotypes during development and into adulthood. Here we used the tsetse fly, Glossina morsitans, and its obligate mutualist, Wigglesworthia glossinidia, to investigate the co-evolutionary adaptations that influence the development of host physiological processes. Wigglesworthia is maternally transmitted to tsetse's intrauterine larvae through milk gland secretions. We can produce flies that lack Wigglesworthia (Gmm(Wgm-) yet retain their other symbiotic microbes. Such offspring give rise to adults that exhibit a largely normal phenotype, with the exception being that they are reproductively sterile. Our results indicate that when reared under normal environmental conditions Gmm(Wgm-) adults are also immuno-compromised and highly susceptible to hemocoelic E. coli infections while age-matched wild-type individuals are refractory. Adults that lack Wigglesworthia during larval development exhibit exceptionally compromised cellular and humoral immune responses following microbial challenge, including reduced expression of genes that encode antimicrobial peptides (cecropin and attacin), hemocyte-mediated processes (thioester-containing proteins 2 and 4 and prophenoloxidase), and signal-mediating molecules (inducible nitric oxide synthase). Furthermore, Gmm(Wgm-) adults harbor a reduced population of sessile and circulating hemocytes, a phenomenon that likely results from a significant decrease in larval expression of serpent and lozenge, both of which are associated with the process of early hemocyte differentiation. Our results demonstrate that Wigglesworthia must be present during the development of immature progeny in order for the immune system to function properly in adult tsetse. This phenomenon provides evidence of yet another important physiological adaptation that further anchors the obligate symbiosis between tsetse and Wigglesworthia.
Assuntos
Simbiose/imunologia , Moscas Tsé-Tsé/imunologia , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/fisiologia , Animais , Sistema Imunitário/metabolismo , Larva/crescimento & desenvolvimento , Larva/imunologia , Simbiose/fisiologia , Moscas Tsé-Tsé/crescimento & desenvolvimentoRESUMO
Many insects rely on the presence of symbiotic bacteria for proper immune system function. However, the molecular mechanisms that underlie this phenomenon are poorly understood. Adult tsetse flies (Glossina spp.) house three symbiotic bacteria that are vertically transmitted from mother to offspring during this insect's unique viviparous mode of reproduction. Larval tsetse that undergo intrauterine development in the absence of their obligate mutualist, Wigglesworthia, exhibit a compromised immune system during adulthood. In this study, we characterize the immune phenotype of tsetse that develop in the absence of all of their endogenous symbiotic microbes. Aposymbiotic tsetse (Glossina morsitans morsitans [Gmm(Apo)]) present a severely compromised immune system that is characterized by the absence of phagocytic hemocytes and atypical expression of immunity-related genes. Correspondingly, these flies quickly succumb to infection with normally nonpathogenic Escherichia coli. The susceptible phenotype exhibited by Gmm(Apo) adults can be reversed when they receive hemocytes transplanted from wild-type donor flies prior to infection. Furthermore, the process of immune system development can be restored in intrauterine Gmm(Apo) larvae when their mothers are fed a diet supplemented with Wigglesworthia cell extracts. Our finding that molecular components of Wigglesworthia exhibit immunostimulatory activity within tsetse is representative of a novel evolutionary adaptation that steadfastly links an obligate symbiont with its host.
Assuntos
Hemócitos/imunologia , Simbiose/imunologia , Moscas Tsé-Tsé/imunologia , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/fisiologia , Adjuvantes Imunológicos/farmacologia , Animais , Resistência à Doença , Enterobacteriaceae/fisiologia , Escherichia coli/patogenicidade , Feminino , Perfilação da Expressão Gênica , Hemócitos/transplante , Hemolinfa/citologia , Imunidade Celular , Imunidade Humoral , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Larva/microbiologia , Extratos de Tecidos/farmacologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/crescimento & desenvolvimento , Wigglesworthia/química , Wigglesworthia/imunologia , Wolbachia/fisiologiaRESUMO
The tsetse fly Glossina is the vector of the protozoan Trypanosoma brucei spp., which causes Human and Animal African Trypanosomiasis in sub-Saharan African countries. To supplement their unbalanced vertebrate bloodmeal diet, flies permanently harbor the obligate bacterium Wigglesworthia glossinidia, which resides in bacteriocytes in the midgut bacteriome organ as well as in milk gland organ. Tsetse flies also harbor the secondary facultative endosymbionts (S-symbiont) Sodalis glossinidius that infects various tissues and Wolbachia that infects germ cells. Tsetse flies display viviparous reproductive biology where a single embryo hatches and completes its entire larval development in utero and receives nourishments in the form of milk secreted by mother's accessory glands (milk glands). To analyze the precise tissue distribution of the three endosymbiotic bacteria and to infer the way by which each symbiotic partner is transmitted from parent to progeny, we conducted a Fluorescence In situ Hybridization (FISH) study to survey bacterial spatial distribution across the fly tissues. We show that bacteriocytes are mono-infected with Wigglesworthia, while both Wigglesworthia and Sodalis are present in the milk gland lumen. Sodalis was further seen in the uterus, spermathecae, fat body, milk and intracellular in the milk gland cells. Contrary to Wigglesworthia and Sodalis, Wolbachia were the only bacteria infecting oocytes, trophocytes, and embryos at early embryonic stages. Furthermore, Wolbachia were not seen in the milk gland and in the fat body. This work further highlights the diversity of symbiont interactions in multipartner associations and supports two maternal routes of symbiont inheritance in the tsetse fly: Wolbachia through oocytes, and, Wigglesworthia and Sodalis by means of milk gland bacterial infection at early post-embryonic stages.
Assuntos
Enterobacteriaceae , Simbiose , Moscas Tsé-Tsé/microbiologia , Wigglesworthia , Wolbachia , Animais , Hibridização in Situ FluorescenteRESUMO
Tsetse flies have a highly regulated and defined microbial fauna made of 3 bacterial symbionts (obligate Wigglesworthia glossinidia, commensal Sodalis glossinidius and parasitic Wolbachia pipientis) in addition to a DNA virus (Glossina pallidipes Salivary gland Hypertrophy Virus, GpSGHV). It has been possible to rear flies in the absence of either Wigglesworthia or in totally aposymbiotic state by dietary supplementation of tsetse's bloodmeal. In the absence of Wigglesworthia, tsetse females are sterile, and adult progeny are immune compromised. The functional contributions for Sodalist are less known, while Wolbachia cause reproductive manupulations known as cytoplasmic incompatibility (CI). High GpSGHV virus titers result in reduced fecundity and lifespan, and have compromised efforts to colonize flies in the insectary for large rearing purposes. Here we investigated the within community effects on the density regulation of the individual microbiome partners in tsetse lines with different symbiotic compositions. We show that absence of Wigglesworthia results in loss of Sodalis in subsequent generations possibly due to nutritional dependancies between the symbiotic partners. While an initial decrease in Wolbachia and GpSGHV levels are also noted in the absence of Wigglesworthia, these infections eventually reach homeostatic levels indicating adaptations to the new host immune environment or nutritional ecology. Absence of all bacterial symbionts also results in an initial reduction of viral titers, which recover in the second generation. Our findings suggest that in addition to the host immune system, interdependencies between symbiotic partners result in a highly tuned density regulation for tsetse's microbiome.
Assuntos
Vírus de Insetos , Metagenoma , Moscas Tsé-Tsé/microbiologia , Animais , Infecções Bacterianas/transmissão , Vírus de DNA , Feminino , Masculino , Simbiose , Wigglesworthia , WolbachiaRESUMO
Sphingosine is a structural component of sphingolipids. The metabolism of phosphoethanolamine ceramide (sphingomyelin) by sphingomyelinase (SMase), followed by the breakdown of ceramide by ceramidase (CDase) yields sphingosine. Female tsetse fly is viviparous and generates a single progeny within her uterus during each gonotrophic cycle. The mother provides her offspring with nutrients required for development solely via intrauterine lactation. Quantitative PCR showed that acid smase1 (asmase1) increases in mother's milk gland during lactation. aSMase1 was detected in the milk gland and larval gut, indicating this protein is generated during lactation and consumed by the larva. The higher levels of SMase activity in larval gut contents indicate that this enzyme is activated by the low gut pH. In addition, cdase is expressed at high levels in the larval gut. Breakdown of the resulting ceramide is likely accomplished by the larval gut-secreted CDase, which allows absorption of sphingosine. We used the tsetse system to understand the critical role(s) of SMase and CDase during pregnancy and lactation and their downstream effects on adult progeny fitness. Reduction of asmase1 by short interfering RNA negatively impacted pregnancy and progeny performance, resulting in a 4-5-day extension in pregnancy, 10%-15% reduction in pupal mass, lower pupal hatch rates, impaired heat tolerance, reduced symbiont levels, and reduced fecundity of adult progeny. This study suggests that the SMase activity associated with tsetse lactation and larval digestion is similar in function to that of mammalian lactation and represents a critical process for juvenile development, with important effects on the health of progeny during their adulthood.
Assuntos
Proteínas de Insetos/metabolismo , Leite/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Moscas Tsé-Tsé/enzimologia , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , Sequência de Bases , Ceramidases/antagonistas & inibidores , Ceramidases/genética , Ceramidases/metabolismo , Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Concentração de Íons de Hidrogênio , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Lactação/genética , Lactação/metabolismo , Larva/crescimento & desenvolvimento , Modelos Biológicos , Filogenia , Gravidez , RNA Interferente Pequeno/genética , Especificidade da Espécie , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Simbiose , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/isolamento & purificaçãoRESUMO
The obligate mutualist Wigglesworthia morsitans provisions nutrients to tsetse flies. The symbiont's response to thiamine (B(1)) supplementation of blood meals, specifically towards the regulation of thiamine biosynthesis and population density, is described. Despite an ancient symbiosis and associated genome tailoring, Wigglesworthia responds to nutrient availability, potentially accommodating a decreased need.
Assuntos
Simbiose , Tiamina/metabolismo , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/genética , Wigglesworthia/fisiologia , Animais , Comportamento Alimentar , Expressão Gênica , Densidade Demográfica , Moscas Tsé-Tsé/metabolismo , Wigglesworthia/metabolismoRESUMO
It is possible to infer aspects of an organism's lifestyle from its gene content. Can the reverse also be done? Here we consider this issue by modelling evolution of the reduced genomes of endosymbiotic bacteria. The diversity of gene content in these bacteria may reflect both variation in selective forces and contingency-dependent loss of alternative pathways. Using an in silico representation of the metabolic network of Escherichia coli, we examine the role of contingency by repeatedly simulating the successive loss of genes while controlling for the environment. The minimal networks that result are variable in both gene content and number. Partially different metabolisms can thus evolve owing to contingency alone. The simulation outcomes do preserve a core metabolism, however, which is over-represented in strict intracellular bacteria. Moreover, differences between minimal networks based on lifestyle are predictable: by simulating their respective environmental conditions, we can model evolution of the gene content in Buchnera aphidicola and Wigglesworthia glossinidia with over 80% accuracy. We conclude that, at least for the particular cases considered here, gene content of an organism can be predicted with knowledge of its distant ancestors and its current lifestyle.
Assuntos
Evolução Biológica , Biologia Computacional , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Buchnera/genética , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genoma Bacteriano , Simbiose/genética , Wigglesworthia/genéticaRESUMO
Tsetse flies, the sole vectors of African trypanosomes, have coevolved with mutualistic endosymbiont Wigglesworthia glossinidiae. Elimination of Wigglesworthia renders tsetse sterile and increases their trypanosome infection susceptibility. We show that a tsetse peptidoglycan recognition protein (PGRP-LB) is crucial for symbiotic tolerance and trypanosome infection processes. Tsetse pgrp-lb is expressed in the Wigglesworthia-harboring organ (bacteriome) in the midgut, and its level of expression correlates with symbiont numbers. Adult tsetse cured of Wigglesworthia infections have significantly lower pgrp-lb levels than corresponding normal adults. RNA interference (RNAi)-mediated depletion of pgrp-lb results in the activation of the immune deficiency (IMD) signaling pathway and leads to the synthesis of antimicrobial peptides (AMPs), which decrease Wigglesworthia density. Depletion of pgrp-lb also increases the host's susceptibility to trypanosome infections. Finally, parasitized adults have significantly lower pgrp-lb levels than flies, which have successfully eliminated trypanosome infections. When both PGRP-LB and IMD immunity pathway functions are blocked, flies become unusually susceptible to parasitism. Based on the presence of conserved amidase domains, tsetse PGRP-LB may scavenge the peptidoglycan (PGN) released by Wigglesworthia and prevent the activation of symbiont-damaging host immune responses. In addition, tsetse PGRP-LB may have an anti-protozoal activity that confers parasite resistance. The symbiotic adaptations and the limited exposure of tsetse to foreign microbes may have led to the considerable differences in pgrp-lb expression and regulation noted in tsetse from that of closely related Drosophila. A dynamic interplay between Wigglesworthia and host immunity apparently is influential in tsetse's ability to transmit trypanosomes.
Assuntos
Proteínas de Transporte/metabolismo , Simbiose , Trypanosoma/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Wigglesworthia/fisiologia , Animais , Proteínas de Transporte/genética , Corpo Adiposo/metabolismo , Feminino , Regulação da Expressão Gênica , Homeostase , Imunidade Inata , Proteínas de Insetos/metabolismo , Parasitos/fisiologia , Fatores de Tempo , Moscas Tsé-Tsé/imunologia , Wigglesworthia/citologiaRESUMO
BACKGROUND: The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework. RESULTS: We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade. CONCLUSIONS: The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.
Assuntos
Enterobacteriaceae/genética , Filogenia , Simbiose , Teorema de Bayes , Buchnera/genética , Buchnera/fisiologia , DNA Bacteriano/genética , Enterobacteriaceae/fisiologia , Evolução Molecular , Genoma Bacteriano , Wigglesworthia/genética , Wigglesworthia/fisiologiaRESUMO
Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.
Assuntos
Variação Genética , Filogeografia , Simbiose , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/classificação , Wigglesworthia/isolamento & purificação , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Dados de Sequência Molecular , Protease La/genética , Análise de Sequência de DNA , Fatores de Elongação da Transcrição/genética , Moscas Tsé-Tsé/genética , Uganda , Wigglesworthia/genética , Wigglesworthia/fisiologiaRESUMO
Three different bacterial species are regularly described from tsetse flies. However, no broad screens have been performed to investigate the existence of other bacteria in this medically and agriculturally important vector insect. Utilising both culture dependent and independent methods we show that Kenyan populations of Glossina fuscipes fuscipes harbour a surprising diversity of bacteria. Bacteria were isolated from 72% of flies with 23 different bacterial species identified. The Firmicutes phylum dominated with 16 species of which seven belong to the genus Bacillus. The tsetse fly primary symbiont, Wigglesworthia glossinidia, was identified by the culture independent pathway. However, neither the secondary symbiont Sodalis nor Wolbachia was detected with either of the methods used. Two other bacterial species were identified with the DNA based method, Bacillus subtilis and Serratia marcescens. Further studies are needed to determine how tsetse flies, which only ever feed on vertebrate blood, pick up bacteria and to investigate the possible impact of these bacteria on Glossina longevity and vector competence.
Assuntos
Bactérias/genética , Moscas Tsé-Tsé/microbiologia , Animais , Bacillus subtilis/classificação , Bacillus subtilis/genética , Bactérias/classificação , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Serratia marcescens/classificação , Serratia marcescens/genética , Simbiose , Wigglesworthia/classificação , Wigglesworthia/genéticaRESUMO
Host-associated microbial interactions may involve genome complementation, driving-enhanced communal efficiency and stability. The tsetse fly (Diptera: Glossinidae), the obligate vector of African trypanosomes (Trypanosoma brucei subspp.), harbours two enteric Gammaproteobacteria symbionts: Wigglesworthia glossinidia and Sodalis glossinidius. Host coevolution has streamlined the Wigglesworthia genome to complement the exclusively sanguivorous tsetse lifestyle. Comparative genomics reveal that the Sodalis genome contains the majority of Wigglesworthia genes. This significant genomic overlap calls into question why tsetse maintains the coresidence of both symbionts and, furthermore, how symbiont homeostasis is maintained. One of the few distinctions between the Wigglesworthia and Sodalis genomes lies in thiamine biosynthesis. While Wigglesworthia can synthesize thiamine, Sodalis lacks this capability but retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine. This genetic complementation may represent the early convergence of metabolic pathways that may act to retain Wigglesworthia and evade species antagonism. We show that thiamine monophosphate, the specific thiamine derivative putatively synthesized by Wigglesworthia, impacts Sodalis thiamine transporter expression, proliferation and intracellular localization. A greater understanding of tsetse symbiont interactions may generate alternative control strategies for this significant medical and agricultural pest, while also providing insight into the evolution of microbial associations within hosts.