RESUMO
Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH. No significant differences were observed between the mixtures of theobromine (TBR) or XAT with IBP and DCF. Mixtures with various molar ratios were analyzed using differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy to further explore these interactions. The results were subjected to SVD. This analysis provides valuable insights into the differences in interaction strength and predicted interaction sites between XAT derivatives and APIs based on the combinations that form mixtures. The results also showed the impact of the XAT derivatives on the dissolution behavior of IBP and DCF. Although IBP and DCF were found to form intermolecular interactions with CFN and TPH, these effects resulted in a reduction of the solubility of IBP and an increase in the solubility of DCF. The current approach has the potential to predict various interactions that may occur in different combinations, thereby contributing to a better understanding of the impact of health supplements on pharmaceuticals.
Assuntos
Cafeína , Varredura Diferencial de Calorimetria , Ibuprofeno , Pós , Solubilidade , Difração de Raios X , Cafeína/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ibuprofeno/química , Varredura Diferencial de Calorimetria/métodos , Pós/química , Difração de Raios X/métodos , Teofilina/química , Cromatografia Líquida de Alta Pressão/métodos , Teobromina/química , Diclofenaco/química , Xantina/químicaRESUMO
Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.
Assuntos
Alopurinol , Paladar , Xantina , Alopurinol/química , Humanos , Xantina/química , Técnicas Biossensoriais/métodosRESUMO
Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.
Assuntos
Bloqueadores dos Canais de Potássio , Relação Estrutura-Atividade , Humanos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Sódio , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Xantina/química , Xantina/farmacologia , Técnicas de Patch-Clamp , Células HEK293 , Estrutura Molecular , Xantinas/química , Xantinas/farmacologiaRESUMO
Riboswitches are conserved functional domains in mRNA that mostly exist in bacteria. They regulate gene expression in response to varying concentrations of metabolites or metal ions. Recently, the NMT1 RNA motif has been identified to selectively bind xanthine and uric acid, respectively, both are involved in the metabolic pathway of purine degradation. Here, we report a crystal structure of this RNA bound to xanthine. Overall, the riboswitch exhibits a rod-like, continuously stacked fold composed of three stems and two internal junctions. The binding-pocket is determined by the highly conserved junctional sequence J1 between stem P1 and P2a, and engages a long-distance Watson-Crick base pair to junction J2. Xanthine inserts between a G-U pair from the major groove side and is sandwiched between base triples. Strikingly, a Mg2+ ion is inner-sphere coordinated to O6 of xanthine and a non-bridging oxygen of a backbone phosphate. Two further hydrated Mg2+ ions participate in extensive interactions between xanthine and the pocket. Our structure model is verified by ligand binding analysis to selected riboswitch mutants using isothermal titration calorimetry, and by fluorescence spectroscopic analysis of RNA folding using 2-aminopurine-modified variants. Together, our study highlights the principles of metal ion-mediated ligand recognition by the xanthine riboswitch.
Assuntos
Magnésio/química , Riboswitch , Xantina/química , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Dobramento de RNARESUMO
The research in the field of biosensors has recently been focused on the design and development of functional electrode materials that can respond to changes in their biochemical environment. Here, we report the synthesis of dicalcium phosphate dihydrate (DCPD), also known as brushite (CaHPO4·2H2O) by soft chemical method and its application for electrochemical sensing of four different analytes. Phase purity, structure, chemical composition and surface morphology of the synthesized nanoparticles have been investigated using powder XRD, FTIR, SEM, XPS and HRTEM methods. Electrochemical sensor was prepared by modifying GCE with brushite and the modified electrodes were successfully used for either independent or simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in their mixture. The brushite/GCE exhibited four strong well-defined separate peaks corresponding to the oxidation of UA, XN, HXN and CF in phosphate buffer saline (PBS) at pH 7.4. The fabricated electrode showed low detection limits (S/N = 3) of 0.576, 1.0, 0.076 and 1.26 µM for UA, XN, HXN and CF respectively. Practical application of the fabricated electrode has been demonstrated by determining UA, XN, HXN and CF in human urine and coffee samples by direct method. The brushite offers scope for fabrication of sensor systems for implantable medical applications.
Assuntos
Nanopartículas , Ácido Úrico , Humanos , Xantina/química , Xantina/urina , Hipoxantina/química , Hipoxantina/urina , Ácido Úrico/urina , Cafeína , Eletrodos , Técnicas Eletroquímicas , Ácido AscórbicoRESUMO
The neurotoxic, neuroprotective and MAO-B inhibitory effects of series N'-substituted 3-(1,3,7-trimethyl-xanthin-8-ylthio)propanehydrazides are evaluated. The results indicate compounds N'-(2,3-dimethoxybenzylidene)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)propanehydrazide (6k) and N'-(2-hydroxybenzylidene)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)propanehydrazide (6l) as most perspective. The performed QSTR analysis identified that the decreased lipophilicity and smaller dipole moments of the molecules are the structural features ensuring lower neurotoxicity. The obtained results may be used as initial information in the further design of (xanthinyl-8-ylthio)propanhydrazides with potential hMAOB inhibitory effect and pronounced neuroprotection.
Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Neuroproteção , Relação Estrutura-Atividade , Xantina/químicaRESUMO
Background We developed a novel high-sensitive assay for plasma xanthine oxidoreductase (XOR) activity that is not affected by the original serum uric acid level. However, the association of plasma XOR activity with that level has not been fully examined. Methods This cross-sectional study included 191 subjects (91 males, 100 females) registered in the MedCity21 health examination registry. Plasma XOR activity was determined using our assay for plasma XOR activity with [13C2,15N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. Serum levels of uric acid and adiponectin, and visceral fat area (VFA) obtained by computed tomography were measured, and insulin resistance was determined based on the homeostasis model assessment (HOMA-IR) index. Results The median values for uric acid and plasma XOR activity were 333 µmol/L and 26.1 pmol/h/mL, respectively. Multivariable linear regression analysis showed a significant and positive association of serum uric acid level (coefficient: 26.503; 95% confidence interval: 2.06, 50.945; p = 0.035) with plasma XOR activity independent of VFA and HOMA-IR, and also age, gender, alcohol drinking habit, systolic blood pressure, estimated glomerular filtration rate (eGFR), glycated hemoglobin A1c, triglyceride, and adiponectin levels. The "gender*XOR activity" interaction was not significant (p = 0.91), providing no evidence that gender modifies the relationship between plasma XOR activity and serum uric acid level. Conclusions Plasma XOR activity was found to be positively associated with serum uric acid level independent of other known confounding factors affecting that level, including gender difference, eGFR, adiponectin level, VFA, and HOMA-IR.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Ácido Úrico/sangue , Xantina Desidrogenase/sangue , Xantina/metabolismo , Idoso , Estudos Transversais , Feminino , Humanos , Resistência à Insulina , Gordura Intra-Abdominal , Marcação por Isótopo , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Xantina/química , Xantina Desidrogenase/metabolismoRESUMO
A novel hybrid with three-dimensional (3D) hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide (CuS@Pd/N-RGO) has been prepared by a facile wet-chemical route without utilizing any template molecules and surfactants. The characterization results reveal that the 3D flower-like structure of CuS "core" is composed of interconnecting nanoplates, which is conductive to the loading of Pd nanoparticles' "shell" and results in the robust interaction between the core and shell for the formation of CuS@Pd cauliflowers. Anchoring such appealing CuS@Pd cauliflowers on the two-dimensional N-RGO can efficaciously inhibit the aggregation of CuS@Pd cauliflowers and accelerate the kinetics of xanthine oxidation. Benefiting from the multi-functional properties and unique morphology, the sensor constructed by CuS@Pd/N-RGO exhibits excellent performance for non-enzymatic detection of xanthine including a wide detection range of 0.7-200.0 µM (0.94 V vs. SCE), a low detection limit of 28 nM (S/N = 3), high reproducibility (relative standard deviation (RSD) = 4.1%), and commendable stability (retained 90% of the initial electrochemical responses after storage for 30 days), which is amongst the best of various electrochemical sensors reported for xanthine assays till date. Reliable and satisfying recoveries (95-105%, RSD ≤ 4.1%) are achieved for xanthine detection in real samples. The inspiring results make the uniquely structural CuS@Pd/N-RGO greatly promising in non-enzymatic electrochemical sensing applications. Graphical abstract A high-performance non-enzymatic xanthine sensor has been constructed by the three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide.
Assuntos
Grafite/química , Nanopartículas Metálicas/química , Xantina/análise , Animais , Catálise , Galinhas , Cobre/química , Técnicas Eletroquímicas , Humanos , Cinética , Limite de Detecção , Nitrogênio/química , Oxirredução , Paládio/química , Reprodutibilidade dos Testes , Xantina/sangue , Xantina/química , Xantina/urinaRESUMO
Monodispersed Au nanoparticles in ordered mesoporous carbon/silica (Au/OMCS) nanocomposites were prepared by the solvent evaporation induced self-assembly. Au/OMCS nanocomposites were characterized through XRD, BET, and TEM. The obtained nanocomposites exhibit uniform mesopores with the size of 18 ± 2 nm. And ultrafine Au nanoparticles with the size of 3~7 nm are well dispersed in the cavities. An ultrasensitive nanoenzyme sensor was fabricated based on a Au/OMCS-modified electrode. The Au/OMCS-modified electrode displays high xanthine oxidase-like catalytic activity evaluated through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV response currents are linearly dependent on concentrations of xanthine (Xa) in the range 0.10-20 µM, along with a high sensitivity of 6.84 µA µM-1 cm-2 and very low detection limit of 0.006 µM (S/N = 3) under the optimal working potential of 0.64 V vs. SCE. Interference experiments show that the nanoenzyme sensor has no obvious responses to most potentially interfering species at a potential of 0.64 V. The fabricated sensor has been applied to the determination of Xa in spiked urine samples with recoveries ranging from 98.26 to 101.4%. Graphical abstract.
Assuntos
Carbono/química , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Xantina Oxidase/química , Xantina/químicaRESUMO
Flavonoids are natural phenolic compounds, which are the active ingredients in several dietary supplements. It is well-known that some flavonoid aglycones are potent inhibitors of the xanthine oxidase (XO)-catalyzed uric acid formation in vitro. However, the effects of conjugated flavonoid metabolites are poorly characterized. Furthermore, the inhibition of XO-catalyzed 6-mercaptopurine oxidation is an important reaction in the pharmacokinetics of this antitumor drug. The inhibitory effects of some compounds on xanthine vs. 6-mercaptopurine oxidation showed large differences. Nevertheless, we have only limited information regarding the impact of flavonoids on 6-mercaptopurine oxidation. In this study, we examined the interactions of flavonoid aglycones and some of their conjugates with XO-catalyzed xanthine and 6-mercaptopurine oxidation in vitro. Diosmetin was the strongest inhibitor of uric acid formation, while apigenin showed the highest effect on 6-thiouric acid production. Kaempferol, fisetin, geraldol, luteolin, diosmetin, and chrysoeriol proved to be similarly strong inhibitors of xanthine and 6-mercaptopurine oxidation. While apigenin, chrysin, and chrysin-7-sulfate were more potent inhibitors of 6-mercaptopurine than xanthine oxidation. Many flavonoids showed similar or stronger (even 5- to 40-fold) inhibition of XO than the positive control allopurinol. Based on these observations, the extremely high intake of flavonoids may interfere with the elimination of 6-mercaptopurine.
Assuntos
Flavonoides/farmacologia , Mercaptopurina/química , Oxirredução/efeitos dos fármacos , Xantina Oxidase/química , Xantina/química , Alopurinol/farmacologia , Catálise , Relação Dose-Resposta a DrogaRESUMO
The content of selected major nitrogen compounds including nucleosides and their derivatives was evaluated in 75 samples of seven varieties of honey (heather, buckwheat, black locust, goldenrod, canola, fir, linden) by targeted ultra-high performance liquid chromatography-diode array detector - high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and determined by UHPLC-DAD. The honey samples contained nucleosides, nucleobases and their derivatives (adenine: 8.9 to 18.4 mg/kg, xanthine: 1.2 to 3.3 mg/kg, uridine: 17.5 to 51.2 mg/kg, guanosine: 2.0 to 4.1 mg/kg; mean amounts), aromatic amino acids (tyrosine: 7.8 to 263.9 mg/kg, phenylalanine: 9.5 to 64.1 mg/kg; mean amounts). The amounts of compounds significantly differed between some honey types. For example, canola honey contained a much lower amount of uridine (17.5 ± 3.9 mg/kg) than black locust where it was most abundant (51.2 ± 7.8 mg/kg). The presence of free nucleosides and nucleobases in different honey varieties is reported first time and supports previous findings on medicinal activities of honey reported in the literature as well as traditional therapy and may contribute for their explanation. This applies, e.g., to the topical application of honey in herpes infections, as well as its beneficial activity on cognitive functions as nootropic and neuroprotective, in neuralgia and is also important for the understanding of nutritional values of honey.
Assuntos
Aminoácidos Aromáticos/química , Fagopyrum/química , Mel , Compostos de Nitrogênio/química , Adenina/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Nucleosídeos/química , Fenilalanina/química , Tilia/química , Tirosina/química , Uridina/química , Xantina/químicaRESUMO
Nephrolithiasis has been reported in several aquatic mammals including bottlenose dolphins (Tursiops truncatus), small clawed otters (Amblonyx cinereus), European river otters (Lutra lutra), North American river otters (Lontra canadensis), northern elephant seals (Mirounga angustirostris), Florida manatees (Trichechus manatus latirostris), and California sea lions (Zalophus californianus). Compositions of calculi in previous cases were predominantly calcium oxalate or ammonium acid urate. Xanthine urolithiasis is rare in veterinary medicine. Primary cases (without exposure to xanthine dehydrogenase inhibitors) occur as a consequence of hereditary xanthinuria, although the causal mutation has only been discovered in a subset of cases. Five captive juvenile giant otters (Pteronura brasiliensis) from two facilities were diagnosed with nephrolithiasis: three siblings from one set of parents and two siblings from another pair. Serum analyte assays revealed renal compromise in affected individuals. Computed tomography (CT) confirmed the presence of nephrolithiasis in one individual. Postmortem evaluation identified extensive bilateral nephrolithiasis on gross necropsy in four of five cases. Calculus analyses identified 100% xanthine composition. Histologic examination revealed marked nephrolithiasis with associated tubular necrosis and gastric mineralization. Nutrient composition of the diet including mineral and purine content was assessed. No association between diet and nephroliths was found in this study. This is the first report of xanthine nephrolithiasis in aquatic mammals. The potential role of diet and genetics in xanthine nephrolithiasis in the small inbred population of giant otters under human care needs further investigation to assess the implications of this disease process for the long-term captive management of this species.
Assuntos
Nefrolitíase/veterinária , Lontras , Xantina/química , Animais , Evolução Fatal , Feminino , Rim/química , Rim/patologia , Masculino , Nefrolitíase/mortalidade , Nefrolitíase/patologiaRESUMO
Owing to the pervasiveness of hydroxyl groups in natural isolates, alcohol derivatives are alluring directing groups. Herein, an alcohol-derived sulfamate ester guides the light-initiated xanthylation of primary, secondary, or tertiary centers. This process enables formal directed deuteration, azidation, thiolation, and vinylation reactions.
Assuntos
Alcanos/química , Ésteres/química , Ácidos Sulfônicos/química , Xantina/química , Modelos Moleculares , Conformação MolecularRESUMO
N9-Benzyl-substituted imidazo-, pyrimido- and 1,3-diazepino[2,1-f]purinediones were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blockade of monoamine oxidase B (MAO-B). A library of 37 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. A systematic modification of the tricyclic structures based on a xanthine core by enlargement of the third heterocyclic ring or attachment of various substituted benzyl moieties resulted in the development of 9-(2-chloro-6-fluorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (9u; Ki human A2AAR: 189â¯nM and IC50 human MAO-B: 570â¯nM) as the most potent dual acting ligand of the series displaying high selectivity versus related targets. Moreover, some potent, selective MAO-B inhibitors were identified in the group of pyrimido- and 1,3-diazepino[2,1-f]purinediones. Compound 10d (10-(3,4-dichlorobenzyl)-1,3-dimethyl-7,8,9,10-tetrahydro-1H-[1,3]diazepino[2,1-f]purine-2,4(3H,6H)-dione) displayed an IC50 value at human MAO-B of 83â¯nM. Analysis of structure-activity relationships was complemented by molecular docking studies based on previously published X-ray structures of the protein targets. An extended biological profile was determined for selected compounds including in vitro evaluation of potential hepatotoxicity calculated in silico and antioxidant properties as an additional desirable activity. The new molecules acting as dual target drugs may provide symptomatic relief as well as disease-modifying effects for neurodegenerative diseases, in particular Parkinson's disease.
Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Receptor A2A de Adenosina/metabolismo , Xantina/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade , Xantina/síntese química , Xantina/químicaRESUMO
One of the helpful ways to improve the effectiveness of anticancer agents and weaken drug resistance is to use hybrid molecules. therefore, the current study intended to introduce 20 novel xanthine/chalcone hybrids 9-28 of promising anticancer activity. Compounds 10, 11, 13, 14, 16, 20 and 23 exhibited potent inhibition of cancer cells growth with IC50 ranging from 1.0⯱â¯0.1 to 3.5⯱â¯0.4⯵M compared to doxorubicin with IC50 ranging from 0.90⯱â¯0.62 to 1.41⯱â¯0.58⯵M and that compounds 11 and 16 were the best. To verify the mechanism of their anticancer activity, compounds 10, 11, 13, 14, 16, 20 and 23 were evaluated for their EGFR inhibitory effect. The study results revealed that compound 11 showed IC50â¯=â¯0.3⯵M on the target enzyme which is more potent than staurosporine reference drug (IC50â¯=â¯0.4⯵M). Accordingly, the apoptotic effect of the most potent compounds 11 was extensively investigated and showed a marked increase in Bax level up to 29 folds, and down-regulation in Bcl2 to 0.28 fold, in comparison to the control. Furthermore, the effect of compound 11 on Caspases 3 and 8 was evaluated and was found to increase their levels by 8 and 14 folds, respectively. Also, the effect of compound 11 on the cell cycle and its cytotoxic effect were examined. Moreover, a molecular docking study was adopted to confirm mechanism of action.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalcona/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Xantina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Xantina/síntese química , Xantina/químicaRESUMO
Quercetin is an abundant flavonoid in nature and is used in several dietary supplements. Although quercetin is extensively metabolized by human enzymes and the colonic microflora, we have only few data regarding the pharmacokinetic interactions of its metabolites. Therefore, we investigated the interaction of human and microbial metabolites of quercetin with the xanthine oxidase enzyme. Inhibitory effects of five conjugates and 23 microbial metabolites were examined with 6-mercaptopurine and xanthine substrates (both at 5 µM), employing allopurinol as a positive control. Quercetin-3'-sulfate, isorhamnetin, tamarixetin, and pyrogallol proved to be strong inhibitors of xanthine oxidase. Sulfate and methyl conjugates were similarly strong inhibitors of both 6-mercaptopurine and xanthine oxidations (IC50 = 0.2-0.7 µM); however, pyrogallol inhibited xanthine oxidation (IC50 = 1.8 µM) with higher potency vs. 6-MP oxidation (IC50 = 10.1 µM). Sulfate and methyl conjugates were approximately ten-fold stronger inhibitors (IC50 = 0.2-0.6 µM) of 6-mercaptopurine oxidation than allopurinol (IC50 = 7.0 µM), and induced more potent inhibition compared to quercetin (IC50 = 1.4 µM). These observations highlight that some quercetin metabolites can exert similar or even a stronger inhibitory effect on xanthine oxidase than the parent compound, which may lead to the development of quercetin-drug interactions (e.g., with 6-mercaptopurin or azathioprine).
Assuntos
Quercetina/análogos & derivados , Quercetina/farmacologia , Xantina Oxidase/antagonistas & inibidores , Alopurinol/química , Alopurinol/farmacologia , Catálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução , Ligação Proteica , Quercetina/química , Quercetina/metabolismo , Relação Estrutura-Atividade , Xantina/química , Xantina/farmacologiaRESUMO
The retention behavior of a wide variety of stationary phases was compared in supercritical fluid chromatography (SFC) and normal-phase high-performance liquid chromatography (NP-HPLC). We also attempted to elucidate the retention behavior in SFC by investigating the selectivity of the different stationary phases. SFC separation conditions with polar stationary phases, such as silica gel (SL) and diol (Diol) phases, operate via adsorptions that include hydrophilic and ionic interactions similar to those in NP-HPLC. Moreover, non-polar stationary phases, such as pentabromophenyl (PBr), pyrenylethyl (PYE), and octadecyl (C18), could be used despite the non-polar mobile phase conditions, because the dispersion and π-π interactions were stronger in SFC than in HPLC. These results reflect the selectivity of the stationary phase and its retention factor, thus providing useful information for the selection of appropriate stationary phases for particular analytes.
Assuntos
Cromatografia com Fluido Supercrítico/métodos , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas , Íons , Xantina/químicaRESUMO
Among all PRT enzymes of purine salvage pathway in Leishmania, XPRT (Xanthine phosphoribosyl transferase) is unique in its substrate specificity and their non-existence in human. It is an interesting protein not only for drug designing but also to understand the molecular determinants of its substrate specificity. Analysis of the 3D model of L. donovani XPRT (Ld-XPRT) revealed that Ile 209, Glu 215 and Tyr 208 may be responsible for the altered substrate specificity of Ld-XPRT. Comparisons with it's nearest homologue in humans, revealed significant differences between the two. A 28 residue long unique motif was identified in Ld-XPRT, which showed highest fluctuation upon substrate binding during MD simulations. In kinetic analysis, Ld-XPRT could phosphoribosylate xanthine, hypoxanthine and guanine with Km values of 7.27, 8.13, 8.48µM and kcat values of 2.24, 1.82, 1.19min-1 respectively. Out of 159 compounds from docking studies, six compounds were characterized further by fluorescence spectroscopy, CD spectroscopy and enzyme inhibition studies. Fluorescence quenching experiment was performed to study the binding of inhibitors with Ld-XPRT and dissociation constants were calculated. Four compounds are bi-substrate analogues and show competitive inhibition with both the substrates (Xanthine and PRPP) of Ld-XPRT. The CD spectral analysis revealed that the binding of inhibitors to Ld-XPRT induce change in its tertiary structure, where as its secondary structure pattern remains unchanged. Two Ld-XPRT inhibitors (dGDP and cGMP), which also have ability to inhibit Leishmanial HGPRT, are predicted as potential drug candidates as it can inhibit both the important enzymes of the purine salvage pathway.
Assuntos
Leishmania donovani/enzimologia , Pentosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Xantina/metabolismo , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Guanina/química , Guanina/metabolismo , Humanos , Hipoxantina/química , Hipoxantina/metabolismo , Cinética , Leishmania donovani/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pentosiltransferases/classificação , Pentosiltransferases/genética , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xantina/químicaRESUMO
The genome of the Honeybee bacterial pathogen, Paenibacillus larvae, encodes for protein a with substantial amino acid sequence similarity to the canonical Escherichia coli uracil transporter UraA. P. larvae expresses the uracil permease (PlUP) locus, and is sensitive to the presence of the toxic uracil analog 5-fluorouracil under vegetative growth conditions. The solute transport and binding profile of PlUP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUP is specific for the transport of uracil and competitively binds xanthine and uric acid. Further biochemical characterization reveals that PlUP has a strong affinity for uracil with a Km 19.5⯱â¯1.6⯵M. Uracil transport is diminished in the presence of the proton disruptor carbonyl cyanide m-chlorophenylhydrazone, but not by the sodium gradient disruptor Ouabain.
Assuntos
Proteínas de Bactérias/metabolismo , Abelhas/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Paenibacillus larvae/metabolismo , Uracila/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Paenibacillus larvae/química , Paenibacillus larvae/genética , Especificidade por Substrato , Uracila/química , Ácido Úrico/química , Ácido Úrico/metabolismo , Xantina/química , Xantina/metabolismoRESUMO
A mixture of pharmaceuticals having a xanthine skeleton, theophylline, proxyphylline, diprophylline and (-)-epigallocatechin-3-O-gallate (EGCg) in water created a sticky precipitates, which were thought to be 2 : 2 complexes of the pharmaceuticals and EGCg. The molecular capture ability of the pharmaceuticals having a xanthine skeleton by EGCg was estimated by the amount of the pharmaceuticals included in the precipitates of the complexes, and measured by the integrated value of proton signals in the quantitative 1H-NMR spectra. Based on changes in chemical shifts of proton signals of the pharmaceuticals with a xanthine skeleton in 1H-NMR spectra by adding standard amounts of EGCg, the xanthine skeleton of the pharmaceuticals was considered to exist in the hydrophobic space formed by the three aromatic A, B, B' rings of EGCg, and a part of the proxyphylline and diprophylline side chains existed out of the hydrophobic space. In the 1H-NMR spectra of the mixture of (R)- and (S)-proxyphylline, (R)- and (S)-diprophylline and an equimolecular amount of EGCg, the N3-CH3 signal of (R)- and (S)-proxyphylline, and (R)- and (S)-diprophylline was clearly observed as two singlets. This suggested that EGCg recognized the chirality of proxyphylline and diprophylline in water.