Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Bioorg Med Chem Lett ; 30(18): 127421, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717613

RESUMO

The discovery of how a photon is converted into a chemical signal is one of the most important achievements in the field of vision. A key molecule in this process is the visual chromophore retinal. Several eye diseases are attributed to the abnormal metabolism of retinal in the retina and the retinal pigment epithelium. Also, the accumulation of two toxic retinal derivatives, N-retinylidene-N-retinylethanolamine and the retinal dimer, can damage the retina leading to blindness. RPE65 (Retinal pigment epithelium-specific 65 kDa protein) is one of the central enzymes that regulates the metabolism of retinal and the formation of its toxic metabolites. Its inhibition might decrease the rate of the retina's degeneration by limiting the amount of retinal and its toxic byproducts. Two RPE65 inhibitors, (R)-emixustat and (R)-MB001, were recently developed for this purpose.


Assuntos
Inibidores Enzimáticos/síntese química , Éteres Fenílicos/síntese química , Propanolaminas/síntese química , Degeneração Retiniana/tratamento farmacológico , cis-trans-Isomerases/antagonistas & inibidores , Alcanos/química , Inibidores Enzimáticos/farmacologia , Halogenação , Humanos , Isomerismo , Modelos Moleculares , Conformação Molecular , Preparações Farmacêuticas/síntese química , Éteres Fenílicos/farmacologia , Propanolaminas/farmacologia , Retina/metabolismo , Retinaldeído/análogos & derivados , Retinaldeído/metabolismo , Relação Estrutura-Atividade
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2420-2429, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684583

RESUMO

The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC50 of 6 µM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration.


Assuntos
Inibidores Enzimáticos/farmacologia , Degeneração Retiniana , Visão Ocular , cis-trans-Isomerases , Animais , Diterpenos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/enzimologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Ésteres de Retinil , Visão Ocular/efeitos dos fármacos , Visão Ocular/genética , Vitamina A/análogos & derivados , Vitamina A/metabolismo , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
3.
J Biol Chem ; 291(10): 4966-73, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26719343

RESUMO

RPE65 is the isomerase catalyzing conversion of all-trans-retinyl ester (atRE) into 11-cis-retinol in the retinal visual cycle. Crystal structures of RPE65 and site-directed mutagenesis reveal aspects of its catalytic mechanism, especially retinyl moiety isomerization, but other aspects remain to be determined. To investigate potential interactions between RPE65 and lipid metabolism enzymes, HEK293-F cells were transfected with expression vectors for visual cycle proteins and co-transfected with either fatty acyl:CoA ligases (ACSLs) 1, 3, or 6 or the SLC27A family fatty acyl-CoA synthase FATP2/SLCA27A2 to test their effect on isomerase activity. These experiments showed that RPE65 activity was reduced by co-expression of ACSLs or FATP2. Surprisingly, however, in attempting to relieve the ACSL-mediated inhibition, we discovered that triacsin C, an inhibitor of ACSLs, also potently inhibited RPE65 isomerase activity in cellulo. We found triacsin C to be a competitive inhibitor of RPE65 (IC50 = 500 nm). We confirmed that triacsin C competes directly with atRE by incubating membranes prepared from chicken RPE65-transfected cells with liposomes containing 0-1 µM atRE. Other inhibitors of ACSLs had modest inhibitory effects compared with triascin C. In conclusion, we have identified an inhibitor of ACSLs as a potent inhibitor of RPE65 that competes with the atRE substrate of RPE65 for binding. Triacsin C, with an alkenyl chain resembling but not identical to either acyl or retinyl chains, may compete with binding of the acyl moiety of atRE via the alkenyl moiety. Its inhibitory effect, however, may reside in its nitrosohydrazone/triazene moiety.


Assuntos
Inibidores Enzimáticos/farmacologia , Triazenos/farmacologia , cis-trans-Isomerases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Coenzima A Ligases/antagonistas & inibidores , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
4.
J Pharmacol Exp Ther ; 362(1): 131-145, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28476927

RESUMO

Modulators of the visual cycle have been developed for treatment of various retinal disorders. These agents were designed to inhibit retinoid isomerase [retinal pigment epithelium-specific 65 kDa protein (RPE65)], the rate-limiting enzyme of the visual cycle, based on the idea that attenuation of visual pigment regeneration could reduce formation of toxic retinal conjugates. Of these agents, certain ones that contain primary amine groups can also reversibly form retinaldehyde Schiff base adducts, which contributes to their retinal protective activity. Direct inhibition of RPE65 as a therapeutic strategy is complicated by adverse effects resulting from slowed chromophore regeneration, whereas effective retinal sequestration can require high drug doses with potential off-target effects. We hypothesized that the RPE65-emixustat crystal structure could help guide the design of retinaldehyde-sequestering agents with varying degrees of RPE65 inhibitory activity. We found that addition of an isopropyl group to the central phenyl ring of emixustat and related compounds resulted in agents effectively lacking in vitro retinoid isomerase inhibitory activity, whereas substitution of the terminal 6-membered ring with branched moieties capable of stronger RPE65 interaction potentiated inhibition. The isopropyl derivative series produced discernible visual cycle suppression in vivo, albeit much less potently than compounds with a high affinity for the RPE65 active site. These agents were distributed into the retina and formed Schiff base adducts with retinaldehyde. Except for one compound [3-amino-1-(3-isopropyl-5-((2,6,6-trimethylcyclohex-1-en-1-yl)methoxy)phenyl)propan-1-ol (MB-007)], these agents conferred protection against retinal phototoxicity, suggesting that both direct RPE65 inhibition and retinal sequestration are mechanisms of potential therapeutic relevance.


Assuntos
Visão Ocular/efeitos dos fármacos , cis-trans-Isomerases/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Sítios de Ligação , Bovinos , Dermatite Fototóxica/prevenção & controle , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/enzimologia , Modelos Moleculares , Epitélio Pigmentado Ocular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Doenças Retinianas/prevenção & controle , Epitélio Pigmentado da Retina/efeitos dos fármacos , Bases de Schiff/química , cis-trans-Isomerases/química , cis-trans-Isomerases/genética , cis-trans-Isomerases/isolamento & purificação , cis-trans-Isomerases/metabolismo
5.
Nat Chem Biol ; 11(6): 409-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25894083

RESUMO

Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.


Assuntos
Epitélio Pigmentado da Retina/enzimologia , Retinoides/farmacologia , Visão Ocular/efeitos dos fármacos , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/química , Animais , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Diterpenos/síntese química , Diterpenos/química , Diterpenos/farmacologia , Ligantes , Luz , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Palmitatos , Éteres Fenílicos/síntese química , Éteres Fenílicos/química , Éteres Fenílicos/farmacologia , Propanolaminas/síntese química , Propanolaminas/química , Propanolaminas/farmacologia , Ligação Proteica , Conformação Proteica , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos da radiação , Retinoides/síntese química , Retinoides/química , Estereoisomerismo , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação
6.
FASEB J ; 29(1): 216-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326538

RESUMO

A cycle of cis-to-trans isomerization of the chromophore is intrinsic to vertebrate vision where rod and cone photoreceptors mediate dim- and bright-light vision, respectively. Daylight illumination can greatly exceed the rate at which the photoproduct can be recycled back to the chromophore by the canonical visual cycle. Thus, an additional supply pathway(s) must exist to sustain cone-dependent vision. Two-photon microscopy revealed that the eyes of the zebrafish (Danio rerio) contain high levels of 11-cis-retinyl esters (11-REs) within the retinal pigment epithelium. HPLC analyses demonstrate that 11-REs are bleached by bright light and regenerated in the dark. Pharmacologic treatment with all-trans-retinylamine (Ret-NH2), a potent and specific inhibitor of the trans-to-cis reisomerization reaction of the canonical visual cycle, impeded the regeneration of 11-REs. Intervention with 11-cis-retinol restored the regeneration of 11-REs in the presence of all-trans-Ret-NH2. We used the XOPS:mCFP transgenic zebrafish line with a functional cone-only retina to directly demonstrate that this 11-RE cycle is critical to maintain vision under bright-light conditions. Thus, our analyses reveal that a dark-generated pool of 11-REs helps to supply photoreceptors with the chromophore under the varying light conditions present in natural environments.


Assuntos
Células Fotorreceptoras Retinianas Cones/fisiologia , Retinoides/metabolismo , Visão Ocular/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Luz , Modelos Biológicos , Mutação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Retinoides/química , Distribuição Tecidual , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/metabolismo
7.
Retina ; 35(6): 1173-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25932553

RESUMO

PURPOSE: This study assessed the safety, tolerability, and pharmacodynamics of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in subjects with geographic atrophy associated with dry age-related macular degeneration. METHODS: Subjects were randomly assigned to oral emixustat (2, 5, 7, or 10 mg once daily) or placebo (3:1 ratio) for 90 days. Recovery of rod photoreceptor sensitivity after a photobleach was measured by electroretinography. Safety evaluations included analysis of adverse events and ophthalmic examinations. RESULTS: Seventy-two subjects (54 emixustat and 18 placebo) were evaluated. Emixustat suppressed rod photoreceptor sensitivity in a dose-dependent manner. Suppression plateaued by Day 14 and was reversible within 7 days to 14 days after drug cessation. Most systemic adverse events were not considered treatment related. Dose-related ocular adverse events (chromatopsia, 57% emixustat vs. 17% placebo and delayed dark adaptation, 48% emixustat vs. 6% placebo) were mild to moderate in severity, and the majority resolved on study or within 7 days to 14 days after study drug cessation. Reversibility of these adverse events with long-term administration, however, is undetermined. CONCLUSION: In this Phase II study, emixustat produced a dose-dependent reversible effect on rod function that is consistent with the proposed mechanism of action. These results support further testing of emixustat for the treatment of geographic atrophy associated with dry age-related macular degeneration.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Atrofia Geográfica/tratamento farmacológico , Éteres Fenílicos/administração & dosagem , Propanolaminas/administração & dosagem , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , cis-trans-Isomerases/antagonistas & inibidores , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Adaptação à Escuridão , Relação Dose-Resposta a Droga , Método Duplo-Cego , Eletrorretinografia , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Feminino , Atrofia Geográfica/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Éteres Fenílicos/efeitos adversos , Éteres Fenílicos/farmacologia , Propanolaminas/efeitos adversos , Propanolaminas/farmacologia , Acuidade Visual/fisiologia
8.
J Neurosci ; 33(7): 3178-89, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407971

RESUMO

Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage.


Assuntos
Proteínas de Transporte de Ácido Graxo/farmacologia , Luz , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , cis-trans-Isomerases/antagonistas & inibidores , Acetiltransferases/farmacologia , Oxirredutases do Álcool/metabolismo , Animais , Western Blotting , Células Cultivadas , Eletrorretinografia , Elongases de Ácidos Graxos , Proteínas de Transporte de Ácido Graxo/genética , Regulação da Expressão Gênica/fisiologia , Biblioteca Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elongação Traducional da Cadeia Peptídica , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Retinoides/metabolismo , Transfecção , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
9.
Top Curr Chem ; 328: 35-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-21598101

RESUMO

Peptide bond cis/trans isomerases (PCTIases) catalyze an intrinsically slow rotational motion taking part in the conformational dynamics of a protein backbone in all of its folding states. In this way, PCTIases assist other proteins to shape their functionally active structure. They have been associated with viral, bacterial, and parasitic infection, signal transduction, cell differentiation, altered metabolic activity, apoptosis, and many other physiological and pathophysiological processes. The need to understand, characterize, and control biochemical steps which contribute to the folding of proteins is a problem being addressed in many laboratories today. This review discusses the biochemical basis that the peptidyl prolyl cis/trans isomerase (PPIase) family of PCTIases uses for the control of bioactivity. Special emphasis is given to recent developments in the field of biocatalytic features of PPIases, the mechanism of catalysis, and enzyme inhibition.


Assuntos
Peptídeos/química , cis-trans-Isomerases/metabolismo , Biocatálise , Inibidores Enzimáticos/farmacologia , Conformação Proteica , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/química
10.
Invest Ophthalmol Vis Sci ; 61(6): 8, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32492112

RESUMO

Purpose: Extracellular accumulation of all-trans-retinaldehyde (atRAL), a highly reactive visual cycle intermediate, is toxic to cells of the outer retina and contributes to retinal and macular degenerations. However, the contribution of atRAL to retinal capillary function has not been studied. We hypothesized that atRAL released from the outer retina can contribute to retinal vascular permeability. We, therefore, tested the contribution of atRAL to retinal ischemia-reperfusion (IR)-induced vascular permeability. Methods: IR was induced in mice by transient increase in intraocular pressure followed by natural reperfusion. The visual cycle was ablated in the Lrat-/- mice, reduced by dark adaptation or the use of the RPE65 inhibitor and atRAL scavenger emixustat. Accumulation of FITC-BSA was used to assess vascular permeability and DNA fragmentation quantified cell death after IR. Primary bovine retinal endothelial cell (BREC) culture was used to measure the direct effects of atRAL on endothelial permeability and cell death. Results: Inhibition of the visual cycle by Lrat-/-, dark adaptation, or with emixustat, all reduced approximately half of IR induced vascular permeability at 48 hours. An increase in BREC permeability with atRAL coincided with lactate dehydrogenase (LDH) release, a measure of cell death. Both permeability and toxicity were blocked by emixustat. Conclusions: Outer retinal pathology may contribute to vascular permeability by release of atRAL, which can act directly on vascular endothelial cells to alter barrier properties and induce cell death. These studies may have implications for a variety of blinding eye diseases that include outer retinal damage and retinal vascular permeability.


Assuntos
Permeabilidade Capilar/fisiologia , Traumatismo por Reperfusão/metabolismo , Vasos Retinianos/metabolismo , Retinaldeído/fisiologia , Animais , Bovinos , Morte Celular , Fragmentação do DNA , Adaptação à Escuridão , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Pressão Intraocular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Propanolaminas/farmacologia , cis-trans-Isomerases/antagonistas & inibidores
11.
Invest Ophthalmol Vis Sci ; 60(14): 4924-4930, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770432

RESUMO

Purpose: In the dark, photoreceptor outer segments contain high levels of cyclic guanosine 3'-5' monophosphate (cGMP), which binds to ion channels, holding them open and allowing an influx of cations. Ion pumping activity, which balances cation influx, uses considerable amounts of adenosine triphosphate (ATP) and oxygen. Light reduces cation influx and thereby lowers metabolic demand. Blood vessels are compromised in the diabetic retina and may not be able to meet the higher metabolic demand in darkness. Emixustat is a visual cycle modulator (VCM) that reduces chromophore levels and, therefore, may mimic light conditions. We evaluated the effect of emixustat on oxygen consumption and cation influx in dark conditions. Methods: Cation influx was measured in rats using Mn2+-magnetic resonance imaging (MEMRI). Retinal oxygen profiles were recorded to evaluate oxygen consumption. In the MEMRI protocol, animals were treated with either emixustat or vehicle. In the oxygen protocol, animals were untreated or treated with emixustat. Results: In vehicle-treated animals, cation channel activity increased in the dark. Emixustat treatment reduced cation channel activity; activity was comparable to vehicle-treated controls in light conditions. In vehicle-treated animals, minimum retinal oxygen tension decreased as the retina recovered from a photobleach, indicating that more oxygen was being consumed. Emixustat treatment prevented the decrease in oxygen pressure after photobleach. Conclusions: Emixustat reduced the cation influx and retinal oxygen consumption associated with dark conditions. VCMs are a promising potential treatment for ischemic retinal neovascularization, such as that in diabetic retinopathy.


Assuntos
Adaptação à Escuridão/fisiologia , Manganês/metabolismo , Consumo de Oxigênio/fisiologia , Éteres Fenílicos/farmacologia , Propanolaminas/farmacologia , Retina/efeitos dos fármacos , Animais , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Long-Evans , Retina/metabolismo , cis-trans-Isomerases/antagonistas & inibidores
12.
Expert Opin Pharmacother ; 19(5): 471-481, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542350

RESUMO

INTRODUCTION: Pharmacotherapy with visual cycle modulators (VCMs) is under investigation for retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related macular degeneration (AMD), all blinding diseases that lack effective treatment options. AREAS COVERED: The authors review investigational VCMs, including oral retinoids, 9-cis-retinyl-acetate (zuretinol) and 9-cis-ß-carotene, which restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene mutations, and may improve visual acuity and visual fields. Therapies for SMD aiming to decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Mouse models of SMD show promising data for these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and emixustat are investigational VCMs for dry AMD, though neither has been shown to reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia and chromatopsia) per mouse studies. EXPERT OPINION: Oral VCMs may be feasible treatment options for degenerative retinal diseases based on pre-clinical and some early clinical studies. Further trials are warranted to assess their efficacy and safety in humans.


Assuntos
Doenças Retinianas/tratamento farmacológico , Retinoides/uso terapêutico , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Diterpenos , Humanos , Isotretinoína/uso terapêutico , Éteres Fenílicos/uso terapêutico , Propanolaminas/uso terapêutico , Doenças Retinianas/patologia , Ésteres de Retinil , Vitamina A/análogos & derivados , Vitamina A/uso terapêutico , beta Caroteno/uso terapêutico , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
13.
J Gen Physiol ; 150(4): 571-590, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500274

RESUMO

Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1-/- mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.


Assuntos
Células Fotorreceptoras/efeitos dos fármacos , Visão Ocular , cis-trans-Isomerases/antagonistas & inibidores , Adaptação Fisiológica , Animais , Diterpenos/farmacologia , Inibidores Enzimáticos/farmacologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Éteres Fenílicos/farmacologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiologia , Propanolaminas/farmacologia , Sciuridae , Transducina/genética , cis-trans-Isomerases/metabolismo
14.
Biochim Biophys Acta ; 1651(1-2): 93-101, 2003 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-14499593

RESUMO

The endergonic trans-->cis isomerization of retinoids is an essential element in rhodopsin regeneration in vertebrates. All-trans-retinyl esters, which are generated by lecithin retinol acyltransferase (LRAT), are on the isomerization pathway. The critical isomerohydrolase activity, which catalyzes the trans-->cis isomerization/hydrolysis reaction of all-trans-retinyl esters, remains to be identified. It is demonstrated here that 11-cis-retinyl bromoacetate (cRBA) is a potent and specific inactivator of the bovine retinyl pigment epithelial (RPE) isomerohydrolase activity, with a measured K(I)=0.19 microM and a pseudo-first-order rate of inactivation k(inh)=1.83 x 10(-3) s(-1). This demonstrates that the isomerization is indeed enzyme-mediated. This inactivator should facilitate the identification and study of isomerohydrolase, or at least an essential component of it. Labeling of crude RPE membranes with 3H-cRBA reveals the presence of several labeled bands that may be isomerohydrolase candidates.


Assuntos
Diterpenos/farmacologia , Inibidores Enzimáticos/farmacologia , Hidrolases/antagonistas & inibidores , cis-trans-Isomerases/antagonistas & inibidores , Aciltransferases/metabolismo , Animais , Bovinos , Diterpenos/química , Diterpenos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ésteres/química , Ésteres/metabolismo , Hidrolases/metabolismo , Isomerismo , Estrutura Molecular , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/enzimologia , Ésteres de Retinil , Vitamina A/química , Vitamina A/metabolismo , cis-trans-Isomerases/metabolismo
15.
Drug Metab Pers Ther ; 30(1): 49-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25283137

RESUMO

BACKGROUND: Chloral hydrate (CH), a sedative and metabolite of the environmental contaminant trichloroethylene, is metabolized to trichloroacetic acid, trichloroethanol, and possibly dichloroacetate (DCA). DCA is further metabolized by glutathione transferase zeta 1 (GSTZ1), which is identical to maleylacetoacetate isomerase (MAAI), the penultimate enzyme in tyrosine catabolism. DCA inhibits its own metabolism through depletion/inactivation of GSTZ1/MAAI with repeated exposure, resulting in lower plasma clearance of the drug and the accumulation of the urinary biomarker maleylacetone (MA), a metabolite of tyrosine. It is unknown if GSTZ1/MAAI may participate in the metabolism of CH or any of its metabolites and, therefore, affect tyrosine catabolism. Stable isotopes were utilized to determine the biotransformation of CH, the kinetics of its major metabolites, and the influence, if any, of GSTZ1/MAAI. METHODS: Eight healthy volunteers (ages 21-40 years) received a dose of 1 g of CH (clinical dose) or 1.5 µg/kg (environmental) for five consecutive days. Plasma and urinary samples were analyzed by gas chromatography-mass spectrometry. RESULTS: Plasma DCA (1.2-2.4 µg/mL), metabolized from CH, was measured on the fifth day of the 1 g/day CH dosage but was undetectable in plasma at environmentally relevant doses. Pharmacokinetic measurements from CH metabolites did not differ between slow and fast GSTZ1 haplotypes. Urinary MA levels increased from undetectable to 0.2-0.7 µg/g creatinine with repeated CH clinical dose exposure. Kinetic modeling of a clinical dose of 25 mg/kg DCA administered after 5 days of 1 g/day CH closely resembled DCA kinetics obtained in previously naïve individuals. CONCLUSIONS: These data indicate that the amount of DCA produced from clinically relevant doses of CH, although insufficient to alter DCA kinetics, is sufficient to inhibit MAAI and tyrosine catabolism, as evidenced by the accumulation of urinary MA.


Assuntos
Hidrato de Cloral/metabolismo , Ácido Dicloroacético/metabolismo , Hipnóticos e Sedativos/metabolismo , Tirosina/metabolismo , cis-trans-Isomerases/antagonistas & inibidores , Acetona/análogos & derivados , Acetona/urina , Adulto , Biomarcadores/urina , Feminino , Glutationa Transferase/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Maleatos/urina , Adulto Jovem , cis-trans-Isomerases/urina
16.
PLoS One ; 10(12): e0145305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26694648

RESUMO

A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from light damage. There is potential in developing these compounds as preventative therapeutics for the treatment of human retinal degenerations in which the accumulation of lipofuscin may be pathogenic.


Assuntos
Óxidos N-Cíclicos/administração & dosagem , Luz/efeitos adversos , Doenças Retinianas/prevenção & controle , Epitélio Pigmentado da Retina/efeitos dos fármacos , Rodopsina/metabolismo , Animais , Bovinos , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/farmacologia , Feminino , Injeções Intraperitoneais , Masculino , Camundongos , Papio anubis , Ratos , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/metabolismo
17.
FEBS J ; 282(20): 3986-4000, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26257333

RESUMO

The first three enzymatic steps of the strigolactone biosynthetic pathway catalysed by ß-carotene cis-trans isomerase Dwarf27 (D27) from Oryza sativa and carotenoid cleavage dioxygenases CCD7 and CCD8 from Arabidopsis thaliana have been reconstituted in vitro, and kinetic assays have been developed for each enzyme, in order to develop selective enzyme inhibitors. Recombinant OsD27 shows a UV-visible λmax at 422 nm and is inactivated by silver(I) acetate, consistent with the presence of an iron-sulfur cluster that is used in catalysis. OsD27 and AtCCD7 are not inhibited by hydroxamic acids that cause shoot branching in planta, but OsD27 is partially inhibited by terpene-like hydroxamic acids. The reaction catalysed by AtCCD8 is shown to be a two-step kinetic mechanism using pre-steady-state kinetic analysis. Kinetic evidence is presented for acid-base catalysis in the CCD8 catalytic cycle and the existence of an essential cysteine residue in the CCD8 active site. AtCCD8 is inhibited in a time-dependent fashion by hydroxamic acids D2, D4, D5 and D6 (> 95% inhibition at 100 µm) that cause a shoot branching phenotype in A. thaliana, and selective inhibition of CCD8 is observed using hydroxamic acids D13H and D15 (82%, 71% inhibition at 10 µm). The enzyme inhibition data imply that the biochemical basis of the shoot branching phenotype is due to inhibition of CCD8.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Dioxigenases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/antagonistas & inibidores , cis-trans-Isomerases/antagonistas & inibidores , Acetatos/química , Acetatos/farmacologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biocatálise , Carotenoides/química , Carotenoides/metabolismo , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Estrutura Molecular , Oryza/enzimologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Compostos de Prata/química , Compostos de Prata/farmacologia , Estereoisomerismo , Especificidade por Substrato , beta Caroteno/química , beta Caroteno/metabolismo , cis-trans-Isomerases/química , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
18.
PLoS One ; 10(5): e0124940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970164

RESUMO

Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this class of compounds, referred to as visual cycle modulators, is emixustat hydrochloride (emixustat). Here, we describe the effects of emixustat, an inhibitor of the visual cycle isomerase (RPE65), on visual cycle function and preservation of retinal integrity in animal models. Emixustat potently inhibited isomerase activity in vitro (IC50 = 4.4 nM) and was found to reduce the production of visual chromophore (11-cis retinal) in wild-type mice following a single oral dose (ED50 = 0.18 mg/kg). Measure of drug effect on the retina by electroretinography revealed a dose-dependent slowing of rod photoreceptor recovery (ED50 = 0.21 mg/kg) that was consistent with the pattern of visual chromophore reduction. In albino mice, emixustat was shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg) provided a ~50% protective effect against light-induced photoreceptor cell loss, while higher doses (1-3 mg/kg) were nearly 100% effective. In Abca4-/- mice, an animal model of excessive lipofuscin and retinoid toxin (A2E) accumulation, chronic (3 month) emixustat treatment markedly reduced lipofuscin autofluorescence and reduced A2E levels by ~60% (ED50 = 0.47 mg/kg). Finally, in the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produced a ~30% reduction in retinal neovascularization (ED50 = 0.46mg/kg). These data demonstrate the ability of emixustat to modulate visual cycle activity and reduce pathology associated with various biochemical and environmental stressors in animal models. Other attributes of emixustat, such as oral bioavailability and target specificity make it an attractive candidate for clinical development in the treatment of retinal disease.


Assuntos
Éteres Fenílicos/farmacologia , Propanolaminas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Degeneração Retiniana/tratamento farmacológico , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Retinopatia da Prematuridade/tratamento farmacológico , cis-trans-Isomerases/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Modelos Animais de Doenças , Eletrorretinografia , Expressão Gênica , Luz , Lipofuscina/antagonistas & inibidores , Lipofuscina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinoides/antagonistas & inibidores , Retinoides/metabolismo , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
19.
J Clin Invest ; 125(7): 2781-94, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26075817

RESUMO

Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators.


Assuntos
Éteres Fenílicos/farmacologia , Propanolaminas/farmacologia , Degeneração Retiniana/prevenção & controle , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Oxirredutases do Álcool/deficiência , Oxirredutases do Álcool/genética , Animais , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinaldeído/química , Retinaldeído/metabolismo , Retinaldeído/toxicidade , Bases de Schiff/metabolismo , Estereoisomerismo , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/química , cis-trans-Isomerases/metabolismo
20.
Brain Res ; 988(1-2): 56-68, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14519526

RESUMO

The involvement of protein phosphatases and peptidyl-prolyl cis/trans isomerases (PPIases) in memory formation in the chick has previously been investigated using a single-trial learning task. In these studies, inhibitory agents were administered bilaterally directly to a critical area of the chick brain. These studies are now extended to investigate whether similar effects are obtained if the drugs are administered unilaterally. All of the effects reported previously following bilateral administration of okadaic acid (OA), cyclosporin A (CyA), FK506 and [MeVal(4)]CyA can be attributed to their action in just one hemisphere. OA, at a concentration known to selectively inhibit PP2A in vitro (0.5 nM) results in permanent memory loss from 30-40 min post-training when injected in the left hemisphere, but has no effect when injected in the right hemisphere. A higher concentration of OA (100 nM), which inhibits both PP2A and PP1 in vitro, has a similar effect in the left hemisphere but causes a transient period of memory loss from 10-20 min post-training when injected in the right hemisphere. CyA (5 nM and 20 nM), which inhibits both PP2B and PPIase activity, causes permanent memory loss from 60 min post-training when injected into the left hemisphere, an effect also observed following administration of FK506 (20 nM), which also inhibits PP2B and PPIase activity, and [MeVal(4)]CyA (5 nM), which inhibits PPIase activity but not PP2B activity. Administration of CyA (20 nM) and FK506, but not [MeVal(4)]CyA, in the right hemisphere leads to a transient period of memory loss from 10-20 min post-training. These results confirm significant roles for phosphatases and PPIases in memory processing but challenge previous conclusions drawn on the basis of bilateral drug administration protocols.


Assuntos
Encéfalo/enzimologia , Inibidores Enzimáticos/farmacologia , Memória/efeitos dos fármacos , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/fisiologia , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Galinhas , Ciclosporina/farmacologia , Vias de Administração de Medicamentos , Lateralidade Funcional , Ácido Okadáico/farmacologia , Distribuição Aleatória , Retenção Psicológica/efeitos dos fármacos , Tacrolimo/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa