Your browser doesn't support javascript.
loading
Degradable poly(anhydride ester) implants: effects of localized salicylic acid release on bone.
Erdmann, L; Macedo, B; Uhrich, K E.
  • Erdmann L; Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
Biomaterials ; 21(24): 2507-12, 2000 Dec.
Article en En | MEDLINE | ID: mdl-11071600
Degradable poly(anhydride ester) implants in which the polymer backbone breaks down into salicylic acid (SA) were investigated. In this preliminary work, local release of SA from the poly(anhydride esters), thus classified as 'active polymers', on healthy bone and tissue was evaluated in vivo using a mouse model. Degradable polyanhydrides that break down into inactive by-products were used as control membranes because of their chemical similarity to the active polymers. Small polymer squares were inserted over the exposed palatal bone adjacent to the maxillary first molars. Active polymer membranes were placed on one side of the mouth, control polymers placed on the contra lateral side. Intraoral clinical examination showed that active polymer sites were less swollen and inflamed than control polymer sites. Histopathological examination at day 1 showed essentially no difference between control and active polymers. After 4 days, active polymer sites showed epithelial proliferation to a greater extent than the polyanhydride controls. After 20 days, active polymer sites showed greater thickness of new palatal bone and no resorptive areas, while control polymer sites showed less bone thickness as well as resorption including lacunae involving cementum and dentine. From these preliminary studies, we conclude that active polymers, namely poly(anhydride esters), stimulated new bone formation.
Asunto(s)
Search on Google
Banco de datos: MEDLINE Asunto principal: Prótesis e Implantes / Materiales Biocompatibles / Huesos / Ácido Salicílico / Ésteres Límite: Animals Idioma: En Año: 2000 Tipo del documento: Article
Search on Google
Banco de datos: MEDLINE Asunto principal: Prótesis e Implantes / Materiales Biocompatibles / Huesos / Ácido Salicílico / Ésteres Límite: Animals Idioma: En Año: 2000 Tipo del documento: Article